| Cyclops Tensor Framework
    parallel arithmetic on multidimensional arrays | 
| Functions | |
| def | seed (seed) | 
| def | all_seed (seed) | 
| def | random (shape, sp=None, p=None, dtype=None) | 
| def ctf.random.all_seed | ( | seed | ) | 
all_seed(seed)
Seed the random tensor generator with the same seed in all processes.
Parameters
----------
seed: int
    Seed for random.
 
Definition at line 28 of file random.pyx.
References CTF_int.init_rng().
| def ctf.random.random | ( | shape, | |
| sp = None, | |||
| p = None, | |||
| dtype = None | |||
| ) | 
random(shape, sp=None, p=None, dtype=None)
Return random float (in half-open interval [0.0, 1.0)) tensor with specified parameters. Result tensor is from the continuous uniform distribution over the interval.
Parameters
----------
shape: tensor_like
    Input tensor with 1-D or 2-D dimensions. If A is 1-D tensor, return a 2-D tensor with A on diagonal.
sp: bool, optional
    When sp is specified True, the output tensor will be sparse.
p: float, optional
    When sp is True, p specifies the fraction of sparsity for the sparse tensor.
dtype: data-type, optional
    Not supportted in current CTF Python.
Returns
-------
output: tensor
    Random float tensor.
Examples
--------
>>> import ctf
>>> import ctf.random as random
>>> random.random([2, 2])
array([[0.95027513, 0.79755613],
      [0.27834548, 0.55310684]])
 
Definition at line 40 of file random.pyx.
| def ctf.random.seed | ( | seed | ) | 
seed(seed)
Seed the random tensor generator.
Parameters
----------
seed: int
    Seed for random. Each process has the seed with `seed + get_universe().rank`.
 
Definition at line 15 of file random.pyx.
References CTF.get_universe(), and CTF_int.init_rng().