PARALLEL TRIANGULARSOLVES: A TALEOFTWO ALGORITHMS

PROBLEM

Sparse triangular solves are ditficult to parallelize
due to their irregular storage structure and the se-
quential nature of backward and forward substi-
tution algorithms, as seen below.

Sequential Forward Substitution
1: forj =0,..ndo
2. w5 = b/l
3: for: =5+ 1tondo
4. bz — bz — lijil?j
5: end for
6: end for

PARALLEL DIRECT SOLVE

Attempts to parallelize triangular solvers come
with a great communication cost, due to every
process needing access to all components of the
solution vector. This translates to a broadcast at
every iteration as seen in the Row Fan-Out algo-
rithm.?

Parallel 1-D Row Fan-Out Forward Substitution

1: forj =1..ndo

2: if 7 € myrows then

3 v = 0j/lj;

4 end if

5: Broadcast

6: for: € myrows, 1 > j do
7/ b; = b, — lijxj

8 end for

9: end for

With sparse matrices, using a primitive block-row
partitioning of matrices will result in less compu-
tation, but the communication overhead will be
the same as in the dense case.

REFERENCES

{ SHELBY LOCKHART AND SAMAH KARIM }

APPROXIMATE SOLVE

When used in preconditioning, finding an exact
solution to the triangular solve becomes less im-
portant. Hence an approximate iterative solver
can be used to get a "good-enough" solution at ev-
ery step of the preconditioned Krylov solver. One
approach is the Jacobi method."

Starting from an initial guess z(*), compute next
iterate as follows:

2 F D = (1 — D1L)2™ + D71

where D is the matrix consisting of the diagonal
of L

Sequential Jacobi Method

1: Compute z = D~ 'b, using row scaling
2: Compute M = I — D™ 'L, by scaling rows of
L and shifting the diagonal entries
. fork=1,...do
SpMV to get Mz(*)
saxpy to get z(F T = Ma(F) 4 2
. end for

PARALLEL APPROXIMATE SOLVE

Jacobi method parallelizes well:

e All components of the current iterate z(k+1)
depend only on components of the previous
iterate z(*)

e They can be updated simultaneously
All basic operations can be done in parallel:

e Row scaling operation with depth =1
e SpMV with depth = log(n)
e saxpy with depth =1

I'H. Anzt, E. Chow, and J. Dongarra Iterative Sparse Triangular Solves for Preconditioning Euro-Par 2015: Parallel Processing:
21st International Conference on Parallel and Distributed Computing pp. 650-661 (2015)

> M.T. Heath and C.H. Romine. Parallel Solution of Triangular Systems on Distributed-Memory Multiprocessors SIAM Journal of

Scientific Computing Vol. 9 pp. 558-588 (1988)

3> T. Davis and Y. Hu University of Florida Sparse Matrix Collection na-digest 92 (1994)

STRONG SCALING EXPERIMENTS

Strong Scaling with

100, UEF MM Tretethen2000 L component from LU
| = Sequential
10-1 === Direct F'wdSub

== Approximate FwdSub

VN
2
D)
= 1072
-—13
-
9
= 1n=3
= 10
D)
52
]
10~4
10_5 | | | |
5) 10 15 20
Number of Processes
3 3
Trefethen2000 nd3k
";4’“"
SR
il
; “:’. ::. ;;‘*{":‘{‘.":g’ }" \
a2 B
ibe el S
" ;‘.)vw.:f'iﬁi’f’:’c.i e S ¥
1350949 nnz 164434 nnz

PARALLEL COST MODELS

a: latency of sending a message

B: bandwidth cost of sending 1 byte

v: cost of performing one flop

b.: cost of a broadcast on a given mesh
a.: cost of an all-gather on a given mesh
nnz: non-zero entries in the matrix

p: number of processes

1,,: execution time using p processes

We can develop upper bound cost models for the
dense and sparse cases for each parallel algorithm.
For the direct solve, we will assume that the com-
putation and communication is not overlapped.?
The computation cost is given by:

MACHINE SPECS

Execution time (s)

™

Strong Scaling with
101 U MM nd3k lower triangular portion

1005_ W

—_
S
—_

—_
=
DO

- == Sequential
=== Direct FwdSub
| === Approximate FwdSub

—_
=
w

5 10 15 20 25
Number of Processes

-

Experimental Parameters:

e UF Trefethen2000 L component from LU;
n = 2000
e UF nd3k lower triangular part; n = 9000

e Each approximate solve was 5 Jacobi
iterations

whereas the sparse approximate solve has a lower
computation cost determined by the number of
NoN-Zeros.

Direct Solve:

n® + 2np — 2n
T, = (o + B)(n — 1be +7()) @
Dense Approximate Solve:
n? + 6n
szaac+6n+v() (2)
2p
Sparse Approximate Solve:
Tp:aac+ﬁn+v(3n+nnz) (3)

2x Broadwell-EP 12-core Xeon 256 GiB of 2133 DDR4 RAM

