
PARALLEL TRIANGULAR SOLVES: A TALE OF TWO ALGORITHMS
{ SHELBY LOCKHART AND SAMAH KARIM }

PROBLEM
Sparse triangular solves are difficult to parallelize
due to their irregular storage structure and the se-
quential nature of backward and forward substi-
tution algorithms, as seen below.

Sequential Forward Substitution
1: for j = 0, ...n do
2: xj = bj/ljj
3: for i = j + 1 to n do
4: bi = bi − lijxj
5: end for
6: end for

STRONG SCALING EXPERIMENTS

5 10 15 20
Number of Processes

10−5

10−4

10−3

10−2

10−1

100

E
xe

cu
ti

on
ti

m
e

(s
)

Strong Scaling with
UF MM Trefethen2000 L component from LU

Sequential

Direct FwdSub

Approximate FwdSub

0 5 10 15 20 25
Number of Processes

10−3

10−2

10−1

100

101

E
xe

cu
ti

on
ti

m
e

(s
)

Strong Scaling with
UF MM nd3k lower triangular portion

Sequential

Direct FwdSub

Approximate FwdSub

Trefethen20003 nd3k3

1350949 nnz 164434 nnz

Experimental Parameters:

• UF Trefethen2000 L component from LU;
n = 2000

• UF nd3k lower triangular part; n = 9000

• Each approximate solve was 5 Jacobi
iterations

APPROXIMATE SOLVE
When used in preconditioning, finding an exact
solution to the triangular solve becomes less im-
portant. Hence an approximate iterative solver
can be used to get a "good-enough" solution at ev-
ery step of the preconditioned Krylov solver. One
approach is the Jacobi method.1

Starting from an initial guess x(0), compute next
iterate as follows:

x(k+1) = (I −D−1L)x(k) +D−1b

where D is the matrix consisting of the diagonal
of L

Sequential Jacobi Method
1: Compute z = D−1b, using row scaling
2: Compute M = I − D−1L, by scaling rows of

L and shifting the diagonal entries
3: for k = 1, ... do
4: SpMV to get Mx(k)

5: saxpy to get x(k+1) =Mx(k) + z
6: end for

REFERENCES
1 H. Anzt, E. Chow, and J. Dongarra Iterative Sparse Triangular Solves for Preconditioning Euro-Par 2015: Parallel Processing:

21st International Conference on Parallel and Distributed Computing pp. 650–661 (2015)
2 M.T. Heath and C.H. Romine. Parallel Solution of Triangular Systems on Distributed-Memory Multiprocessors SIAM Journal of

Scientific Computing Vol. 9 pp. 558–588 (1988)
3 T. Davis and Y. Hu University of Florida Sparse Matrix Collection na-digest 92 (1994)

MACHINE SPECS
2x Broadwell-EP 12-core Xeon 256 GiB of 2133 DDR4 RAM

PARALLEL COST MODELS

• α: latency of sending a message
• β: bandwidth cost of sending 1 byte
• γ: cost of performing one flop
• bc: cost of a broadcast on a given mesh
• ac: cost of an all-gather on a given mesh
• nnz: non-zero entries in the matrix
• p: number of processes
• Tp: execution time using p processes

We can develop upper bound cost models for the
dense and sparse cases for each parallel algorithm.
For the direct solve, we will assume that the com-
putation and communication is not overlapped.2

The computation cost is given by:

n+ 2
n−1∑
j=1

⌈n− j
p

⌉

whereas the sparse approximate solve has a lower
computation cost determined by the number of
non-zeros.

Direct Solve:

Tp = (α+ β)(n− 1)bc + γ
(n2 + 2np− 2n

2p

)
(1)

Dense Approximate Solve:

Tp = αac + βn+ γ
(n2 + 6n

2p

)
(2)

Sparse Approximate Solve:

Tp = αac + βn+ γ
(3n+ nnz

p

)
(3)

PARALLEL DIRECT SOLVE
Attempts to parallelize triangular solvers come
with a great communication cost, due to every
process needing access to all components of the
solution vector. This translates to a broadcast at
every iteration as seen in the Row Fan-Out algo-
rithm.2

Parallel 1-D Row Fan-Out Forward Substitution
1: for j = 1...n do
2: if j ∈ myrows then
3: xj = bj/ljj
4: end if
5: Broadcast xj
6: for i ∈ myrows, i > j do
7: bi = bi − lijxj
8: end for
9: end for

With sparse matrices, using a primitive block-row
partitioning of matrices will result in less compu-
tation, but the communication overhead will be
the same as in the dense case.

PARALLEL APPROXIMATE SOLVE
Jacobi method parallelizes well:

• All components of the current iterate x(k+1)

depend only on components of the previous
iterate x(k)

• They can be updated simultaneously

All basic operations can be done in parallel:

• Row scaling operation with depth = 1

• SpMV with depth = log(n)

• saxpy with depth = 1


