CS 598: Communication Cost Analysis of Algorithms
Lecture 16: Tree contraction, Euler tour, list ranking, connectivity, and MST

Edgar Solomonik

University of lllinois at Urbana-Champaign

October 17, 2016

Tree contraction PRAM warm-up

Parallel prefix (scan)

Before continuing with tree contraction, lets consider a simpler problem

o parallel prefix: given array v € R", compute P(v) = w € R”, so
w(i) =321 v()j)

e compute z = P(y) recursively where y € R"/2 and
y(i) = v(2i) + v(2i + 1)

o then obtain w(2i) = z(i — 1), w(2i + 1) = z(i — 1) + v(2i) where
z(0)=0

@ can compute with O(log(n)) steps and n processors in PRAM

@ Q: how many steps if we use n/ log,(n) processors?

o A: O(log(n)), for recursive step i need max(1,log,(n)/2) steps, total
less than 3log,(n)

Tree contraction Expression evaluation

Tree contraction: expression evaluation ex.

Tree contraction Expression evaluation

Tree contraction: expression evaluation ex.

Tree contraction Expression evaluation

Tree contraction: expression evaluation ex.

Tree contraction Expression evaluation

Tree contraction: expression evaluation ex.

Tree contraction Expression evaluation

Tree contraction: expression evaluation ex.

17*x
16+x

42
S compress 26 3

Tree contraction Expression evaluation

Tree contraction: expression evaluation ex.

17*x+272
42

Tree contraction Expression evaluation

Tree contraction: expression evaluation ex.

23*x

256+x
986

Tree contraction Expression evaluation

Tree contraction: expression evaluation ex.

23*x

986

compress

Tree contraction Expression evaluation

Tree contraction: expression evaluation ex.

5888+23*x
986

Tree contraction Expression evaluation

Tree contraction: expression evaluation ex.

23266

Tree contraction Rake-compress

Deterministic rake-compress

For a binary tree, raking leaves can be done in O(1) steps
@ consider larger branch factors for a boolean expression tree
@ Q: if each node computes V or A, how can we rake in 1 CRCW
PRAM step?
@ A: if Vv, write 1 for all children marked 1, if A, write 0 for all children
marked 0 (any conflict resolution is correct)
@ rake can be done deterministically, by splitting each chain

y=a;x;+b; y=a;x;+b; & y=ajaxa+a by +by

X1 Xy

X1=a,X+b, X1 =ajasXz+azbs+b, X2
X2

X,=a3X3+b3 X3 Xp=azasX4+azbs+bs
X3

X3=a4Xs+b, X3=a4asXs5+asbs+b, Xq
Xg

Xg=asXs+bs X5 do not evaluate

@ worst case: chain of length n, completes in O(log(n)) steps but ©(n)
nodes require work at each step

Tree contraction Rake-compress

Randomized parallel compress

Randomization enables a compress step that actually removes nodes
@ randomly assign 1 or 0 to each node in the chain
@ pointer chase from every node marked O whose parent is marked 1

y=a;x;+b; & y=aiaXy+a;b,+b;

delete ¢) X2
Xp=a3X3+bs
X3
X3=azXz+by
Xa
X4=asXs+bs

@ each rake-compress step decreases the number of nodes by 7/8 w.h.p.

e Q: why does this give us an algorithm that requires O(log(n)) steps
and only O(n/ log(n)) processors?

@ A: first rake-compress with O(n/ log(n)) processors takes O(log(n))
steps, each subsequent rake-compress requires a factor of 7/8 fewer
steps, so total O(log(n))

Randomized Miller and Reif algorithm in BSP

So, how do we do tree contraction in the BSP model?

e perform O(n) accesses and pointer chases needed in a PRAM step
using O(1) BSP supersteps and O(n/P) communication

@ with each step of rake-compress we decrease the number of nodes
and accesses geometrically

@ need to assume the nodes/accesses are load balanced (can randomly
permute initially)

@ the communication cost then goes down geometrically

e after O(log(P)) steps, the size of the tree is O(n/P), so we can
collect all nodes on one processor and contract the tree locally

@ the total cost is then

O(n/P - B+ log(P) - «)

Tree contraction List ranking and Euler tour

Indexing elements of a linked list

List ranking is closely related to tree contraction
e given a linked list p of size n, compute the distance dp(i) from the
end of the list for each element
@ more generally, scan on a linked list
e trivial linear time algorithm sequentially
e can convert to array via first definition, do scan on array, convert back
e can also perform scan by contracting list and expanding back
@ compress by pointer jumping: e.g. compute g(i) = p(p(i)), compute
da(i) then (i) = 1+ 2dg(i), dp(p(i)) = 2d(i)
@ same problem as in compress for tree contraction: how to resolve
conflicts?

@ again randomized solution is good, assign 0 or 1 to each i, pointer
chase if 0 and p(i) is 1

o to get dp(f) keep track of non-unit neighbor distances while recursing

@ same asymptotic cost as rake-compress, easy in EREW

m-bridges

Efficient computation of tree contraction in EREW can be done by
decomposing into n/P-bridges?

AN
RoVe!

Figure 9.1: The Decomposition of a Tree into its 5-Bridges.

and contracting each bridge to a vertex

diagram source and further information: Gazit, Miller, Teng 1988

Tree contraction List ranking and Euler tour

Euler tour

We can find the bridges via an Euler tour?

1,2,6,6,2,4,4,1,3,3,5,5

followed by a list ranking (prefix sum) on the Euler tour tree

2diagram source: Wikipedia (David Eppstein)

Tree contraction Practical considerations

Cost of tree contraction in other models

Both list ranking and rake-compress are based on pointer-chasing
@ how expensive is it to perform n chases with P processors?
o in PRAM, n/P steps
e in BSP, 1 superstep, O(n/P) communication
o in the ideal cache model, with cache line of size L, O(Ln/P) memory

bandwidth cost (each chase is likely a cache miss)
e in the a — 8 model, we have all-to-all-v
o by direct send: n/P communication with min(n/P, P — 1) messages
o by butterfly all-to-all (if load-balanced) O(% log(P) - 8 + log(P) - @)
@ so list ranking and tree contraction cost a factor of O(log(P)) more
than in BSP
o the amount of work is O(n/P - «), flop-to-byte ratio O(1/ log(P))
@ conclusion: pointer chases require lots of messages and random

(unstructured) memory accesses

@ we can do tree contraction faster, if each processor starts with a
subtree (even better, n/P-bridge)

Short pause

Connectivity Introduction

Finding connected components

Consider finding the connected sets of vertices in a (disconnected) graph

@ sequentially, there are many linear-time solutions, including BFS

in parallel things are much more interesting

Shiloach and Vishkin (1980) provide an efficient CRCW PRAM
algorithm

@ given a graph with n vertices and m edges, it uses n + m processors
to complete in O(log(n)) steps

Parallel algorithm for connectivity

Start with a tree for each node and compute a tree for each connected
component

@ let each node i store ‘parent’ F(i)
@ let a star be any tree of height <2
The algorithm iterates the following steps
@ conditional star hooking: if (i,j) € E, i in star, and F(i) > F(j),
perform F(F(i)) < F(j) (for every star, some hook may succeed)

@ unconditional star hooking: if (i,j) € E, i in star, and F(i) # F(j),
perform F(F(i)) <= F(j) (for every star, some hook succeeds)

@ shortcutting: (pointer chasing) if i not in star, F(i) < F(F(i))
and terminates when all nodes are in a star (no hook occurs)

Connectivity Shiloach-Vishkin algorithm

A graph with two connected components

ivity Shiloach-Vishkin algorithm

First iteration

1. conditional star hooking

Connec tivity Shiloach-Vishkin algorithm

First iteration

2. unconditional star hooking

Connec tivity Shiloach-Vishkin algorithm

First iteration

3. shortcuttin

Connec tivity Shiloach-Vishkin algorithm

Second iteration

1. conditional star hooking

Connec tivity Shiloach-Vishkin algorithm

Second iteration

2. unconditional star hooking

Connectivity ~ Shiloach-Vishkin algorithm

Analysis of parallel tree connectivity

Algorithm converges after O(log(n)) iterations

@ sum of tree heights (starts at n) decreases by a factor of at least 3/2
every iteration

o steps 1 and 2 will hook every star to a tree
o step 3 will decrease the height of every tree by 3/2

requires O(n + m) work per step
O(log(n)) steps with O(n + m) processors in PRAM
Q: in BSP, can we do O(log(P)) rather than O(log(n)) steps

A: not easily, cost proportional to O(log(n)) SpMVs with adjacency
matrix, plus pointer chasing

Minimal spanning tree Introduction

Minimal spanning tree (MST)

Given graph G construct spanning tree with minimal sum of edge weights
e if G not connect, spanning tree forest is desired
@ Prim's algorithm: start a tree from random vertex, connect minimal
edge to tree
o Kruskal's algorithm: start a tree at every vertex, add minimal edge
that connects two trees

e works for finding forests

e given two connected parts of the spanning tree (incl. single vertex),
minimal edge connecting these must be in the spanning tree

e this condition suggests a parallel algorithm

Parallel MST algorithm

We follow the approach Shiloach and Vishkin, which is similar to
connectivity

@ algorithm works for CRCW PRAM with priorities (processor with
smallest index wins write conflict)
@ start by sorting edges by weight across processors
@ perturb each edge weight to make all different or break ties
dynamically
@ algorithm consists of similar steps
@ unconditional star hooking: if (i,j) € E, i in star, and F(i) # F(j),

perform F(F(i)) < F(j) (for every star, minimal-weight hook succeeds)
@ shortcutting: (pointer chasing) if i not in star, F(i) «+ F(F(i))

e if we don't have priorities, need O(log(n)) steps to calculate the
minimal-weight hook at every iteration

	Tree contraction
	PRAM warm-up
	Expression evaluation
	Rake-compress
	List ranking and Euler tour
	Practical considerations

	Connectivity
	Introduction
	Shiloach-Vishkin algorithm

	Minimal spanning tree
	Introduction
	Parallel algorithm

