Cyclops Tensor Framework
parallel arithmetic on multidimensional arrays
|
Functions | |
def | seed (seed) |
def | all_seed (seed) |
def | random (shape, sp=None, p=None, dtype=None) |
def ctf.random.all_seed | ( | seed | ) |
all_seed(seed) Seed the random tensor generator with the same seed in all processes. Parameters ---------- seed: int Seed for random.
Definition at line 28 of file random.pyx.
References CTF_int.init_rng().
def ctf.random.random | ( | shape, | |
sp = None , |
|||
p = None , |
|||
dtype = None |
|||
) |
random(shape, sp=None, p=None, dtype=None) Return random float (in half-open interval [0.0, 1.0)) tensor with specified parameters. Result tensor is from the continuous uniform distribution over the interval. Parameters ---------- shape: tensor_like Input tensor with 1-D or 2-D dimensions. If A is 1-D tensor, return a 2-D tensor with A on diagonal. sp: bool, optional When sp is specified True, the output tensor will be sparse. p: float, optional When sp is True, p specifies the fraction of sparsity for the sparse tensor. dtype: data-type, optional Not supportted in current CTF Python. Returns ------- output: tensor Random float tensor. Examples -------- >>> import ctf >>> import ctf.random as random >>> random.random([2, 2]) array([[0.95027513, 0.79755613], [0.27834548, 0.55310684]])
Definition at line 40 of file random.pyx.
def ctf.random.seed | ( | seed | ) |
seed(seed) Seed the random tensor generator. Parameters ---------- seed: int Seed for random. Each process has the seed with `seed + get_universe().rank`.
Definition at line 15 of file random.pyx.
References CTF.get_universe(), and CTF_int.init_rng().