Cyclops Tensor Framework
parallel arithmetic on multidimensional arrays
|
►Nctf | |
►Ncore | |
Ccomm | |
Ccontract_term | |
Citensor | |
Csum_term | |
Ctensor | |
Cterm | |
►NCTF | |
CBivar_Function | Custom bivariate function on two tensors: e.g. C["ij"] = f(A["ik"],B["kj"]) |
CBivar_Kernel | |
CBivar_Transform | Custom function f : (X * Y * Z) -> Z applied on three tensors as contraction: e.g. f(A["ij"],B["ij"],C["ij"]) |
CDecomposition | |
CdtypePair | Pair for sorting |
CEndomorphism | Custom scalar function on tensor: e.g. A["ij"] = f(A["ij"]) |
CFlop_counter | Term is an abstract object representing some expression of tensors |
CFunction | |
CFunction_timer | Times a specific symbol |
CGroup | Group is a Monoid with operator '-' defined special case (parent) of a ring |
CHoSVD | |
CIdx_Partition | |
CIdx_Tensor | Tensor with an index map associated with it (necessary for overloaded operators) |
CMatrix | Matrix class which encapsulates a 2D tensor |
CMonoid | A Monoid is a Set equipped with a binary addition operator '+' or a custom function addition must have an identity and be associative, does not need to be commutative special case (parent) of a semiring, group, and ring |
CMonoid_Kernel | |
CPair | Index-value pair used for tensor data input |
CPartition | |
CPartitionOps | Data structure containing what each partition is going to do |
CRing | Ring class defined by a datatype and addition and multiplicaton functions addition must have an identity, inverse, and be associative, does not need to be commutative multiplications must have an identity and be distributive |
CScalar | Scalar class which encapsulates a 0D tensor |
CSchedule | |
CScheduleBase | |
CScheduleTimer | |
CSemiring | Semiring is a Monoid with an addition multiplicaton function addition must have an identity and be associative, does not need to be commutative multiplications must have an identity as well as be distributive and associative special case (parent) of a Ring (which also has an additive inverse) |
CSet | Set class defined by a datatype and a min/max function (if it is partially ordered i.e. is_ord=true) currently assumes min and max are given by numeric_limits (custom min/max not allowed) |
CSparse_Tensor | Sparse subset of a tensor |
CTensor | Instance of a tensor within a CTF world |
CTensorOperation | A tensor operation, containing all the data (op, lhs, rhs) required to run it. Also provides methods to get a list of inputs and outputs, as well as successor and dependency information used in scheduling |
CTensorOperationBase | Provides a untemplated base class for tensor operations |
CTimer | Local process walltime measurement |
CTimer_epoch | Epoch during which to measure timers |
CTransform | |
CTyp_AIdx_Tensor | |
CTyp_Contract_Term | |
CTyp_Idx_Tensor | |
CTyp_Sum_Term | |
CUnivar_Function | Custom function f : X -> Y to be applied to tensor elemetns: e.g. B["ij"] = f(A["ij"]) |
CUnivar_Transform | Custom function f : (X * Y) -> X applied on two tensors as summation: e.g. B["ij"] = f(A["ij"],B["ij"]) |
CVector | Vector class which encapsulates a 1D tensor |
CWorld | Instance of the CTF library (world) on a MPI communicator |
►NCTF_int | |
Caccumulatable | Abstract class that knows how to add |
Calgstrct | Algstrct (algebraic structure) defines the elementwise operations computed in each tensor contraction, virtual classes defined in derived typed classes or algstrctcpy |
CBifun_Term | |
Cbivar_function | Untyped internal class for triply-typed bivariate function |
CBoolPair | |
CCommData | |
CCompPair | |
CCompPtrPair | |
CConstPairIterator | |
CContract_Term | An experession representing a contraction of a set of tensors contained in operands |
Ccontraction | Class for execution distributed contraction of tensors |
CCOO_Matrix | Serialized matrix in coordinate format, meaning three arrays of dimension nnz are stored, one of values, and two of row and column indices |
CCSR_Matrix | Abstraction for a serialized sparse matrix stored in column-sparse-row (CSR) layout |
Cctr | |
Cctr_2d_general | |
Cctr_replicate | |
Cctr_virt | |
CCubicModel | Cubic performance models, which given measurements, provides new model guess |
Cdistribution | |
Cendomorphism | Untyped internal class for singly-typed single variable function (Endomorphism) |
Cgrid_wrapper | |
Cint1 | |
Cint2 | |
CIntPair | |
Ciparam | |
CLinModel | Linear performance models, which given measurements, provides new model guess |
Cmapping | |
Cmem_loc | |
Cmem_transfer | |
CModel | |
Coffload_arr | Offloaded array/buffer |
Coffload_tsr | Offloaded and serialized tensor data |
CPairIterator | |
Cscaling | Class for execution distributed scaling of a tensor |
Cscl | |
Cscl_virt | |
Cseq_tsr_ctr | |
Cseq_tsr_scl | |
Cseq_tsr_spctr | |
Cseq_tsr_spsum | |
Cseq_tsr_sum | |
CShortPair | |
Cspctr | |
Cspctr_2d_general | |
Cspctr_pin_keys | |
Cspctr_replicate | |
Cspctr_virt | |
Cstrp_ctr | |
Cstrp_scl | |
Cstrp_sum | |
Cstrp_tsr | |
CSum_Term | |
Csummation | Class for execution distributed summation of tensors |
Ctensor | Internal distributed tensor class |
Ctensor_name_less | Comparison function for sets of tensor pointers This ensures the set iteration order is consistent across nodes |
CTerm | Term is an abstract object representing some expression of tensors |
Ctime_param | |
Ctopology | |
Ctspsum | |
Ctspsum_map | |
Ctspsum_permute | |
Ctspsum_pin_keys | |
Ctspsum_replicate | Performs replication along a dimension, generates 2.5D algs |
Ctspsum_virt | |
Ctsum | |
Ctsum_replicate | Performs replication along a dimension, generates 2.5D algs |
Ctsum_virt | |
CUnifun_Term | |
Cunivar_function | Untyped internal class for doubly-typed univariate function |
CAmplitudes | |
Ccpath | |
Ccust_sp_type | |
Ccust_type | |
Cdpair | |
Cforce | |
Cgrp | |
Cindex_locator_ | |
CIntegrals | |
Cmpath | |
Cparticle | |
Cpath | |
CtCTF_Idx_Tensor | |
CtCTF_World |