Cyclops Tensor Framework
parallel arithmetic on multidimensional arrays
|
Data Structures | |
class | comm |
class | contract_term |
class | itensor |
class | sum_term |
class | tensor |
class | term |
Functions | |
def | MPI_Stop () |
def | __cinit__ (self) |
def | __dealloc__ (self) |
def | rank (self) |
def | np (self) |
def | __get__ (self) |
def | scale (self, scl) |
def | __add__ (self, other) |
def | __sub__ (self, other) |
def | __mul__ (first, second) |
def | conv_type (self, dtype) |
def | __repr__ (self) |
def | __lshift__ (self, other) |
def | __cinit__ (self, term, a, term, b) |
def | __cinit__ (self, tensor, a, string) |
def | scl (self, s) |
def | tril (A, k=0) |
def | triu (A, k=0) |
def | real (tensor, A) |
def | imag (tensor, A) |
def | array (A, dtype=None, copy=True, order='K', subok=False, ndmin=0) |
def | diag (A, k=0, sp=False) |
def | spdiag (A, k=0) |
def | diagonal (init_A, offset=0, axis1=0, axis2=1) |
def | trace (init_A, offset=0, axis1=0, axis2=1, dtype=None, out=None) |
def | take (init_A, indices, axis=None, out=None, mode='raise') |
def | copy (tensor, A) |
def | reshape (A, newshape, order='F') |
def | astensor (A, dtype=None, order=None) |
def | dot (tA, tB, out=None) |
def | tensordot (tA, tB, axes=2) |
def | exp (init_x, out=None, where=True, casting='same_kind', order='F', dtype=None, subok=True) |
def | to_nparray (t) |
def | from_nparray (arr) |
def | zeros_like (init_A, dtype=None, order='F') |
def | zeros (shape, dtype=np.float64, order='F') |
def | empty (shape, dtype=np.float64, order='F') |
def | empty_like (A, dtype=None) |
def | sum (tensor, init_A, axis=None, dtype=None, out=None, keepdims=None) |
def | ravel (init_A, order="F") |
def | any (tensor, init_A, axis=None, out=None, keepdims=None) |
def | hstack (in_tup) |
def | vstack (in_tup) |
def | conj (init_A) |
def | all (inA, axis=None, out=None, keepdims=False) |
def | transpose (init_A, axes=None) |
def | ones (shape, dtype=None, order='F') |
def | eye (n, m=None, k=0, dtype=np.float64, sp=False) |
def | identity (n, dtype=np.float64) |
def | speye (n, m=None, k=0, dtype=np.float64) |
def | einsum (subscripts, operands, out=None, dtype=None, order='K', casting='safe') |
def | svd (tensor, A, rank=None) |
def | qr (tensor, A) |
def | vecnorm (A, ord=2) |
def | power (first, second) |
def | abs (initA) |
Variables | |
dictionary | type_index = {} |
SYM = _enum(NS=0, SY=1, AS=2, SH=3) | |
dim = len(a) | |
ca = <char*>malloc(dim*sizeof(char)) | |
w | |
tm | |
a | |
b | |
dtype | |
tsr | |
it | |
string | |
def ctf.core.__cinit__ | ( | self | ) |
Definition at line 306 of file core.pyx.
Referenced by ctf.core.__cinit__().
def ctf.core.__cinit__ | ( | self, | |
term, | |||
a, | |||
term, | |||
b | |||
) |
Definition at line 384 of file core.pyx.
References ctf.core.__cinit__().
def ctf.core.__cinit__ | ( | self, | |
tensor, | |||
a, | |||
string | |||
) |
Definition at line 452 of file core.pyx.
References ctf.core.__cinit__().
def ctf.core.__dealloc__ | ( | self | ) |
Definition at line 309 of file core.pyx.
Referenced by ctf.core.__mul__().
def ctf.core.__lshift__ | ( | self, | |
other | |||
) |
Definition at line 369 of file core.pyx.
References ctf.core.astensor().
def ctf.core.__mul__ | ( | first, | |
second | |||
) |
Definition at line 349 of file core.pyx.
References ctf.core.__dealloc__().
def ctf.core.abs | ( | initA | ) |
abs(A) Calculate the elementwise absolute value of a tensor. Parameters ---------- A: tensor_like Input tensor. Returns ------- output: tensor A tensor containing the absolute value of each element in input tensor. For complex number :math:`a + bi`, the absolute value is calculated as :math:`\sqrt{a^2 + b^2}` References ---------- Examples -------- >>> import ctf >>> a = ctf.astensor([-2, 3]) array([-2, 3]) >>> abs(a) array([2, 3])
Definition at line 5440 of file core.pyx.
References ctf.core.astensor().
Referenced by ctf.core.tensor.__abs__(), CTF_int.abs_helper(), CTF_int.char_abs(), permute_multiworld(), CTF.real_norm1(), scalar(), scan_test(), CTF::Set< dtype, is_ord >.Set(), CTF::Set< dtype, is_ord >.set_abs_to_default(), and setup_unstructured().
def ctf.core.all | ( | inA, | |
axis = None , |
|||
out = None , |
|||
keepdims = False |
|||
) |
all(A, axis=None, out=None, keepdims = False) Return whether given an axis elements are True. Parameters ---------- A: tensor_like Input tensor. axis: None or int, optional Currently not supported in CTF Python. out: tensor, optional Currently not supported in CTF Python. keepdims : bool, optional Currently not supported in CTF Python. Returns ------- output: tensor_like Output tensor or scalar. Examples -------- >>> import ctf >>> a = ctf.astensor([[0, 1], [1, 1]]) >>> ctf.all(a) False
def ctf.core.any | ( | tensor, | |
init_A, | |||
axis = None , |
|||
out = None , |
|||
keepdims = None |
|||
) |
any(A, axis=None, out=None, keepdims = False) Return whether given an axis any elements are True. Parameters ---------- A: tensor_like Input tensor. axis: None or int, optional Axis along which logical OR is applied. out: tensor_like, optional Objects which will place the result. keepdims: bool, optional If keepdims is set to True, the reduced axis will remain 1 in shape. Returns ------- output: tensor_like Output tensor or scalar. Examples -------- >>> import ctf >>> a = ctf.astensor([[0, 0], [1, 1]]) >>> ctf.any(a) True >>> ctf.any(a, axis=0) array([ True, True]) >>> ctf.any(a, axis=1) array([False, True])
Definition at line 4471 of file core.pyx.
References ctf.core.astensor(), and ctf.core.reshape().
def ctf.core.array | ( | A, | |
dtype = None , |
|||
copy = True , |
|||
order = 'K' , |
|||
subok = False , |
|||
ndmin = 0 |
|||
) |
array(A, dtype=None, copy=True, order='K', subok=False, ndmin=0) Create a tensor. Parameters ---------- A: tensor_like Input tensor like object. dtype: data-type, optional The desired data-type for the tensor. If the dtype is not specified, the dtype will be determined as `np.array()`. copy: bool, optional If copy is true, the object is copied. order: {‘K’, ‘A’, ‘C’, ‘F’}, optional Specify the memory layout for the tensor. subok: bool, optional Currently subok is not supported in `ctf.array()`. ndmin: int, optional Currently ndmin is not supported in `ctf.array()`. Returns ------- output: tensor A tensor object with specified requirements. See Also -------- ctf : ctf.astensor() Notes ----- The input of ctf.array() should be tensor or numpy.ndarray Examples -------- >>> import ctf >>> import numpy as np >>> a = np.array([1, 2, 3.]) array([1., 2., 3.]) >>> b = ctf.array(a) array([1., 2., 3.])
Definition at line 3079 of file core.pyx.
References ctf.core.astensor().
Referenced by CTF_int.handler().
def ctf.core.astensor | ( | A, | |
dtype = None , |
|||
order = None |
|||
) |
astensor(A, dtype = None, order=None) Convert the input data to tensor. Parameters ---------- A: tensor_like Input data. dtype: data-type, optional Numpy data-type, if it is not specified, the function will return the tensor with same type as `np.asarray` returned ndarray. order: {‘C’, ‘F’}, optional C or Fortran memory order, default is 'F'. Returns ------- output: tensor A tensor representation of A. See Also -------- numpy: numpy.asarray() Examples -------- >>> import ctf >>> a = ctf.astensor([1,2,3]) >>> a array([1, 2, 3])
Definition at line 3650 of file core.pyx.
Referenced by ctf.core.tensor.__cinit__(), ctf.core.tensor.__iadd__(), ctf.core.tensor.__idiv__(), ctf.core.tensor.__imul__(), ctf.core.tensor.__isub__(), ctf.core.tensor.__itruediv__(), ctf.core.__lshift__(), ctf.core.tensor.__neg__(), ctf.core.tensor.__richcmp__(), ctf.core.tensor.__setitem__(), ctf.core.abs(), ctf.core.any(), ctf.core.array(), ctf.core.conj(), ctf.core.diagonal(), ctf.core.dot(), ctf.core.exp(), ctf.core.from_nparray(), ctf.core.ravel(), ctf.core.sum(), ctf.core.take(), ctf.core.tensordot(), ctf.core.trace(), ctf.core.transpose(), ctf.core.vecnorm(), and ctf.core.zeros_like().
def ctf.core.conj | ( | init_A | ) |
conj(A) Return the conjugate tensor A element-wisely. Parameters ---------- A: tensor_like Input tensor. Returns ------- output: tensor The element-wise complex conjugate of input tensor A. If tensor A is not complex, just return a copy of A. Examples -------- >>> import ctf >>> a = ctf.astensor([2+3j, 3-2j]) array([2.+3.j, 3.-2.j]) >>> ctf.conj(a) array([2.-3.j, 3.+2.j])
Definition at line 4760 of file core.pyx.
References ctf.core.astensor().
def ctf.core.conv_type | ( | self, | |
dtype | |||
) |
Definition at line 363 of file core.pyx.
Referenced by ctf.core.tensor.__get__(), and ctf.core.MPI_Stop().
def ctf.core.copy | ( | tensor, | |
A | |||
) |
copy(A) Return a copy of tensor A. Parameters ---------- A: tensor Input tensor. Returns ------- output: tensor A tensor representation of A. Examples -------- >>> a = ctf.astensor([1,2,3]) >>> a array([1, 2, 3]) >>> b = ctf.copy(a) >>> b array([1, 2, 3]) >>> id(a) == id(b) False
Definition at line 3583 of file core.pyx.
Referenced by CTF_int::algstrct.copy(), CTF::Set< dtype, is_ord >.copy(), CTF::Set< dtype, is_ord >.copy_pairs(), CTF_int::algstrct.has_mul(), CTF_int::algstrct.safecopy(), CTF_int::algstrct.scal(), and CTF_int.seq_csr_to_coo().
def ctf.core.diag | ( | A, | |
k = 0 , |
|||
sp = False |
|||
) |
diag(A, k=0, sp=False) Return the diagonal tensor of A. Parameters ---------- A: tensor_like Input tensor with 1-D or 2-D dimensions. If A is 1-D tensor, return a 2-D tensor with A on diagonal. k: int, optional `k=0` is the diagonal. `k<0`, diagnals below the main diagonal. `k>0`, diagonals above the main diagonal. sp: bool, optional If sp is true, the returned tensor is sparse. Returns ------- output: tensor Diagonal tensor of A. Notes ----- When the input tensor is sparse, returned tensor will also be sparse. See Also -------- ctf : ctf.diagonal() ctf.triu() ctf.tril() ctf.trace() ctf.spdiag() Examples -------- >>> import ctf >>> a = ctf.ones([3,]) >>> ctf.diag(a, k=1) array([[0., 1., 0., 0.], [0., 0., 1., 0.], [0., 0., 0., 1.]]) >>> b = ctf.zeros([4,4]) >>> ctf.diag(b) array([0., 0., 0., 0.])
Definition at line 3141 of file core.pyx.
References ctf.core.einsum().
Referenced by ctf.core.spdiag().
def ctf.core.diagonal | ( | init_A, | |
offset = 0 , |
|||
axis1 = 0 , |
|||
axis2 = 1 |
|||
) |
diagonal(A, offset=0, axis1=0, axis2=1) Return the diagonal of tensor A if A is 2D. If A is a higher order square tensor (same shape for every dimension), return diagonal of tensor determined by axis1=0, axis2=1. Parameters ---------- A: tensor_like Input tensor. offset: int, optional Default is 0 which indicates the main diagonal. axis1: int, optional Default is 0 which indicates the first axis of 2-D tensor where diagonal is taken. axis2: int, optional Default is 1 which indicates the second axis of 2-D tensor where diagonal is taken. Returns ------- output: tensor Diagonal of input tensor. Notes ----- `ctf.diagonal` only supports diagonal of square tensor with order more than 2. Examples -------- >>> import ctf >>> a = ctf.astensor([[1,2,3], [4,5,6], [7,8,9]]) >>> ctf.diagonal(a) array([1, 5, 9])
Definition at line 3289 of file core.pyx.
References ctf.core.astensor(), and ctf.core.einsum().
Referenced by ctf.core.trace().
def ctf.core.dot | ( | tA, | |
tB, | |||
out = None |
|||
) |
dot(A, B, out=None) Return the dot product of two tensors A and B. Parameters ---------- A: tensor_like First input tensor. B: tensor_like Second input tensor. out: tensor Currently not supported in CTF Python. Returns ------- output: tensor Dot product of two tensors. See Also -------- numpy: numpy.dot() Examples -------- >>> import ctf >>> a = ctf.astensor([[1,2,3], [4,5,6], [7,8,9]]) >>> b = ctf.astensor([1,1,1]) >>> ctf.dot(a, b) array([ 6, 15, 24])
Definition at line 3698 of file core.pyx.
References ctf.core.astensor(), and ctf.core.tensordot().
def ctf.core.einsum | ( | subscripts, | |
operands, | |||
out = None , |
|||
dtype = None , |
|||
order = 'K' , |
|||
casting = 'safe' |
|||
) |
einsum(subscripts, *operands, out=None, dtype=None, order='K', casting='safe') Einstein summation on operands. Parameters ---------- subscripts: str Subscripts for summation. operands: list of tensor List of tensors. out: tensor or None If the out is not None, calculated result will stored into out tensor. dtype: data-type, optional Numpy data-type of returned tensor, dtype of returned tensor will be specified by operand tensors. order: {‘C’, ‘F’, ‘A’, ‘K’}, optional Currently not supported by CTF Python. casting: {‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional Currently not supported by CTF Python. Returns ------- output: tensor See Also -------- numpy : numpy.einsum() Examples -------- >>> import ctf >>> a = ctf.astensor([[1,2,3], [4,5,6], [7,8,9]]) >>> ctf.einsum("ii->i", a) array([1, 5, 9])
Definition at line 5121 of file core.pyx.
Referenced by ctf.core.diag(), and ctf.core.diagonal().
def ctf.core.empty | ( | shape, | |
dtype = np.float64 , |
|||
order = 'F' |
|||
) |
empty(shape, dtype=np.float64, order='F') Return the tensor with specified shape and dtype without initialization. Currently not supported by CTF Python, this function same with the ctf.zeros(). Parameters ---------- shape: int or tuple of int Shape of the empty tensor. dtype: data-type, optional Output data-type for the empty tensor. order: {‘C’, ‘F’}, optional, default: ‘F’ Currently not support by CTF Python. Returns ------- output: tensor_like Output tensor. Examples -------- >>> import ctf >>> import numpy as np >>> a = ctf.empty([3,4], dtype=np.int64) >>> a array([[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]])
Definition at line 4191 of file core.pyx.
References ctf.core.zeros().
Referenced by ctf.core.empty_like().
def ctf.core.empty_like | ( | A, | |
dtype = None |
|||
) |
empty_like(A, dtype=None) Return uninitialized tensor of with same shape and dtype of tensor A. Currently in CTF Python is same with ctf.zero_like. Parameters ---------- A: tensor_like Input tensor where the output tensor shape and dtype defined as. dtype: data-type, optional Output data-type for the empty tensor. Returns ------- output: tensor_like Output tensor. See Also -------- ctf: ctf.zeros_like() Examples -------- >>> import ctf >>> a = ctf.zeros([3,4], dtype=np.int64) >>> b = ctf.empty_like(a) >>> b array([[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]])
Definition at line 4224 of file core.pyx.
References ctf.core.empty().
def ctf.core.exp | ( | init_x, | |
out = None , |
|||
where = True , |
|||
casting = 'same_kind' , |
|||
order = 'F' , |
|||
dtype = None , |
|||
subok = True |
|||
) |
exp(A, out=None, where=True, casting='same_kind', order='F', dtype=None, subok=True) Exponential of all elements in input tensor A. Parameters ---------- A: tensor_like Input tensor or tensor like array. out: tensor, optional Crrently not support by CTF Python. where: array_like, optional Crrently not support by CTF Python. casting: same_kind or unsafe Default same_kind. order: optional Crrently not support by CTF Python. dtype: data-type, optional Output data-type for the exp result. subok: bool Crrently not support by CTF Python. Returns ------- output: tensor_like Output tensor for the exponential. See Also -------- numpy: numpy.exp() Examples -------- >>> import ctf >>> a = ctf.astensor([1,2,3]) >>> ctf.exp(a) array([ 2.71828183, 7.3890561 , 20.08553692])
Definition at line 3954 of file core.pyx.
References ctf.core.astensor().
Referenced by CTF_int::tensor.exp_helper(), omega(), test_dft(), and test_dft_3D().
def ctf.core.eye | ( | n, | |
m = None , |
|||
k = 0 , |
|||
dtype = np.float64 , |
|||
sp = False |
|||
) |
eye(n, m=None, k=0, dtype=np.float64, sp=False) Return a 2D tensor with ones on the diagonal and zeros elsewhere. Parameters ---------- n: int Number of rows. m: int, optional Number of columns, default set to n. k: int, optional Diagonal index, specify ones on main diagonal, upper diagonal or lower diagonal. dtype: data-type, optional Numpy data-type of returned tensor, default `np.float64`. sp: bool, optional If `true` the returned tensor will be sparse, default `sp=False`. Returns ------- output: tensor Examples -------- >>> import ctf >>> e = ctf.eye(3,m=4,k=-1) >>> e array([[0., 0., 0., 0.], [1., 0., 0., 0.], [0., 1., 0., 0.]])
Definition at line 4988 of file core.pyx.
Referenced by ctf.core.identity(), and ctf.core.speye().
def ctf.core.from_nparray | ( | arr | ) |
from_nparray(A) Convert the numpy array to tensor. Parameters ---------- A: ndarray Input numpy array. Returns ------- output: tensor Tensor representation of input numpy array. See Also -------- ctf: ctf.astensor() Examples -------- >>> import ctf >>> import numpy as np >>> a = np.array([1,2,3]) >>> b = ctf.from_nparray(a) >>> b array([1, 2, 3]) >>> type(b) <class 'ctf.core.tensor'>
Definition at line 4087 of file core.pyx.
References ctf.core.astensor().
def ctf.core.hstack | ( | in_tup | ) |
hstack(in_tup) Stack the tensor in column-wise. Parameters ---------- in_tup: tuple of tensors Input tensor. Returns ------- output: tensor_like Output horizontally stacked tensor. Examples -------- >>> import ctf >>> a = ctf.astensor([1,2,3]) >>> b = ctf.astensor([4,5,6]) >>> ctf.hstack((a, b)) array([1, 2, 3, 4, 5, 6])
def ctf.core.identity | ( | n, | |
dtype = np.float64 |
|||
) |
identity(n, dtype=np.float64) Return a squared 2-D tensor where the main diagonal contains ones and elsewhere zeros. Parameters ---------- n: int Number of rows. dtype: data-type, optional Numpy data-type of returned tensor, default `np.float64`. Returns ------- output: tensor See Also -------- ctf : ctf.eye() Examples -------- >>> import ctf >>> a = ctf.identity(3) >>> a array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]])
Definition at line 5050 of file core.pyx.
References ctf.core.eye().
def ctf.core.imag | ( | tensor, | |
A | |||
) |
imag(A) Return the image part of the tensor elementwisely. Parameters ---------- A: tensor_like Input tensor. Returns ------- output: tensor A tensor with real part of the input tensor. See Also -------- numpy : numpy.imag() Notes ----- The input should be a CTF tensor. Examples -------- >>> import ctf >>> a = ctf.astensor([1+2j, 3+4j, 5+6j, 7+8j]) >>> a array([1.+2.j, 3.+4.j, 5.+6.j, 7.+8.j]) >>> ctf.imag(a) array([2., 4., 6., 8.])
Definition at line 3038 of file core.pyx.
References ctf.core.zeros().
Referenced by omega(), CTF::Set< dtype, is_ord >.print(), test_dft(), and test_dft_3D().
def ctf.core.MPI_Stop | ( | ) |
Kill all working nodes.
Definition at line 57 of file core.pyx.
References bivar_function(), ctf.core.conv_type(), endomorphism(), CTF_int.matrix_qr(), CTF_int.matrix_qr_cmplx(), CTF_int.matrix_svd(), CTF_int.matrix_svd_cmplx(), CTF_int.permute(), CTF_int.subsample(), CTF_int.sum_bool_tsr(), and univar_function().
def ctf.core.np | ( | self | ) |
Definition at line 315 of file core.pyx.
Referenced by CTF_int::CommData.activate(), CTF_int::CommData.all_to_allv(), CTF_int::CommData.allred(), CTF_int::CommData.bcast(), bitonic_sort(), CTF_int.bucket_by_pe(), CTF_int.calc_cnt_displs(), ccsdt_t3_to_t2(), chi(), CTF_int.cmp_sym_perms(), CTF_int::CommData.CommData(), CTF_int.cyclic_reshuffle(), DFT_matrix(), diag_ctr(), diag_sym(), CTF_int::LinModel< nparam >.dump_data(), CTF_int::spctr_replicate.est_time_fp(), CTF_int::ctr_replicate.est_time_fp(), CTF_int::CommData.estimate_allred_time(), CTF_int::CommData.estimate_alltoall_time(), CTF_int::CommData.estimate_alltoallv_time(), CTF_int::CommData.estimate_bcast_time(), CTF_int::CommData.estimate_red_time(), fft(), gemm_4D(), CTF_int.get_len_ordering(), CTF_int.get_phys_topo(), CTF_int.glb_cyclic_reshuffle(), main(), CTF_int.morph_topo(), multi_tsr_sym(), CTF_int::CommData.operator=(), permute_multiworld(), CTF_int::spctr_replicate.print(), CTF_int::tspsum_replicate.print(), CTF_int::tsum_replicate.print(), CTF_int::ctr_replicate.print(), CTF_int::tensor.print_map(), CTF.print_timers(), CTF_int::tensor.read_local(), CTF::Matrix< dtype >.read_mat(), CTF_int::CommData.red(), repack(), scalar(), CTF_int::tensor.scale_diagonals(), scan(), CTF_int::tensor.set_zero(), sparse_permuted_slice(), strassen(), CTF_int.strip_diag(), sy_times_ns(), test_dft(), test_dft_3D(), test_recursive_matmul(), test_subworld_gemm(), trace(), train_all(), twiddle_matrix(), CTF_int::LinModel< nparam >.update(), weigh_4D(), CTF_int.wr_pairs_layout(), CTF::Matrix< dtype >.write_mat(), CTF_int::tensor.zero_out_padding(), and CTF::World.~World().
def ctf.core.ones | ( | shape, | |
dtype = None , |
|||
order = 'F' |
|||
) |
ones(shape, dtype = None, order='F') Return a tensor filled with ones with specified shape and dtype. Parameters ---------- shape: int or sequence of ints Shape of the returned tensor. dtype: numpy data-type, optional The data-type for the tensor. order: {‘C’, ‘F’}, optional Not support by current CTF Python. Returns ------- output: tensor Tensor with specified shape and dtype. Examples -------- >>> import ctf >>> a = ctf.ones([2, 2]) >>> a array([[1., 1.], [1., 1.]])
def ctf.core.power | ( | first, | |
second | |||
) |
power(A, B) Elementwisely raise tensor A to powers from the tensor B. Parameters ---------- A: tensor_like Bases tensor. B: tensor_like Exponents tensor Returns ------- output: tensor The output tensor containing elementwise bases A raise to exponents of B. Examples -------- >>> import ctf >>> a = ctf.astensor([2., 3]) array([2., 3.]) >>> b = ctf.astensor([2., 3]) array([2., 3.]) >>> ctf.power(a, b) array([ 4., 27.])
Definition at line 5404 of file core.pyx.
Referenced by ctf.core.tensor.__pow__().
def ctf.core.qr | ( | tensor, | |
A | |||
) |
qr(A) Compute QR factorization of tensor A. Parameters ---------- A: tensor_like Input tensor 2-D dimensions. Returns ------- Q: tensor A CTF tensor with 2-D dimensions and orthonormal columns. R: tensor An upper triangular 2-D CTF tensor.
Definition at line 5275 of file core.pyx.
References CTF_int.matrix_qr(), and CTF_int.matrix_qr_cmplx().
def ctf.core.rank | ( | self | ) |
Definition at line 312 of file core.pyx.
Referenced by CTF_int::CommData.activate(), CTF_int::CommData.all_to_allv(), bench_contraction(), bench_redistribution(), bitonic_sort(), CTF_int::mapping.calc_phys_rank(), ccsd(), ccsdt_map_test(), ccsdt_t3_to_t2(), CTF_int::CommData.CommData(), diag_ctr(), diag_sym(), CTF_int::LinModel< nparam >.dump_data(), CTF::Schedule.execute(), fast_diagram(), fast_sym(), fast_sym_4D(), fast_tensor_ctr(), Integrals.fill_rand(), Amplitudes.fill_rand(), gemm_4D(), CTF_int.glb_ord_pup(), CTF_int.handler(), main(), multi_tsr_sym(), CTF_int::CommData.operator=(), CTF_int.pad_cyclic_pup_virt_buff(), CTF::Schedule.partition_and_execute(), permute_multiworld(), CTF.print_timers(), readall_test(), readwrite_test(), recursive_matmul(), repack(), CTF_int::spctr_replicate.run(), CTF_int::ctr_replicate.run(), scalar(), sparse_permuted_slice(), strassen(), sy_times_ns(), test_recursive_matmul(), test_subworld_gemm(), CTF_int::topology.topology(), trace(), train_all(), CTF_int::LinModel< nparam >.update(), weigh_4D(), and CTF::World.~World().
def ctf.core.ravel | ( | init_A, | |
order = "F" |
|||
) |
ravel(A, order="F") Return flattened CTF tensor of input tensor A. Parameters ---------- A: tensor_like Input tensor. order: {‘C’,’F’, ‘A’, ‘K’}, optional Currently not support by current CTF Python. Returns ------- output: tensor_like Flattened tensor. Examples -------- >>> import ctf >>> a = ctf.astensor([1,2,3,4,5,6,7,8]).reshape(2,2,2) >>> a array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]) >>> ctf.ravel(a) array([1, 2, 3, 4, 5, 6, 7, 8])
Definition at line 4434 of file core.pyx.
References ctf.core.astensor(), and ctf.core.reshape().
def ctf.core.real | ( | tensor, | |
A | |||
) |
real(A) Return the real part of the tensor elementwisely. Parameters ---------- A: tensor_like Input tensor. Returns ------- output: tensor A tensor with real part of the input tensor. See Also -------- numpy : numpy.real() Notes ----- The input should be a CTF tensor. Examples -------- >>> import ctf >>> a = ctf.astensor([1+2j, 3+4j, 5+6j, 7+8j]) >>> a array([1.+2.j, 3.+4.j, 5.+6.j, 7.+8.j]) >>> ctf.real(a) array([1., 3., 5., 7.])
Definition at line 2997 of file core.pyx.
Referenced by CTF::Set< dtype, is_ord >.print(), test_dft(), and test_dft_3D().
def ctf.core.reshape | ( | A, | |
newshape, | |||
order = 'F' |
|||
) |
reshape(A, newshape, order='F') Reshape the input tensor A to new shape. Parameters ---------- A: tensor_like Input tensor. newshape: tuple of ints or int New shape where the input tensor is shaped to. order: {‘C’, ‘F’}, optional Currently not supported by CTF Python. Returns ------- output: tensor Tensor with new shape of A. See Also -------- ctf: ctf.tensor.reshape() Examples -------- >>> import ctf a = ctf.astensor([1,2,3,4]) >>> ctf.reshape(a, (2, 2)) array([[1, 2], [3, 4]])
Definition at line 3612 of file core.pyx.
Referenced by ctf.core.any(), ctf.core.ravel(), and ctf.core.take().
def ctf.core.scale | ( | self, | |
scl | |||
) |
Definition at line 325 of file core.pyx.
Referenced by endomorphism(), CTF_int::Term.mult_scl(), CTF_int::Term.operator-(), CTF::Sparse_Tensor< dtype >.Sparse_Tensor(), CTF_int::Term.Term(), and CTF_int::Term.~Term().
def ctf.core.scl | ( | self, | |
s | |||
) |
Definition at line 473 of file core.pyx.
Referenced by CTF::Tensor< dtype >.fill_sp_random(), ctf.core.tensor.set_zero(), test_mis(), and test_mis2().
def ctf.core.spdiag | ( | A, | |
k = 0 |
|||
) |
spdiag(A, k=0) Return the sparse diagonal tensor of A. Parameters ---------- A: tensor_like Input tensor with 1-D or 2-D dimensions. If A is 1-D tensor, return a 2-D tensor with A on diagonal. k: int, optional `k=0` is the diagonal. `k<0`, diagnals below the main diagonal. `k>0`, diagonals above the main diagonal. Returns ------- output: tensor Sparse diagonal tensor of A. Notes ----- Same with ctf.diag(A,k,sp=True) Examples -------- >>> import ctf >>> a = ctf.astensor([[1,2,3], [4,5,6], [7,8,9]]) >>> ctf.spdiag(a) array([1, 5, 9])
Definition at line 3258 of file core.pyx.
References ctf.core.diag().
def ctf.core.speye | ( | n, | |
m = None , |
|||
k = 0 , |
|||
dtype = np.float64 |
|||
) |
speye(n, m=None, k=0, dtype=np.float64) Return a sparse 2D tensor with ones on the diagonal and zeros elsewhere. Parameters ---------- n: int Number of rows. m: int, optional Number of columns, default set to n. k: int, optional Diagonal index, specify ones on main diagonal, upper diagonal or lower diagonal. dtype: data-type, optional Numpy data-type of returned tensor, default `np.float64`. Returns ------- output: tensor See Also -------- ctf : ctf.eye() Examples -------- >>> import ctf >>> e = ctf.speye(3,m=4,k=-1) >>> e array([[0., 0., 0., 0.], [1., 0., 0., 0.], [0., 1., 0., 0.]])
Definition at line 5082 of file core.pyx.
References ctf.core.eye().
def ctf.core.sum | ( | tensor, | |
init_A, | |||
axis = None , |
|||
dtype = None , |
|||
out = None , |
|||
keepdims = None |
|||
) |
sum(A, axis = None, dtype = None, out = None, keepdims = None) Sum of elements in tensor or along specified axis. Parameters ---------- A: tensor_like Input tensor. axis: None, int or tuple of ints Axis or axes where the sum of elements is performed. dtype: data-type, optional Data-type for the output tensor. out: tensor, optional Alternative output tensor. keepdims: None, bool, optional If set to true, axes summed over will remain size one. Returns ------- output: tensor_like Output tensor. See Also -------- numpy: numpy.sum() Examples -------- >>> import ctf >>> a = ctf.ones([3,4], dtype=np.int64) >>> ctf.sum(a) 12
Definition at line 4261 of file core.pyx.
References ctf.core.astensor().
Referenced by CTF_int::tensor.extract_diag(), readwrite_test(), and ctf.core.trace().
def ctf.core.svd | ( | tensor, | |
A, | |||
rank = None |
|||
) |
svd(A, rank=None) Compute Single Value Decomposition of tensor A. Parameters ---------- A: tensor_like Input tensor 2-D dimensions. rank: int or None, optional Target rank for SVD, default `k=0`. Returns ------- U: tensor A unitary CTF tensor with 2-D dimensions. S: tensor A 1-D tensor with singular values. VT: tensor A unitary CTF tensor with 2-D dimensions.
Definition at line 5235 of file core.pyx.
References CTF_int.matrix_svd(), and CTF_int.matrix_svd_cmplx().
def ctf.core.take | ( | init_A, | |
indices, | |||
axis = None , |
|||
out = None , |
|||
mode = 'raise' |
|||
) |
take(A, indices, axis=None, out=None, mode='raise') Take elements from a tensor along axis. Parameters ---------- A: tensor_like Input tensor. indices: tensor_like Indices of the values wnat to be extracted. axis: int, optional Select values from which axis, default None. out: tensor Currently not supported in CTF Python take(). mode: {‘raise’, ‘wrap’, ‘clip’}, optional Currently not supported in CTF Python take(). Returns ------- output: tensor or scalar Elements extracted from the input tensor. See Also -------- numpy: numpy.take() Examples -------- >>> import ctf >>> a = ctf.astensor([[1,2,3], [4,5,6], [7,8,9]]) >>> ctf.take(a, [0, 1, 2]) array([1, 2, 3])
Definition at line 3435 of file core.pyx.
References ctf.core.astensor(), and ctf.core.reshape().
def ctf.core.tensordot | ( | tA, | |
tB, | |||
axes = 2 |
|||
) |
tensordot(A, B, axes=2) Return the tensor dot product of two tensors A and B along axes. Parameters ---------- A: tensor_like First input tensor. B: tensor_like Second input tensor. axes: int or array_like Sum over which axes. Returns ------- output: tensor Tensor dot product of two tensors. See Also -------- numpy: numpy.tensordot() Examples -------- >>> import ctf >>> import numpy as np >>> a = np.arange(60.).reshape(3,4,5) >>> b = np.arange(24.).reshape(4,3,2) >>> a = ctf.astensor(a) >>> b = ctf.astensor(b) >>> c = ctf.tensordot(a,b, axes=([1,0],[0,1])) >>> c array([[4400., 4730.], [4532., 4874.], [4664., 5018.], [4796., 5162.], [4928., 5306.]])
Definition at line 3743 of file core.pyx.
References ctf.core.astensor().
Referenced by ctf.core.dot().
def ctf.core.to_nparray | ( | t | ) |
to_nparray(A) Convert the tensor to numpy array. Parameters ---------- A: tensor_like Input tensor or tensor like array. Returns ------- output: ndarray Numpy ndarray representation of tensor like input A. See Also -------- numpy: numpy.asarray() Examples -------- >>> import ctf >>> import numpy as np >>> a = ctf.zeros([3,4]) >>> b = ctf.to_nparray(a) >>> b array([[0., 0., 0., 0.], [0., 0., 0., 0.], [0., 0., 0., 0.]]) >>> type(b) <class 'numpy.ndarray'>
def ctf.core.trace | ( | init_A, | |
offset = 0 , |
|||
axis1 = 0 , |
|||
axis2 = 1 , |
|||
dtype = None , |
|||
out = None |
|||
) |
trace(A, offset=0, axis1=0, axis2=1, dtype=None, out=None) Return the sum over the diagonal of input tensor. Parameters ---------- A: tensor_like Input tensor. offset: int, optional Default is 0 which indicates the main diagonal. axis1: int, optional Default is 0 which indicates the first axis of 2-D tensor where diagonal is taken. axis2: int, optional Default is 1 which indicates the second axis of 2-D tensor where diagonal is taken. dtype: data-type, optional Numpy data-type, currently not supported in CTF Python trace(). out: tensor Currently not supported in CTF Python trace(). Returns ------- output: tensor or scalar Sum along diagonal of input tensor. Examples -------- >>> import ctf >>> a = ctf.astensor([[1,2,3], [4,5,6], [7,8,9]]) >>> ctf.trace(a) 15
Definition at line 3385 of file core.pyx.
References ctf.core.astensor(), ctf.core.diagonal(), and ctf.core.sum().
def ctf.core.transpose | ( | init_A, | |
axes = None |
|||
) |
transpose(A, axes=None) Permute the dimensions of the input tensor. Parameters ---------- A: tensor_like Input tensor. axes: list of ints, optional If axes is None, the dimensions are inversed, otherwise permute the dimensions according to the axes value. Returns ------- output: tensor Tensor with permuted axes of A. Examples -------- >>> import ctf >>> a = ctf.zeros([3,4,5]) >>> a.shape (3, 4, 5) >>> ctf.transpose(a, axes=[0, 2, 1]).shape (3, 5, 4) >>> ctf.transpose(a).shape (5, 4, 3)
Definition at line 4850 of file core.pyx.
References ctf.core.astensor().
Referenced by CTF.get_core_tensor(), get_core_tensor(), get_core_tensor_hooi(), and ctf.core.triu().
def ctf.core.tril | ( | A, | |
k = 0 |
|||
) |
tril(A, k=0) Return lower triangle of a CTF tensor. Parameters ---------- A: tensor_like 2-D input tensor. k: int Specify last diagonal not zeroed. Default `k=0` which indicates elements under the main diagonal are zeroed. Returns ------- output: tensor Lower triangular 2-d tensor of input tensor. Examples -------- >>> import ctf >>> a = ctf.astensor([[1,2,3],[4,5,6],[7,8,9]]) >>> ctf.tril(a, k=1) array([[1, 2, 0], [4, 5, 6], [7, 8, 9]])
Definition at line 2925 of file core.pyx.
Referenced by ctf.core.triu().
def ctf.core.triu | ( | A, | |
k = 0 |
|||
) |
triu(A, k=0) Return upper triangle of a CTF tensor. Parameters ---------- A: tensor_like 2-D input tensor. k: int Specify last diagonal not zeroed. Default `k=0` which indicates elements under the main diagonal are zeroed. Returns ------- output: tensor Upper triangular 2-d tensor of input tensor. Examples -------- >>> import ctf >>> a = ctf.astensor([[1,2,3],[4,5,6],[7,8,9]]) >>> ctf.triu(a, k=-1) array([[1, 2, 3], [4, 5, 6], [0, 8, 9]])
Definition at line 2968 of file core.pyx.
References ctf.core.transpose(), and ctf.core.tril().
def ctf.core.vecnorm | ( | A, | |
ord = 2 |
|||
) |
vecnorm(A, ord=2) Return norm of tensor A. Parameters ---------- A: tensor_like Input tensor with 1-D or 2-D dimensions. If A is 1-D tensor, return a 2-D tensor with A on diagonal. ord: {int 1, 2, inf}, optional Order of the norm. Returns ------- output: tensor Norm of tensor A. Examples -------- >>> import ctf >>> import ctf.linalg as la >>> a = ctf.astensor([3,4.]) >>> la.vecnorm(a) 5.0
Definition at line 5304 of file core.pyx.
References ctf.core.astensor().
def ctf.core.vstack | ( | in_tup | ) |
vstack(in_tup) Stack the tensor in row-wise. Parameters ---------- in_tup: tuple of tensors Input tensor. Returns ------- output: tensor_like Output vertically stacked tensor. Examples -------- >>> import ctf >>> a = ctf.astensor([1,2,3]) >>> b = ctf.astensor([4,5,6]) >>> ctf.vstack((a, b)) array([[1, 2, 3], [4, 5, 6]])
def ctf.core.zeros | ( | shape, | |
dtype = np.float64 , |
|||
order = 'F' |
|||
) |
zeros(shape, dtype=np.float64, order='F') Return the tensor with specified shape and dtype with all elements filled as zeros. Parameters ---------- shape: int or tuple of int Shape of the empty tensor. dtype: data-type, optional Output data-type for the empty tensor. order: {‘C’, ‘F’}, optional, default: ‘F’ Currently not support by CTF Python. Returns ------- output: tensor_like Output tensor. Examples -------- >>> import ctf >>> import numpy as np >>> a = ctf.zeros([3,4], dtype=np.int64) >>> a array([[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]])
Definition at line 4157 of file core.pyx.
Referenced by ctf.core.empty(), flatten_block_sparse_matrix(), ctf.core.tensor.imag(), ctf.core.imag(), and ctf.core.zeros_like().
def ctf.core.zeros_like | ( | init_A, | |
dtype = None , |
|||
order = 'F' |
|||
) |
zeros_like(A, dtype=None, order='F') Return the tensor of zeros with same shape and dtype of tensor A. Parameters ---------- A: tensor_like Input tensor where the output tensor shape and dtype defined as. dtype: data-type, optional Output data-type for the empty tensor. order: {‘C’, ‘F’}, optional, default: ‘F’ Currently not support by CTF Python. Returns ------- output: tensor_like Output tensor. Examples -------- >>> import ctf >>> import numpy as np >>> a = ctf.zeros([3,4], dtype=np.int64) >>> b = ctf.zeros_like(a) >>> b array([[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]])
Definition at line 4119 of file core.pyx.
References ctf.core.astensor(), and ctf.core.zeros().
ctf.core.a |
Definition at line 385 of file core.pyx.
Referenced by CTF_int.abs_helper(), CTF_int.all_helper(), CTF_int.any_helper(), apsp(), bitonic_sort(), bivar_function(), bivar_transform(), btwn_cnt(), btwn_cnt_fast(), btwn_cnt_naive(), cadd(), CTF_int.coalesce_bwd(), CTF_int::tensor.compare_elementwise(), conj(), CTF_int.conj_helper(), CTF_int::tensor.conv_type(), CTF_int.default_abs(), CTF_int.default_addinv(), CTF_int.default_max(), CTF_int.default_max_lim(), CTF_int.default_min(), CTF_int.default_min_lim(), endomorphism_cust(), CTF_int::tensor.exp_helper(), f2(), fdbl(), fft(), fquad(), CTF_int.gcd(), get_cpath_monoid(), CTF_int.get_imag(), CTF_int::algstrct.get_key(), CTF_int.get_len_ordering(), get_mpath_semiring(), CTF::Monoid_Kernel< dtype_C, g >.get_MPI_Op(), CTF_int.get_real(), CTF_int::algstrct.has_mul(), CTF_int.inc_tot_mem_used(), CTF_int::int1.int1(), CTF_int::int2.int2(), CTF_int::tensor.larger_equal_than(), CTF_int::tensor.larger_than(), mfunc(), mis2(), neural(), CTF_int::tensor.not_equals(), grp.op1(), grp.op2(), CTF_int.pow_helper(), CTF::Set< dtype, is_ord >.print(), CTF.real_norm1(), rec_scan(), CTF_int.seq_coo_to_csr(), CTF_int.set_imag(), CTF_int.set_real(), CTF_int::tensor.smaller_equal_than(), CTF_int::tensor.smaller_than(), CTF_int.sp_read(), CTF_int.sp_write(), spectral(), CTF_int.spspsum(), sssp(), CTF_int.sum_bool_tsr(), test_ao_mo_transf(), test_dft(), test_mis(), test_mis2(), test_qr(), test_svd(), train_dns_vec_mat(), train_off_vec_mat(), train_sps_vec_mat(), CTF_int::tensor.true_divide(), univar_function(), and vcycle().
ctf.core.b |
Definition at line 386 of file core.pyx.
Referenced by CTF_int::algstrct.algstrct(), apsp(), bitonic_sort(), bivar_function(), bivar_transform(), btwn_cnt(), btwn_cnt_fast(), btwn_cnt_naive(), cadd(), CTF_int.coalesce_bwd(), CTF_int::tensor.compare_elementwise(), CTF_int::algstrct.copy(), CTF_int.default_abs(), CTF_int.default_add(), CTF.default_monoid(), CTF_int.default_mul(), divide(), divide_EaEi(), f3(), flatten_block_sparse_matrix(), get_cpath_monoid(), get_mpath_semiring(), CTF::Monoid_Kernel< dtype_C, g >.get_MPI_Op(), CTF_int::algstrct.has_mul(), CTF_int::int2.int2(), jacobi(), CTF_int::tensor.larger_equal_than(), CTF_int::tensor.larger_than(), main(), mis2(), neural(), CTF_int::tensor.not_equals(), grp.op2_t2(), parity(), CTF_int.pow_helper(), CTF::Set< dtype, is_ord >.print(), CTF_int.seq_coo_to_csr(), CTF_int.seq_csr_to_coo(), CTF_int.set_imag(), CTF_int.set_real(), CTF_int::tensor.smaller_equal_than(), CTF_int::tensor.smaller_than(), CTF_int.sp_read(), CTF_int.sp_write(), sparse_permuted_slice(), spectral(), spmv(), CTF_int.spspsum(), sssp(), test_dft(), test_qr(), test_svd(), train_dns_vec_mat(), train_off_vec_mat(), train_sps_vec_mat(), CTF_int::LinModel< nparam >.update(), and vcycle().
ctf.core.dim = len(a) |
Definition at line 261 of file core.pyx.
Referenced by CTF_int.calc_cnt_displs(), CTF_int.calc_idx_arr(), check_asym(), check_sym(), CTF_int.compute_bucket_offsets(), CTF_int.cyclic_reshuffle(), dgtog_reshuffle(), CTF_int::ctr_virt.est_time_rec(), CTF_int::spctr_virt.est_time_rec(), CTF_int.get_phys_topo(), get_rand_as_tsr(), CTF_int.glb_cyclic_reshuffle(), CTF_int.glb_ord_pup(), CTF_int.order_globally(), CTF_int.pad_cyclic_pup_virt_buff(), CTF_int.precompute_offsets(), CTF_int::tensor.print_map(), CTF_int.scal_diag(), CTF_int.sy_calc_idx_arr(), and CTF_int.zero_padding().
ctf.core.dtype |
Definition at line 387 of file core.pyx.
Referenced by CTF_int.abs_helper(), CTF::Monoid_Kernel< dtype_C, g >.accum(), CTF::Monoid< dtype, is_ord >.add(), CTF::Group< dtype, is_ord >.addinv(), CTF::Ring< dtype, is_ord >.addinv(), CTF_int.all_helper(), CTF::Set< dtype, is_ord >.alloc(), CTF_int.any_helper(), CTF::Endomorphism< dtype_A >.apply_f(), CTF::Monoid< dtype, is_ord >.axpy(), bench_ao_mo_transf(), CTF_int.char_abs(), CTF_int::tensor.compare_elementwise(), CTF::Set< dtype, is_ord >.coo_to_csr(), CTF::Set< dtype, is_ord >.copy(), CTF::Set< dtype, is_ord >.csr_to_coo(), CTF::Set< dtype, is_ord >.dealloc(), CTF_int.default_abs(), CTF_int.default_max_lim(), CTF_int.default_min_lim(), CTF_int.default_mxpy(), CTF.fill_random_base(), CTF::Tensor< dtype >.fill_sp_random(), CTF.fill_sp_random_base(), CTF_int.gemm_batch(), CTF_int.get_default_maddop(), CTF_int.get_default_mdtype(), CTF_int.get_grp_ptrs(), CTF_int.get_imag(), CTF_int.get_len_ordering(), CTF::Tensor< dtype >.get_local_data(), CTF::Tensor< dtype >.get_mapped_data(), CTF::Monoid_Kernel< dtype_C, g >.get_MPI_Op(), CTF::Tensor< dtype >.get_raw_data(), CTF_int.get_real(), CTF::Scalar< dtype >.get_val(), CTF::Monoid< dtype, is_ord >.init(), CTF::Set< dtype, is_ord >.init(), CTF::Monoid_Kernel< dtype_C, g >.init_shell(), CTF::Set< dtype, is_ord >.init_shell(), CTF_int::tensor.larger_equal_than(), CTF_int::tensor.larger_than(), CTF::Set< dtype, is_ord >.max(), CTF::Set< dtype, is_ord >.min(), CTF::Monoid_Kernel< dtype_C, g >.Monoid_Kernel(), CTF_int.muladd_csrmm(), CTF::Tensor< dtype >.norm_infty(), CTF_int::tensor.not_equals(), CTF::Sparse_Tensor< dtype >.operator dtype *(), CTF::Sparse_Tensor< dtype >.operator+=(), CTF::Sparse_Tensor< dtype >.operator-=(), CTF::Sparse_Tensor< dtype >.operator=(), CTF_int.parse_sparse_tensor_data(), CTF_int.pow_helper(), CTF::Matrix< dtype >.print_matrix(), CTF::Matrix< dtype >.qr(), CTF::Tensor< dtype >.read_local(), CTF::Matrix< dtype >.read_mat(), CTF.read_sparse_from_file_base(), CTF.real_norm1(), rec_scan(), CTF::Tensor< dtype >.reduce(), CTF::Group< dtype, is_ord >.safeaddinv(), CTF::Ring< dtype, is_ord >.safeaddinv(), CTF::Scalar< dtype >.Scalar(), CTF::Semiring< dtype, is_ord >.Semiring(), CTF_int.seq_coo_to_csr(), CTF_int.seq_csr_to_coo(), CTF::Set< dtype, is_ord >.set(), CTF_int.set_imag(), CTF::Set< dtype, is_ord >.set_pair(), CTF_int.set_real(), CTF::Scalar< dtype >.set_val(), CTF::Tensor< dtype >.slice(), CTF_int::tensor.smaller_equal_than(), CTF_int::tensor.smaller_than(), CTF::Sparse_Tensor< dtype >.Sparse_Tensor(), CTF::Tensor< dtype >.sparsify(), CTF_int::summation.sum_tensors(), CTF::Matrix< dtype >.svd(), CTF::Tensor< dtype >.Tensor(), CTF_int::tensor.true_divide(), and CTF::Matrix< dtype >.write_mat().
ctf.core.it |
Definition at line 444 of file core.pyx.
Referenced by align_symmetric_indices(), CTF_int.cdealloc(), CTF_int.contract_mst(), CTF::Schedule.execute(), CTF::Idx_Tensor.Idx_Tensor(), CTF_int.mst_free(), CTF::Schedule.schedule_op_successors(), CTF_int.untag_mem(), and CTF::World.~World().
ctf.core.string |
Definition at line 456 of file core.pyx.
Referenced by ccsdt_t3_to_t2(), CTF_int::Model.dump_data(), CTF_int::LinModel< nparam >.dump_data(), CTF_int::LinModel< nparam >.load_coeff(), main(), overcounting_factor(), CTF_int::LinModel< nparam >.write_coeff(), and CTF::World.~World().
ctf.core.tsr |
Definition at line 443 of file core.pyx.
Referenced by CTF_int::scaling.execute(), CTF_int.operator*(), CTF_int::tensor.read(), CTF_int::tensor.read_local(), CTF::Tensor< dtype >.slice(), and CTF_int::tensor.write().
ctf.core.w |
Definition at line 307 of file core.pyx.
Referenced by addw(), apsp(), btwn_cnt_fast(), btwn_cnt_naive(), cpath_red(), mis2(), mpath_red(), CTF::Set< dtype, is_ord >.print(), CTF_int.sp_write(), spectral(), CTF_int.spspsum(), train_all(), CTF_int::Sum_Term.where_am_i(), and CTF_int::Contract_Term.where_am_i().