Overview

Finding connected components: popular graph
algorithm used in science and engineering

A Union-Find based parallel library for distributed
memory machines

Scalable implementation using Charm++

Performance evaluation on NCSA Blue Waters

Charm++

Migratable object and task-based parallel
programming model

Adaptive runtime system

Decompose problem domain into communicating
objects (chares)

Overdecomposition: many more objects than PEs
(CPU cores)

Asynchronous method invocation via messages

Background

Connected component: a subgraph where vertices
are connected by paths, but are not connected to

any other vertices outside the subgraph

Union-Find
Operations performed on a disjoint-set data
structure
Used to detect connected components
Union(x,y): merge two sets where vertices x and
y belong to each set
Find(x): return the unique ID of the set
containing x
If vertices of interest are Iin different sets
(determined by Find) but the graph says

otherwise, merge the sets (Union)
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Algorithm
= Adapted version of Shiloach-Vishkin (SV) algorithm

= Perform only tree-hooking step

= Use asynchronous messaging on a distributed
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= For each edge (v,, v,) in graph,
1. Message v, to perform Find(v;)
Recursive parent messaging to reach boss,
boss, messages v, for Find(v,)
Recursive parent messaging to reach boss,

Set boss, as parent of boss,

union_request(vi, w) {
if (v.ID > w.ID)
union_request(va, vi)
else
find_bossi1(vi, v»)

Listing 1: union_request

find_boss1(vi, wv) {
if (wi.parent == -1)
find_boss2(v>, boss;)
else
find_boss1(wv;.parent, vo)

Listing 2: find_bossl

find_boss2(w, boss;) {
if (wo.parent == -1) {
if (bossi.ID > v».ID)
union_request(va, bossi)
else
Vvo.parent = bossi
+
else
find_boss2(vy.parent, boss:i)

Listing 3: find_boss?2

Implementation

Library involves 3 phases for connected components
detection
* Phase 1: Build forest of inverted trees using
asynchronous Union-Find
= Phase 2: Label each vertex with ID of its boss
* Phase 3: Prune out insignificant components

Tested and verified with real-world graphs

Optimizations

Motivation
= Highly communication-intensive: lots of tiny
messages (~1.5B messages for 16M vertices with
6M edges)
= Deep trees causing slow Find operations
Locality-based tree climbing
= Sequentially traverse tree path for vertices in the
same chare
Increases work per chare, but drastically reduces
number of messages
= 25x speedup In tree construction
Message aggregation
= Topology-aware routing and aggregation of
network communication using TRAM library
Local path compression
= Make local tree in each chare completely shallow

" Provides one-hop access to bosses

Probabilistic Mesh

Random graph built on a lattice structure

Edge between two lattice points (vertices)

determined from a probability value using vertex
coordinates

Easy to scale graph size, verify results and catch race
conditions

PPL

U10(

Performance Evaluation

= Test environment
= NCSA Blue Waters

1. Phase execution time for different probablilities
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Figure 1: Mesh size 10242 on 96 cores

2. Strong scaling
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Figure 2: Mesh size 81922, 60% probability

Future Work

* |ntegrate with ChaNGa
= (alaxy detection based on
Friends-of-Friends algorithm
= Detect clusters of stars and

classify galaxies




