PARALLEL TRIANGULAR SOLVES: A TALE OF TWO ALGORITHMS

PROBLEM

Sparse triangular solves are difficult to parallelize due to their irregular storage structure and the sequential nature of backward and forward substitution algorithms, as seen below.

Sequential Forward Substitution

```
1: for j = 0, ...n do
```

- $x_j = b_j / l_{jj}$
- for i = j + 1 to n do 3:
- $b_i = b_i l_{ij} x_j$
- end for 5:
- 6: **end for**

PARALLEL DIRECT SOLVE

Attempts to parallelize triangular solvers come with a great communication cost, due to every process needing access to all components of the solution vector. This translates to a broadcast at every iteration as seen in the Row Fan-Out algorithm.²

Parallel 1-D Row Fan-Out Forward Substitution

1:	for $j = 1n$ do
2:	if $j \in myrows$ then
3:	$x_j = b_j / l_{jj}$
4:	end if
5:	Broadcast x_j
6:	for $i \in myrows$, $i > j$ do
7:	$b_i = b_i - l_{ij} x_j$
8:	end for
9:	end for

With sparse matrices, using a primitive block-row partitioning of matrices will result in less computation, but the communication overhead will be the same as in the dense case.

REFERENCES

- ¹ H. Anzt, E. Chow, and J. Dongarra Iterative Sparse Triangular Solves for Preconditioning Euro-Par 2015: Parallel Processing: 21st International Conference on Parallel and Distributed Computing pp. 650–661 (2015)
- ² M.T. Heath and C.H. Romine. Parallel Solution of Triangular Systems on Distributed-Memory Multiprocessors SIAM Journal of Scientific Computing Vol. 9 pp. 558–588 (1988)
- ³ T. Davis and Y. Hu University of Florida Sparse Matrix Collection na-digest 92 (1994)

SHELBY LOCKHART AND SAMAH KARIM }

APPROXIMATE SOLVE

When used in preconditioning, finding an exact solution to the triangular solve becomes less important. Hence an approximate iterative solver can be used to get a "good-enough" solution at every step of the preconditioned Krylov solver. One approach is the Jacobi method.¹

Starting from an initial guess $x^{(0)}$, compute next iterate as follows:

$$x^{(k+1)} = (I - D^{-1}L)x^{(k)} + D^{-1}b$$

where *D* is the matrix consisting of the diagonal $\mathbf{OI} \ \mathbf{L}$

Sequential Jacobi Method

- 1: Compute $z = D^{-1}b$, using row scaling
- 2: Compute $M = I D^{-1}L$, by scaling rows of L and shifting the diagonal entries
- 3: **for** k = 1, ...**do**
- SpMV to get $Mx^{(k)}$
- saxpy to get $x^{(k+1)} = Mx^{(k)} + z$ 5:
- 6: end for

PARALLEL APPROXIMATE SOLVE

Jacobi method parallelizes well:

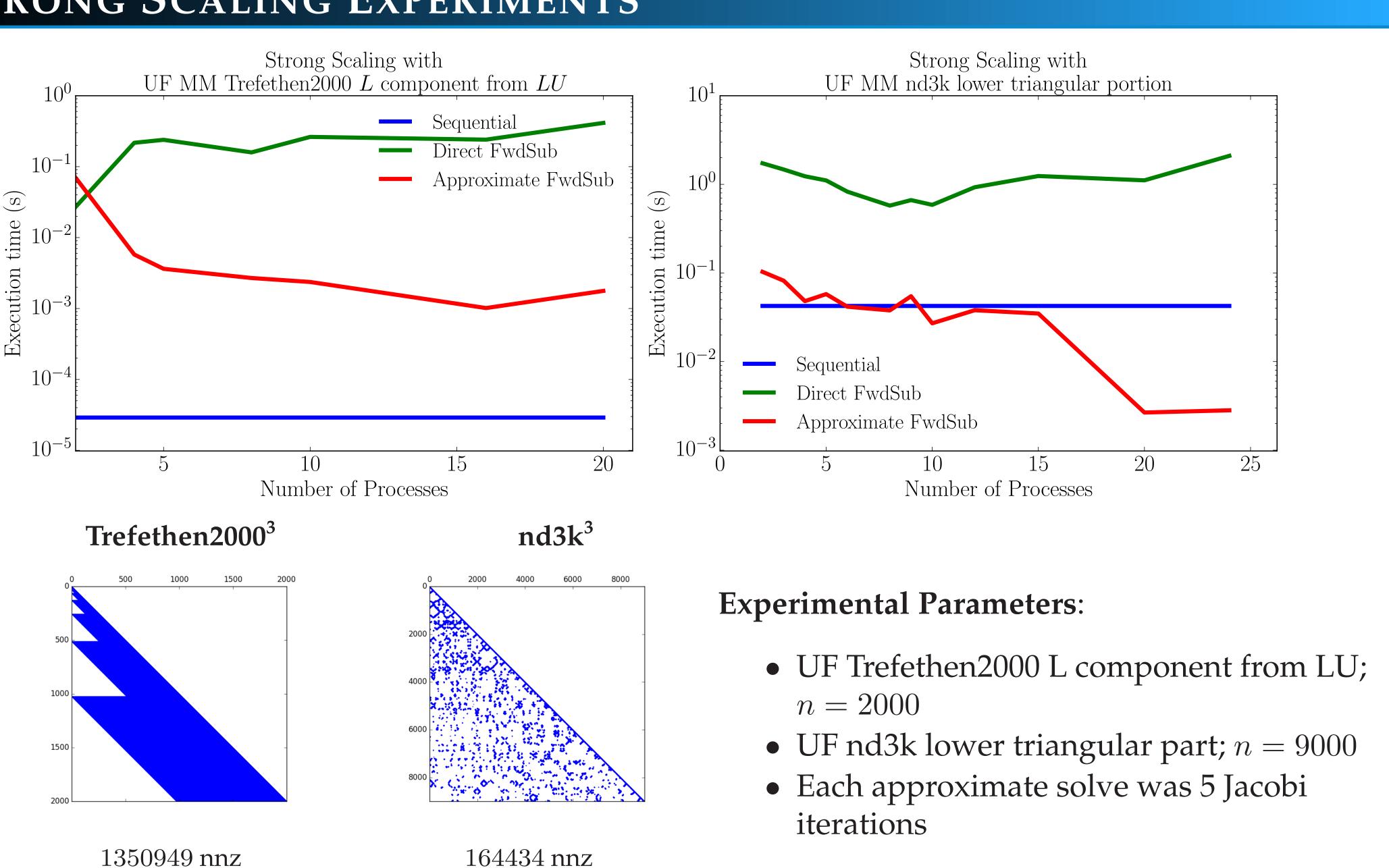
- All components of the current iterate $x^{(k+1)}$ depend only on components of the previous iterate $x^{(k)}$
- They can be updated simultaneously

All basic operations can be done in parallel:

- Row scaling operation with depth = 1
- SpMV with depth = $\log(n)$
- saxpy with depth = 1

(s)

STRONG SCALING EXPERIMENTS



PARALLEL COST MODELS

• α : latency of sending a message	whereas th	
• β : bandwidth cost of sending 1 byte	computatio	
• γ : cost of performing one flop	non-zeros.	
• b_c : cost of a broadcast on a given mesh	Direct Solv	
• a_c : cost of an all-gather on a given mesh		
• <i>nnz</i> : non-zero entries in the matrix	$T_p = (\alpha - $	
 <i>p</i>: number of processes 	-p (a	
 <i>T_p</i>: execution time using <i>p</i> processes 	Donco Am	
We can develop upper bound cost models for the	Dense App	
dense and sparse cases for each parallel algorithm.		
For the direct solve, we will assume that the com-		
putation and communication is not overlapped. ²		
The computation cost is given by:	Sparse Ap	
$\sum_{n=1}^{n-1} \lfloor n-j \rfloor$		
$n+2\sum_{j=1}^{n-1} \left\lceil \frac{n-j}{p} \right\rceil$	T	
$j{=}1$		

MACHINE SPECS

2x Broadwell-EP 12-core Xeon

he sparse approximate solve has a lower ion cost determined by the number of

lve:

$$+\beta)(n-1)b_c + \gamma\left(\frac{n^2 + 2np - 2n}{2p}\right) \quad (1)$$

proximate Solve:

$$T_p = \alpha a_c + \beta n + \gamma \left(\frac{n^2 + 6n}{2p}\right) \tag{2}$$

pproximate Solve:

$$T_p = \alpha a_c + \beta n + \gamma \left(\frac{3n + nnz}{p}\right) \tag{3}$$

256 GiB of 2133 DDR4 RAM