Overview

Finding connected components: popular graph
algorithm used in science and engineering

A Union-Find based parallel library for distributed
memory machines

Scalable implementation using Charm++

Performance evaluation on NCSA Blue Waters

Charm++

Migratable object and task-based parallel
programming model

Adaptive runtime system

Decompose problem domain into communicating
objects (chares)

Overdecomposition: many more objects than PEs
(CPU cores)

Asynchronous method invocation via messages

Background

Connected component: a subgraph where vertices
are connected by paths, but are not connected to

any other vertices outside the subgraph

Union-Find
Operations performed on a disjoint-set data
structure
Used to detect connected components
Union(x,y): merge two sets where vertices x and
y belong to each set
Find(x): return the unique ID of the set
containing x
If vertices of interest are Iin different sets
(determined by Find) but the graph says

otherwise, merge the sets (Union)

Scalable Asynchronous
Connected Components Detection Library

Senthil Kumar Karthik, Jaemin Choi, University of lllinois Urbana-Champaign

Algorithm
= Adapted version of Shiloach-Vishkin (SV) algorithm

= Perform only tree-hooking step

= Use asynchronous messaging on a distributed

graph

boss,
Union bossz

Set as parent @

]
1

'r""" Find(v,)

parent(v,)
V)

= For each edge (v,, v,) in graph,
1. Message v, to perform Find(v;)
Recursive parent messaging to reach boss,
boss, messages v, for Find(v,)
Recursive parent messaging to reach boss,

Set boss, as parent of boss,

union_request(vi, w) {
if (v.ID > w.ID)
union_request(va, vi)
else
find_bossi1(vi, v»)

Listing 1: union_request

find_boss1(vi, wv) {
if (wi.parent == -1)
find_boss2(v>, boss;)
else
find_boss1(wv;.parent, vo)

Listing 2: find_bossl

find_boss2(w, boss;) {
if (wo.parent == -1) {
if (bossi.ID > v».ID)
union_request(va, bossi)
else
Vvo.parent = bossi
+
else
find_boss2(vy.parent, boss:i)

Listing 3: find_boss?2

Implementation

Library involves 3 phases for connected components
detection
* Phase 1: Build forest of inverted trees using
asynchronous Union-Find
= Phase 2: Label each vertex with ID of its boss
* Phase 3: Prune out insignificant components

Tested and verified with real-world graphs

Optimizations

Motivation
= Highly communication-intensive: lots of tiny
messages (~1.5B messages for 16M vertices with
6M edges)
= Deep trees causing slow Find operations
Locality-based tree climbing
= Sequentially traverse tree path for vertices in the
same chare
Increases work per chare, but drastically reduces
number of messages
= 25x speedup In tree construction
Message aggregation
= Topology-aware routing and aggregation of
network communication using TRAM library
Local path compression
= Make local tree in each chare completely shallow

" Provides one-hop access to bosses

Probabilistic Mesh

Random graph built on a lattice structure

Edge between two lattice points (vertices)

determined from a probability value using vertex
coordinates

Easy to scale graph size, verify results and catch race
conditions

PPL

U10(

Performance Evaluation

= Test environment
= NCSA Blue Waters

1. Phase execution time for different probablilities
2.0

B Phase 3
18 [Phase 2

6l N Phasel |

Execution Time (s)

40% 60% 80%
Probability

Figure 1: Mesh size 10242 on 96 cores

2. Strong scaling

160 .
BN Phase 3
140 | @ Phase 2 |
B Phase 1

120
< 100 |

80 |

Execution Time (

60 |-

40 |

04 256 1024
Number of Cores

Figure 2: Mesh size 81922, 60% probability

Future Work

* |ntegrate with ChaNGa
= (alaxy detection based on
Friends-of-Friends algorithm
= Detect clusters of stars and

classify galaxies

