
CS 598: Communication Cost Analysis of Algorithms
Lecture 1: Course motivation and overview; collective communication

Edgar Solomonik

University of Illinois at Urbana-Champaign

August 22, 2016



Motivation Communication cost

Growth of gaps between flop rate, bandwidth, and latency

Table : Annual improvements

flop rate bandwidth latency

59% DRAM 26% 15%
Network 23% 5%

flop rate – number of operations on register-resident elements a CPU
can perform per second

bandwidth – amount of data moved per second

latency – time between request and reception of one datum



Motivation Communication cost

Energy gaps between flop rate and bandwidth

10 Teraflop chip design requirements based on above

100 Watts for floating point units

2000 Watts for memory bandwidth for floating point ratio of 0.2

“The consequence is that we can engineer far more floating point
capability onto a chip than can reasonably be used by an application.
Engineering FLOPs is not a design constraint – data movement
presents the most daunting engineering and computer architecture
challenge. ” – Shalf, Dosanjh, Morrison, VECPAR 2010



Motivation Distributed memory

Types of distributed systems

Modern computer systems handling intensive workloads are most often
distributed memory

cloud computing (servers)

mobile computing

supercomputing

However, the problems these systems target may differ greatly

this course will focus on computations arising in scientific applications
and data analysis

designing communication-efficient algorithms is also important for
other workloads (e.g. streaming requests)



Motivation Distributed memory

Distributed memory system on a chip

Intel Knight’s Landing chip layout



Motivation Communication-avoiding algorithms

Algorithms, schedules, and optimizations

The course will focus on algorithms rather than scheduling optimizations

overlap between communication and computation will not improve
performance by more than 2X

caveat: overlap between many cost components (e.g. internode and
intranode communication and synchronization) can yield speed-ups up
to the number of components

topology-aware mapping is system-specific and not always possible

algorithmic improvements provide potential for asymptotic
improvements in performance and scalability

Algorithms versus schedules

“parallel algorithm” and “schedule” are often used interchangeably,
we will try to be more precise

algorithm – family of dependency graphs

schedule – parallelization and communication specification



Motivation Communication-avoiding algorithms

Algorithms: addressing the problem at its root

Parallelizability is best achieved a priori

“design to be parallelizable” rather than “design then parallelize”

the space of algorithms for a problem is usually richer than the space
of schedules for an algorithm

Communication lower bounds provide a rigorous view of the space of
schedules for an algorithm



Motivation Preview of results

Success story: all-pairs shortest paths (APSP)

Classical algorithm: Floyd-Warshall

O(n3/p) computation per processor

O(n2/p2/3) data sent/received per processor

O(p2/3) messages sent/received per processor

Lower bound analysis shows that Floyd-Warshall cannot be parallelized
more efficiently
A more parallelizable approach: path doubling

O(n3/p) computation per processor

O(n2/p2/3) data sent/received per processor

O(log p) messages sent/received per processor

Tiskin, Alexander. ”All-pairs shortest paths computation in the BSP model.”, 2001.

We will revisit and study this algorithm in detail in the course.



Motivation Preview of results

Success story: sparse iterative methods
Scheduling idea for simple stencil computations: x

(i+1)
j = f (x

(i)
j−1, x

(i)
j )

Generalizes to repeated sparse matrix-vector multiplications x (i+1) = Ax (i)

The idea has motivated design of new numerical algorithms and has also
been studied via lower bound analysis.
Mohiyuddin, Marghoob, et al. ”Minimizing communication in sparse matrix solvers.”, 2009.

We will study the algorithm and relevant lower bounds later in the course.



Course Overview

Outline of course 1

communication cost models
different messaging models (BSP, LogP, LogGP) and models for
fast/slow memory
collective communication protocols highlight differences and similarities
for most of the course we will work with a basic α−β messaging model

algorithms for FFT, permutation networks, sorting will be surveyed
communication avoidance in dense linear algebra

communication-optimal distributed-memory algorithms
will go into more depth on recent results than CS 554 (https://
courses.engr.illinois.edu/cs554/fa2015/notes/index.html

still a great supplementary reference for this course)
sparse iterative methods

s-step methods (in-time blocking) will receive most attention
other techniques, including asynchronous methods, will be surveyed

graph algorithms
will cover shortest-path algorithms in depth
many analogous ideas to parallel algorithms for linear algebra
other problems and algorithms will be surveyed

1The ordering of and depth with which topics are covered might change.

https://courses.engr.illinois.edu/cs554/fa2015/notes/index.html
https://courses.engr.illinois.edu/cs554/fa2015/notes/index.html


Course Overview

Outline of course

Topics covered in the second half of the semester will depend on project
presentation schedule

communication lower bounds

classical Jia-Wei & Kung pebbling lower bounds
more recent general techniques: representations of algorithms as
graphs and tensor factorizations, expansion analysis

multidimensional data analysis: tensor contraction and factorization

avoiding communication in (scientific) applications

optimal partitioning strategies for particle-codes (molecular dynamics)
electronic structure methods (time-permitting)
potential special topics: multigrid, convolutional neural networks

network topologies and topology-aware algorithms will be surveyed
(time-permitting)

potential lecture on Slim-Fly topology



Administrative Interlude Organization

Lectures

Borrowing lecture structure from John Kubiatowicz (UC Berkeley)

30-35 minutes technical

3-10 minutes break/discussion

5 minutes administrative

30-35 minutes technical



Administrative Interlude Organization

Homeworks

weekly short assignments, Wednesday to start of class Wednesday

electronic submission via email (solomon2@illinois.edu)

answers posted Friday at noon, graded by Friday evening

11 in total (depending on project presentation schedule)

10 points each (equal weight)

1 lowest grade dropped

1 can be turned in late (by Friday at noon) with no penalty

25% penalty if turned in by Thursday at noon

50% penalty if turned in by Friday at noon

penalties rounded down to half point

should be completed independently 2

2Cheating policy: academic integrity will be in line with university policy, minimum
penalty on first attempt - 0% on assignment and lowest grade not dropped



Administrative Interlude Organization

Course resources

Piazza: CS 598 ES

good for discussion of lecture topics, relevant references, questions
questions and answers related to homework problems are ok, but
providing homework answers can violate academic integrity

email me questions directly if they are not of general interest or
require discussion of answers to homework problems

webpage: http://solomon2.web.engr.illinois.edu/teaching/

cs598_fall2016/index.html

office hours (room TBA):

(option 1) Monday 11-12
(option 2) Friday 12-1

references posted on course website and throughout lectures

http://solomon2.web.engr.illinois.edu/teaching/cs598_fall2016/index.html
http://solomon2.web.engr.illinois.edu/teaching/cs598_fall2016/index.html


Administrative Interlude Organization

Project

should endeavor to obtain a novel result

theoretical component required, but does not have to be predominant

individual presentation and report

joint work and shared results possible, but individual contributions
must be clear

proposal stage 1 due to Sep 21, stage 2 (revision) due Oct 19 (no
homeworks those weeks)

Typical acceptable projects

propose and analyze a complex new algorithm or schedule

propose and implement a simple new algorithm or schedule

implement and analyze a known algorithm or schedule

do a deep literature survey and analyze a complex known algorithm
(i.e. if you take-on a risky project, there will be flexibility and
potential for fallback)



Administrative Interlude Organization

Overall grading

Option 1:

50% homework
40% project
5% 1st proposal
5% 2nd proposal

Option 2:

20% test (with focus on general understanding) on Nov 16
35% homework (two fewer homework assignments)
35% project
5% 1st proposal
5% 2nd proposal

Components (homeworks/tests) or letter grades may be curved upward



Administrative Interlude Organization

Transition

Course material begins here!

First, lets discuss how to quantify communication and synchronization.



α–β Model Point-to-Point Messaging

A simple model for point-to-point messages

The time to send or receive a message of s bytes is

Tα,β
sr (s) = α + s · β

α – latency/synchronization cost per message

β – bandwidth cost per byte

each processor can send and/or receive one message at a time

Let P processors send a message of size s in a ring,

the communication volume (total amount of data sent) is P · s
What is the communication cost (α–β-model execution time)?

if the messages are sent simultaneously,

Tα,β
sim−ring(s) = Tα,β

sr (s) = α + s · β
if the messages are sent in sequence,

Tα,β
seq−ring(s,P) = P · Tα,β

sr (s) = P · (α + s · β)



α–β Model Broadcasts

Broadcasts in the α–β model

The execution time of a broadcast of a message of size s to P processors is

using a binary tree of height
hr = 2(log2(P + 1)−1) ≈ 2 log2(P)

Tα,β
bcast−bnr(s,P) = hr · Tα,β

sr (s)

= hr · (α + s · β)

using a binomial tree of height
hm = log2(P + 1) ≈ log2(P)

Tα,β
bcast−bnm(s,P) = hm · Tα,β

sr (s)

= hm · (α + s · β)

Therefore, a binomial tree broadcast is hr/hm ≈ 2 faster than a binary tree
broadcast in the α–β model



Collectives Protocols for Large Messages Large-Message Broadcasts

Large-message broadcasts

Lets now consider broadcasts of a message of a size s ≥ P bytes

recall binomial tree broadcast cost:

Tα−β
bcast−bnm(s,P) = log2(P+1) · (α + s · β)

consider instead the following broadcast schedule
the root sends a different segment of the message to each processor
all processors exchange segments in P − 1 near-neighbor ring exchanges

the cost of this broadcast schedule is

Tα−β
bcast−ring(s,P) = (P − 1)(Tα−β

sr (s/P) + Tα−β
sim−ring(s/P))

= 2(P − 1)(α + s/P · β) ≈ 2(P · α + s · β)

for sufficiently large message sizes, the new schedule is faster,

lim
s→∞

(
Tα−β
bcast−bnm(s,P)

Tα−β
bcast−ring(s,P)

)
≈ log2(P)/2



Collectives Protocols for Large Messages Large-Message Broadcasts

Optimal broadcasts?

We will study a series of protocols for collectives, including broadcasts

lets first do a bit of foreshadowing...
from here on, let h = log2(P) ≈ log2(P + 1)
the fastest broadcast protocol we will consider, (due to Träff and
Ripke, 2008) has a running time of

Tα−β
bcast−TR = (

√
h · α +

√
s · β)2 ≤ 2(h · α + s · β)

is this optimal? ... open question!
here is a trivial lower bound (think about it on your own)

Tα−β
bcast ≥ h · α + s · β

this can be a factor of two less than the above upper bound
if one restricts all messages to be of a given size, a tight lower bound
can be obtained (see Sanders and Sibeyn, 2003)

Tα−β
bcast−restricted ≥ Tα−β

bcast−TR



Collectives Protocols for Large Messages Pipelined Binary Tree

Pipelined binary tree broadcast

Send a packet of size k to left child then to right child

as before, total message size s, tree height h ≈ log2(P)

each message costs α + k · β
root sends 2s/k messages

last packet takes 2h sends to reach rightmost tree leaf

therefore, the total cost expression is

Tα,β
PBT(s,P, k) ≈ 2(h + s/k)(α + k · β)

= 2(h · α + s · β + (s/k) · α + hk · β)

we can now derive the optimal message size

kα,βopt (s,P) = argmin
k

(Tα,β
PBT(s,P, k)) =

√
s · α
h · β

furthermore, Tα,β
PBT(s,P, kα,βopt (s,P)) ≈ 2(

√
h · α +

√
s · β)2,

a factor of 2 more expensive than the Träff and Ripke protocol



Collectives Protocols for Large Messages Double Pipelined Binary Tree

Double Tree
Observation: the leaves of a binary tree, (P − 1)/2 processors, send nothing,
while the internal nodes do all the work.
Double Pipelined Binary Tree Broadcast

define two pipelined binary trees with a shared root

non-root processors act as a leaf in one and as an internal node in the second

send half of the message down each tree, alternating directions with packets
of size k

Diagram taken from: Hoefler, Torsten, and Dmitry Moor. ”Energy, Memory, and Runtime Tradeoffs for Implementing Collective

Communication Operations.”



Collectives Protocols for Large Messages Double Pipelined Binary Tree

Double pipelined binary tree

The cost of the double pipelined binary tree is essentially the same as the
cost of a single pipelined binary tree with half the message size,

Tα,β
DPBT(s,P) ≈ 2h · α + 2

√
2s · h ·

√
α · β + s · β

for a sufficiently large message size (s) this is twice as fast as a single
pipelined binary tree.



Collectives Protocols for Large Messages Other Collectives

Other types of collective communication

We can classify collectives into four categories

One-to-All: Broadcast, Scatter

All-to-One: Reduce, Gather

All-to-One + One-to-All: Allreduce (Reduce+Broadcast), Allgather
(Gather+Broadcast), Reduce-Scatter (Reduce+Scatter), Scan

All-to-All: All-to-all

MPI (Message-Passing Interface) provides all of these as well as variable
size versions (e.g. (All)Gatherv, All-to-allv), see online for specification of
each routine.
We now present protocols for these and their cost in the α− β model, with

s =


input size : one-to-all collectives

output size : all-to-one collectives

per-processor input/output size : all-to-all collectives



Collectives Protocols for Large Messages Other Collectives

Tree collectives

We have demonstrated how (double/pipelined) binary trees and binomial trees
can be used for broadcasts

A reduction may be done via any broadcast tree with the same
communication cost, with reverse data flow

Treduce = Tbroadcast + cost of local reduction work

Scatter is strictly easier than broadcast, pipeline half message to each child in a
binary tree

Tα,β
scatter(s,P) ≈ 2 log2(P) · α + s · β

A gather may be done via the reverse of any scatter protocol:

Tgather = Tscatter

All-to-One + One-to-All collectives can be done via two trees, but is this most
efficient? What about All-to-All collectives?



Collectives Protocols for Large Messages Collectives via Butterfly Networks

Butterfly network



Collectives Protocols for Large Messages Collectives via Butterfly Networks

Butterfly network



Collectives Protocols for Large Messages Collectives via Butterfly Networks

Butterfly Allgather (recursive doubling)



Collectives Protocols for Large Messages Collectives via Butterfly Networks

Cost of butterfly Allgather

The butterfly has log2(P) levels. The size of the message doubles at each
level until all s elements are gathered, so the total cost is

Tα,β
allgather(s,P) =

{
0 : P = 1

Tα,β
allgather(s/2,P/2) + α + (s/2) · β : P > 1

≈ log2(P) · α +

log2(P)∑
i=1

s/2i · β

≈ log2(P) · α + s · β

The geometric summation in the cost is characteristic of one-to-all,
all-to-one, and all-to-one-to-all butterfly protocols

no pipelining necessary to achieve linear bandwidth cost



Collectives Protocols for Large Messages Collectives via Butterfly Networks

Butterfly Reduce-Scatter (recursive halving)

Treduce−scatter = Tallgather + cost of local reduction work



Collectives Protocols for Large Messages Collectives via Butterfly Networks

Butterfly Allreduce



Collectives Protocols for Large Messages Collectives via Butterfly Networks

Butterfly Allreduce

Tallreduce = Treduce−scatter + Tallgather



Collectives Protocols for Large Messages Collectives via Butterfly Networks

Butterfly Allreduce: note recursive structure of butterfly

Its possible to do Scan (each processor ends up with a unique value of a
prefix sum rather than the full sum) in a similar fashion, but also with
operator application done additionally during recursive doubling (Allgather)



Collectives Protocols for Large Messages Collectives via Butterfly Networks

Butterfly Scatter

Question: Which tree is this equivalent to?



Collectives Protocols for Large Messages Collectives via Butterfly Networks

Butterfly Scatter

Question: Which tree is this equivalent to?
Answer: Binomial tree.



Collectives Protocols for Large Messages Collectives via Butterfly Networks

Butterfly Broadcast



Collectives Protocols for Large Messages Collectives via Butterfly Networks

Butterfly Broadcast

Tbroadcast = Tscatter + Tallgather



Collectives Protocols for Large Messages Collectives via Butterfly Networks

Butterfly Gather

Question: Which other collective could use Gather as a subroutine?



Collectives Protocols for Large Messages Collectives via Butterfly Networks

Butterfly Gather

Question: Which other collective could use Gather as a subroutine?
Answer: Reduction.



Collectives Protocols for Large Messages Collectives via Butterfly Networks

Butterfly Reduce

Treduce = Treduce−scatter + Tgather



Collectives Protocols for Large Messages Collectives via Butterfly Networks

Butterfly Reduce

Treduce = Treduce−scatter + Tgather



Collectives Protocols for Large Messages Collectives via Butterfly Networks

Butterfly All-to-All

Note that the size of the message stays the same at each level

Tα,β
all−to−all(s,P) =

{
0 : P = 1

Tα,β
all−to−all(s,P/2) + α + (s/2) · β : P > 1

= α · log2(P) + β ·
log2(P)∑
i=1

s/2 = α · log2(P) + β · s/2 · log2(P)

Its possible to do All-to-All in less bandwidth cost (as low as β · s by
sending directly to targets) at the cost of more messages (as high as α · P
if sending directly)


	Motivation
	Communication cost
	Distributed memory
	Communication-avoiding algorithms
	Preview of results

	Course Overview
	Administrative Interlude
	Organization

	– Model
	Point-to-Point Messaging
	Broadcasts

	Collectives Protocols for Large Messages
	Large-Message Broadcasts
	Pipelined Binary Tree
	Double Pipelined Binary Tree
	Other Collectives
	Collectives via Butterfly Networks


