
CS 554 / CSE 512: Parallel Numerical Algorithms
Lecture Notes

Chapter 1: Parallel Computing

Michael T. Heath and Edgar Solomonik
Department of Computer Science

University of Illinois at Urbana-Champaign

September 4, 2019

1 Motivation

Computational science has driven demands for large-scale machine resources since the early days of com-
puting. Supercomputers—collections of machines connected by a network—are used to solve the most
computationally expensive problems and drive the frontier capabilities of scientific computing. Leveraging
such large machines effectively is a challenge, however, for both algorithms and software systems. Numer-
ical algorithms—computational methods for finding approximate solutions to mathematical problems—
serve as the basis for computational science. Parallelizing these algorithms is a necessary step for deploying
them on larger problems and accelerating the time to solution. Consequently, the interdependence of parallel
and numerical computing has shaped the theory and practice of both fields. To study parallel numerical algo-
rithms, we will first aim to establish a basic understanding of parallel computers and formulate a theoretical
model for the scalability of parallel algorithms.

1.1 Need for Parallelism

Connecting the latest technology chips via networks so that they can work in concert to solve larger problems
has long been the method of choice for solving problems beyond the capabilities of a single computer.
Improvements in microprocessor technology, hardware logic, and algorithms have expanded the scope of
problems that can be solved effectively on a sequential computer. These improvements face fundamental
physical barriers, however, so that parallelism has prominently made its way on-chip. Increasing the number
of processing cores on a chip is now the dominant source of hardware-level performance improvement.

The fundamental engineering challenge in increasing chip clock speed is to reduce both

• line delays – signal transmission time between gates, and

• gate delays – settling time before state can be reliably read.

Both of these can be improved by reducing the device size, but this is in turn ultimately limited by heat
dissipation and thermal noise (degradation of signal-to-noise ratio). Moreover, transistors and gate logic
cannot shrink indefinitely due to the finite granularity of atoms and quantum uncertainty in the state of
physical microstructures.

1



(a) Moore’s law [60] (b) Architectural scaling trends [11]

Figure 1: Trends in change in numbers of transistors, sequential performance, frequency (clock rate), power
consumption, and the number of cores on a chip, have varied over time. Note that single core (‘sequential’)
execution still involves some parallelism, as a core generally has multiple FPUs, and the number of these
has grown in recent years.

1.2 Moore’s Law

The rapid spread and disruptive emergence of computers in the modern world is due to the exponential
growth in their capabilities and corresponding reduction in relative cost per component. This phenomenon is
a manifestation of a famous prediction made by Gordon Moore in 1965, known as Moore’s law [27,39,51],
that the density of transistors on a chip would double every two years1. For more than 40 years, transistor
size of state-of-the-art chips has indeed shrunk by a factor of two every two years (see Figure 1(a)).

The commonplace interpretation of Moore’s law has been that the clock speed of microprocessors would
also double every two years, and the frequency of chips did in fact almost double every two years from
1975 to 2005. The connection between Moore’s law and clock frequency can be interpreted via the notion
of Dennard scaling. Based on the fundamental equations of electrodynamics, a 1974 paper by Robert
Dennard and coauthors [10,18] postulated that as the density of transistors increases, current density (electric
current for a given cross-section of the chip) can be kept constant, thereby increasing frequency without
necessitating an increase in power consumption. In practice, however, increasing clock speed does require
some increase in power due to current leakage and heat dissipation [36]. This growth in power consumption
of chips is demonstrated historically in Figure 1(b). Consequently, Dennard scaling inevitably ceased around
2005, again due to limits imposed by physical laws. Cooling systems that can handle the heat dissipation of
chips running at an operating frequency above 3 GHz are expensive to build and power, and at a high-enough
frequency, they are impossible to engineer [45].

Fortunately, clock frequency is far from the only mechanism for achieving higher performance in hard-
ware. More sophisticated hardware functionality, such as branch predictors and caching subsystems serve in-
valuable roles in accelerating execution. However, additional parallelism, either via an increase in cores per
chip or floating-point processing units (FPUs) per core, provides the primary way to increase the maximum
achievable performance of a single chip. The replacement of Dennard scaling (clock frequency growth) by
increasing core counts since 2005 can also be observed in Figure 1(b).

1Actually, in 1965 Gordon Moore predicted that the density of transistors would double every year, but in 1975 revised this to
two years.

2



Figure 2: Peak performance rate achieved for LINPACK [19] by supercomputers participating in the Top
500 list [54]. N = 1 corresponds to the top computer on the list and N = 500 to the last, while ‘SUM’ is
the aggregate performance of all 500 supercomputers on the list.

1.3 Supercomputing

The emergence of multicore chips is a relatively recent development in the greater picture of parallel com-
puting. Supercomputers—high-end cluster of chips—have driven the development of parallel algorithms
for computational science for many decades. The capabilities of supercomputing resources have reaped
the benefits from improvements in on-chip performance driven by Moore’s law. In fact, the peak perfor-
mance of top supercomputers has outpaced Moore’s law (see Figure 2), as the number of chips in the largest
supercomputers has grown and accelerators such as GPUs have been deployed.

Thus, the performance and capabilities offered by supercomputers comes almost entirely from paral-
lelism. Today’s top machines employ up to 100,000 nodes, typically employing millions of hardware threads
overall. Leveraging these machines effectively has become more and more challenging, especially as im-
provements in memory subsystem performance and network performance have been exponentially outpaced
by the growth in aggregate floating-point performance [52]. This increase in parallelism and in the overhead
of data movement now dictates the development methodology for computational science applications that
strive to reach new frontiers in problem scale and fidelity.

These scientific applications almost universally depend on similar numerical kernels (Phillip Collela
provides a succinct classification of these, which has become known as the “Seven Dwarfs” [6]). We will
study algorithms for these numerical problems, using parallelism as an analytical lens. Before diving into
the details of parallel computer architectures, we should ask whether radically different approaches to com-
puter architecture design provide a way around the problems of parallelization. Specialized computers, such
as the Anton molecular dynamics supercomputer [53] and the Tensor Processing Unit (TPU) [32], have
proven to be effective for some computational science problems in recent years, but generally are massively
parallel architectures themselves. Quantum computers [21, 42] have perhaps the most radical and theoret-
ically significant potential of any computer architecture concept, and could in the future serve to supplant
classical massively parallel architectures. Current quantum computing technology is far from becoming of
practical interest to applications, however, and parallel quantum architectures have themselves become a
topic of study [41].

3



2 Parallel Computer Architectures

We now provide an overview of the basic concepts of parallel computer architecture. The reader is ex-
pected to have some familiarity with computer architecture basics. As our focus is on the development of
algorithms, we cover only essential aspects of parallel architectures.

A parallel computer consists of a collection of processors and memory banks together with an inter-
connection network to enable processors to work collectively in concert. Major architectural issues in the
design of parallel computer systems include the following

• processor coordination : do processors need to synchronize (halt execution) to exchange data and
status information?

• memory organization : is the memory distributed among processors or do all processors own a local
chunk?

• address space : is the memory referenced globally or locally with respect to each processor?

• memory access : does accessing a given memory address take equal time for all processors?

• granularity : how much resources does the hardware provide to each execution stream (how fine or
coarse of a task size does the hardware consider)?

• scalability : how does the amount of available resources scale with the size of a subdivision of a
system (number of processors)?

• interconnection network : what connectivity pattern defines the network topology and how does the
network route messages?

In the context of parallel algorithms, the organization of memory and the interconnection network are the
most significant architectural features.

Our motivating discussion drew attention to the presence of parallelism within each core, across cores in
a multicore chip, and on networked systems of chips. Often, several chips are combined in a single process-
ing node, with all having direct access to a shared memory within that node. The following terminology is
commonly used to refer to these sources of parallelism:

• instruction-level parallelism (ILP) refers to concurrent execution of multiple machine instructions
within a single core,

• shared-memory parallelism refers to execution on a single-node multicore (and often multi-chip)
system, where all threads/cores have access to a common memory,

• distributed-memory parallelism refers to execution on a cluster of nodes connected by a network,
typically with a single processor associated with every node.

2.1 Parallel Taxonomy

Parallelism in computer systems can take various forms, which can be classified by Flynn’s taxonomy
in terms of the numbers of instruction streams and data streams [22], where “instructions” can refer to
low-level machine instructions or statements in a high-level programming language, and “data” can corre-
spondingly refer to individual operands or higher-level data structures such as arrays.

• SISD – single instruction stream, single data stream

4



– used in traditional serial computers (Turing machines)

• SIMD – single global instruction stream, multiple data streams

– critical in special purpose “data parallel” (vector) computers, present also in many modern com-
puters

• MISD – multiple instruction streams, single data stream

– not particularly useful, except if interpreted as a method of “pipelining”

• MIMD – multiple instruction streams, multiple data streams

– corresponds to general purpose parallel (multicore or multinode) computers.

SIMD execution is the backbone of vector-based architectures [48], which operate directly on vectors of
floating-point values rather than on individual values. While restrictive in that the same operation must
be applied to each value or pairs of values of vectors, they can often be used effectively by data parallel
applications. Dense matrix computations are one domain where this type of parallelism is particularly
prevalent and easy to exploit, while algorithms that access data in irregular (unstructured) patterns oftentimes
cannot.

Modern architectures employ SIMD vector instruction units, but also support multiple (vector) instruc-
tions streams (MIMD), especially in the presence of many cores. Typical numerical algorithms and ap-
plications leverage MIMD architectures not by explicitly coding different instruction streams, but by run-
ning the same program on different portions of data. The instruction stream created by programs is often
data-dependent (e.g., contains branches based on state of data), resulting in MIMD execution. This single-
program multiple-data (SPMD) programming model is widely prevalent and will be our principal mode for
specifying parallel algorithms.

2.2 Memory Organization

In an SPMD style program, we must generally be able to move data so that different instances of the program
can exchange information and coordinate. The semantics of data movement depend on the underlying
memory organization of the parallel computer system. The most basic distinction is between shared-memory
and distributed-memory organizations (see Figure 3), although modern clusters are almost always a mix of
the two.

P0 P1 PN

M0 M1 MN

network

• • •

• • •

shared-memory multiprocessor

P0 P1 PN

network

• • •

M0 M1 MN• • •

distributed-memory multicomputer

Figure 3: Shared-memory and distributed-memory systems differ with respect to how processors
(P1, . . . PN ) are connected to memory (here partitioned in banks M1, . . . ,MN ).

5



These two memory organizations are associated with different programming models. As different
threads access different parts of a shared memory, the hardware caching protocols implicitly orchestrate
data movement between local caches and main memory. Threads typically coordinate their accesses via

• locks, which restrict access to some data to a specific thread, and

• atomic operations, which allow threads to perform basic manipulations of data items without inter-
ference from other threads during that operation.

By contrast, on distributed-memory systems, data movement is typically done explicitly by passing mes-
sages between processors.

In terms of their corresponding programming models, shared and distributed memory organizations
have advantages and disadvantages with respect to one another. For instance, incrementally parallelizing
a sequential code is usually easiest with shared-memory systems, but achieving high performance using
threads usually requires the data access pattern to be carefully optimized. Distributed-memory algorithms
often require the bulk of the computation to be done in a data parallel manner, but they provide a clear
performance profile, due to data movement being done explicitly. Table 1 provides a simplified overview of
typical differences and similarities.

task distributed memory shared memory
scalability easier harder
data mapping harder easier
data integrity easier harder
performance optimization easier harder
incremental parallelization harder easier
automatic parallelization harder easier

Table 1: Typical programmability advantages and disadvantages of shared and distributed memory program-
ming models and architectures.

An important commonality of the two programming models is that ultimately the performance of a
program often depends primarily on load balance and data movement. Software systems have also been
developed to permit the use of either programming model on either type of architecture. All widely used
distributed-memory programming languages and libraries are capable of execution on shared-memory sys-
tems simply by partitioning the common memory. The other direction is addressed by partitioned global
address space (PGAS) languages, which provide a shared memory abstraction for distributed memory sys-
tems by orchestrating data movement in software. Examples of PGAS languages include Global Arrays [43],
UPC [12], and Co-array Fortran [44]. One of the most common distributed data structures used in these lan-
guages and in other libraries for parallel programming is the multidimensional array, which conveniently
matches the vector and matrix abstractions prevalent in the mathematical specification of most numerical
methods.

Our exposition of parallel numerical algorithms will be based on a distributed-memory execution model,
which will allow us to reason quantitatively about data movement on supercomputing architectures. We note,
however, that much of the literature in the theory of parallel algorithms is based on the parallel random access
memory (PRAM) model, which is a shared-memory execution model. Data movement can be quantified in
this setting by augmentations of the PRAM model, e.g., LPRAM [3] and BSPRAM [56]. Before specifying
our formal model for parallel execution and data movement, we consider in more detail how data movement
is supported in distributed-memory hardware systems.

6



bus

star crossbar

1-D torus (ring) 2-D mesh 2-D torus

1-D mesh

butterfly

binary tree

0-cube

1-cube 2-cube 3-cube 4-cube

hypercubes

Figure 4: Depiction of several types of classical network topologies.

3 Interconnection Networks

Connecting each pair of nodes directly via network wires would require O(p2) wires and communication
ports on a system with p processors, which is not scalable. Practical networks are much more sparsely con-
nected, which implies that messages between processors must somehow be routed through the network. And
yet some modern network designs are so effective that a fully-connected theoretical network model often
provides reasonable predictions about algorithmic performance in relative terms. In this section we review
the fundamentals of network topologies and routing, as well as discussing how parallel algorithms should
view the network. In subsequent algorithmic analysis sections we will consider various network topologies,
mostly as virtual abstractions for the execution of communication protocols for a given decomposition of
data.

3.1 Network Topologies

Perhaps the most fundamental issue in the design of networks for distributed-memory computers is the
network topology – how nodes in a network are connected. The two basic types of network topologies are:

• direct – each network link connects some pair of nodes,

• indirect (switched) – each network link connects a node to a network switch or connects two switches.

Figure 4 depicts some classical direct and indirect network topologies. The crossbar topology is an example
of an indirect network containing p2/4 switches (smaller dots in Figure 4). The most important of these
classical topologies are tori and hypercubes. Torus networks are still used in modern supercomputers and
are often convenient as model virtual topologies. Hypercubes are generally no longer built, but remain
of significant theoretical importance. To discuss these and other networks more formally, we study their
properties as graphs.

3.1.1 Graph Representation

We first review some basic graph terminology, which will form a basis for our representation and analysis
of network topologies. The general definition of undirected graphs (sufficient for our purposes) and some
important special cases thereof are

• Graph – pair (V,E), where V is a set of vertices or nodes connected by a set E of edges,

• Complete graph – (fully-connected) graph in which any two nodes are connected by an edge,

7



Network Nodes Degree Diameter Bisection Bandwidth Edge Length
bus/star k + 1 k 2 1 var
crossbar k2 + 2k 4 2(k + 1) k var
1-D mesh k 2 k − 1 1 const
2-D mesh k2 4 2(k − 1) k const
3-D mesh k3 6 3(k − 1) k2 const
n-D mesh kn 2n n(k − 1) kn−1 var
1-D torus k 2 k/2 2 const
2-D torus k2 4 k 2k const
3-D torus k3 6 3k/2 2k2 const
n-D torus kn 2n nk/2 2kn−1 var
binary tree 2k − 1 3 2(k − 1) 1 var
hypercube 2k k k 2k−1 var
butterfly (k + 1)2k 4 2k 2k var

Table 2: Basic properties of classical network topologies.

• Path – sequence of contiguous edges in graph,

• Connected graph – graph in which any two nodes are connected by a path,

• Cycle – path of length greater than one that connects a node to itself,

• Tree – connected graph containing no cycles,

• Spanning tree – subgraph that includes all nodes of a given graph and is also a tree.

Critical to understanding how nodes can communicate with each other will be the notion of the distance
between a pair of nodes – the number of edges (hops ) in shortest path between them.

The following important properties of network topologies can also be modelled conveniently using
graphs:

• degree – maximum number of edges incident on any node (determines number of communication
ports per processor),

• diameter – maximum distance between any pair of nodes (determines maximum communication
delay between processors),

• bisection bandwidth – smallest number of edges whose removal splits the graph into two subgraphs
of approximately equal size (determines ability to support simultaneous global communication),

• edge length – maximum physical length of any wire (may be constant or variable as the number of
processors varies).

The (generalized versions of the) topologies in Figure 4 are characterized in terms of these properties in
Table 2. Note the tradeoffs between properties associated with construction cost (degree and edge length)
and properties associated with the performance of the network (diameter and bisection bandwidth).

3.1.2 Graph Embedding and Emulation

Given model graphs for network topologies, two important questions are

8



000

010

001

101100

011

110 111

Figure 5: Ring embedded in 2-D mesh with dilation 1 (left), binary tree embedded in 2-D mesh with dilation
d(k − 1)/2e (middle), and ring embedded in hypercube with dilation 1 (right).

• whether a given network can emulate others effectively, and

• what types of communication patterns can be routed efficiently.

A useful tool for both of these analyses is graph embedding, defined formally via a map φ : Vs → Vt from
nodes in the source graph Gs = (Vs, Es) to nodes in target graph Gt = (Vt, Et), as well as a map of the
edges in Gs to paths in Gt. The quality of a graph embedding can be measured in terms of

• load – maximum number of nodes in Vs mapped to the same node in Vt,

• congestion – maximum number of edges in Es mapped to paths containing the same edge in Et,

• dilation – maximum distance between any two nodes φ(u), φ(v) ∈ Vt such that (u, v) ∈ Es.

When considering the ability of networks to emulate one another, it makes sense to constrain the load and
congestion to be no greater than one. Dilation and the size of Vt with respect to Vs characterize the overhead
and slowdown associated with the emulation.

When considering the mapping of an algorithm onto a network, we can model the algorithm as a series
of computations (nodes Vs) and messages between them (edges Es). As we will see, the load of the graph
embedding (with the network described by Vt) will be correlated with the load balance of the algorithm,
i.e.,the amount of work performed by each processor. Congestion and dilation will describe the effectiveness
of the network in executing the algorithm. For some algorithms, however, this graph embedding model does
not account for concurrency, so the load and dilation measures alone are not sufficient to characterize the
execution time of the algorithm. Graph embeddings will play multiple roles in how we think about parallel
algorithms, their decomposition, and their mapping to network hardware.

For some important graphs, good or even optimal embeddings are known. Figure 5 demonstrates a
few of these with examples of both unit and non-unit dilation. Network topologies that can emulate other
networks are of both theoretical and practical interest. The network topologies we consider in the subsequent
two sections (hypercubes and fat trees) came into prominence for precisely that reason.

3.1.3 Hypercubes

A hypercube of dimension k, or k-cube, is a graph with 2k nodes numbered 0, . . . , 2k−1, with edges between
all pairs of nodes whose binary numbers differ in exactly one bit position. A hypercube of dimension k
can be created by recursively replicating a hypercube of dimension k − 1 and connecting corresponding
nodes between the two copies (see Figure 4, lower right). Gray codes – orderings of integers 0 to 2k − 1
such that consecutive members differ in exactly one bit position are convenient for thinking about routes in
hypercubes. The following C-language function generates a Gray code, where the Gray code gray(i) for
node i will be exactly one bit flip away from the Gray code gray(i+1) of node i+1.

9



Figure 6: Depiction of fat-tree network [59].

/* Gray code */
int gray(int i){

return ((i>>1)^i); //shift i down by one bit and take XOR of result with i
}

Visiting the nodes of a hypercube in a Gray code order gives a Hamiltonian cycle, embedding a ring in
the hypercube as in Figure 5. For a mesh or torus of higher dimension, concatenating Gray codes for each
dimension gives an embedding in a hypercube of appropriate dimension.

An important property of hypercubes is their ability to perform collective communications effectively [49].
In Section 4, we will present near-optimal butterfly communication protocols, all of which can be executed
effectively on hypercube networks. More generally, with the use of randomized mappings hypercube net-
works can route any parallel algorithm with logarithmic slow-down [58]. At a high level, this means that
hypercubes (and many other sparsely connected networks) are no more than logarithmically worse in per-
formance than a fully-connected network, yet are much more scalable in terms of the number of wires
required.

3.1.4 Fat Trees

While a hypercube is sparsely connected, it is not necessarily cheap to build. In Table 2 this difficulty is
reflected by the fact that the edge length of links in the hypercube network is not constant with the number
of processors. The number of links also grows logarithmically with system size.

Ultimately, any physical network must be embedded in physical space, which is 3-dimensional. Quan-
titatively, we observe that the edge length of hypercubes necessarily grows as we construct larger networks,
and the number of communication ports required per node also grows as well. Consequently, hypercubes
are not used in modern systems with very large numbers of nodes.

The target question of network design in this view becomes [16, 37]

“How good a network can be built within a given physical volume?”

Fat trees provide a universal and near-optimal solution to this question [37]. Precisely stated, no network
can be constructed with the same number of components that is faster by more than a polylogarithmic factor.
Figure 6 displays a fat-tree layout. The network is an indirect binary tree, with each node being a leaf. In
order to maintain good bisection bandwidth, fat trees have varying link bandwidth (bandwidth available to
a given edge in the network), with links near the root of the tree being ‘fatter’. For example, the fat tree will
have bisection bandwidth proportional to p if the link bandwidth increases by a factor of 2 at each higher
level in the binary tree.

By considering any network in physical space and embedding the space in a fat tree whose bisection
bandwidth scales with p2/3, it can be shown that the fat tree can emulate any exchange of messages on that

10



network with at most a factor of O(log(p)3) more time. The generality of this result is surprising, as the
only assumption necessary is that the emulated network can pass O(a) data through an area of size a.

In practice, fat tree networks have been built with varying amounts of bisection bandwidth by choosing
different factors of exponential growth through the levels of the tree. This makes sense, especially if many
applications run only on a subset of nodes, corresponding to a subsection of the tree.

3.1.5 State of the Art: Constant-Diameter Networks

While low-diameter hypercube architectures have seen success historically [28], recent supercomputers
have leveraged topologies such as low-dimensional tori [1, 34], with a larger diameter but constant de-
gree. More recently, the trend is network topologies is toward lower diameter, which is achieved by
higher-dimensional torus networks [4, 14] or alternative network topology constructions. Dragonfly net-
works [35] achieve a diameter of 3 topology that is featured in some current-generation Cray architectures.
They are structured as follows

• define densely connected groups (cliques) of nodes,

• connect a single pair of nodes between each pair of groups.

The topology is diameter 3, since a route from a node in group A to a node in group B can be found by

1. routing to the node in group A that is connected to a node in group B,

2. routing through the link to the node in group B,

3. routing to the appropriate node in group B.

A major advantage of this type of low-diameter topology is low network congestion (short routes are less
likely to all go through the same links). However, the network requires a degree of Ω(p1/3).

The success of the Dragonfly network topology has served to motivate other low-diameter networks,
including the a peculiar diameter-2 network topology called Slim Fly [7]. The network uses a construction
from graph theory that aims to minimize the degree-to-diameter ratio. In particular, the Moore bound
(developed by Hoffman and Singleton) [30] states that any regular (uniform-degree) graph with degree d
and diameter r, must satisfy

p ≤ 1 + d

r−1∑
i=1

(d− 1)i
(

asymptotically, p = O(dr)

)
,

a bound attained by Moore graphs. However, these are not known for general degree and diameter. So the
Slim Fly construction uses a class of graphs that obtains a very close approximation to the bound [25, 40]
for diameter-2 graphs.

The Slim Fly is constructed using a Galois field, in particular modular arithmetic over a prime q. We use
the notation a ≡q b to mean a ≡ b mod q. The Slim Fly is designed as follows.

• a network of size 2q2 is constructed where q is (almost any) prime,

• there are two q× q grids A,B, each node is connected to some nodes in its column and some nodes
in the other grid,

• given a node (x, y) ∈ A in the first grid and (m, c) ∈ B in the second grid, they are connected if

mx+ c ≡q y,

11



• the nodes (x, y1), (x, y2) ∈ A are also connected if y1 ≡q y2 + k where k ∈ X (and similar for B)
where X contains roughly q/2 primitive elements of the Galois field modulus q [7].

By leveraging the existence of the inverse of linear modular functions for a prime modulus, one can show
that 2-hop routes exist between all pairs of nodes. For instance, to get from a node (x, y) in one column
in A to any node (x′, y′) in a different column in A (y 6= y′), we can step through a single intermediate
node (m, c) in B. In particular, we need

mx+ c− y ≡q mx
′ + c− y′ ≡q 0,

and can determine (m, c) directly provided the existence of the appropriate modular inverse (which
slightly restricts possible choices of q),

mx+ c− y ≡q mx
′ + c− y′

m(x− x′) ≡q y − y′

m ≡q (x− x′)−1(y − y′) and c ≡q y −mx.

Given p processors, the degree is then about q =
√
p, which comes to within a small factor of the Moore

bound. One can compare the Slim Fly to a 2D grid network, where every node is connected to all nodes
in their row and column (yielding a diameter-2 network), which requires 2(

√
p − 1) edges (worse by

about a factor of 2). Generalizing the Slim Fly construction to higher diameter and more generally finding
families of graphs that minimize the Moore bound remain open problems.

3.2 Topology Awareness of Algorithms

The contrast in the structural complexity between classical and modern networks must be recognized in the
models for designing parallel algorithms. Tori and hypercubes provide multidimensional and bitwise repre-
sentations of data to which structured algorithms are often easy to map. In contrast, the abstract structure of
the Slim Fly network is significantly different from the structure provided by typical parallel decompositions
of algorithms. But the advantage of modern low diameter networks is that the congestion should be low even
if the communication pattern does not specifically exploit the structure of the topology.

Topology-aware algorithms aim to execute effectively on specific network topologies. If mapped ide-
ally to a network topology, applications and algorithms often see significant performance gains, as network
congestion can be controlled and often eliminated [2, 29]. In practice, unfortunately, applications are often
executed on a subset of nodes of a distributed machine, which may not have the same connectivity structure
as the overall machine. In an unstructured context, network congestion is inevitable, but could be alleviated
with general measures.

While network-topology-specific optimizations are typically not performance portable, topologies pro-
vide a convenient visual model for designing parallel algorithms. We have seen that good network topologies
have the capability to emulate one another for different communication patterns. This understanding sug-
gests that if we design algorithms that avoid congestion on a minimal sparsely-connected network topology,
then any topology that is more powerful would be able to execute the algorithm without congestion also.
Provided an efficient mapping between network topologies, we can then determine how well the algorithm
performs on a more powerful network topology. An even better algorithm might be possible on the better-
connected network, however.

On the other hand, an algorithm designed for a more densely-connected network typically incurs a
bounded amount of overhead on a more sparsely connected one, if it can be shown to emulate the protocols
performed on a more powerful network. While topology awareness is an important area of study, ideally

12



we would like parallel algorithms to be topology oblivious, i.e., perform well on any reasonable network
topology. Of course, one cannot reason about arbitrary topologies, but some abstractions (like collective
communication) are sufficiently convenient to enable us to reason simultaneously about many.

While the best approach differs depending on context, our analytical methodology will be to

1. try to obtain cost optimality for a fully connected network, and then

2. organize the algorithm so that it achieves the same cost on some network topology that is as sparsely-
connected as possible.

This methodology aligns with the idea that platform-specific optimizations should be of second-order im-
portance, while maintaining awareness of how challenging the desired communication pattern is to map to
a realistic network.

4 Communication

To understand and compare routing protocols for networks, we must begin to think about the communica-
tion cost (communication complexity) associated with movement of data messages. These measures will
be defined to best correlation with the execution time. Specifically, we will work with communication time
– the execution time of the communication protocol executed by algorithm. In general, analyzing communi-
cation complexity is intertwined with analyzing the complexity analysis of parallel algorithms. We introduce
these formal concepts and first apply them to understand basic communication protocols in networks.

4.1 Message Passing

We use a simple standard model for the time taken to communicate a message of s words across a single
link of a network,

Tmsg(s) = α+ β s.

This model includes the following cost parameters:

• α = startup time = latency (i.e., time to send a message of zero length),

• β = incremental transfer time per word (1/β = bandwidth in words per unit time).

For real parallel systems α � β, so we often simplify α + β ≈ α, meaning that we approximate the cost
of sending a 1-byte (constant-sized) message by the latency cost. We will generally assume a processor can
send or receive only one message at a time (but can send one and receive another simultaneously). On some
systems it is possible to send many messages concurrently, the main constraint being how many network
links can be saturated in bandwidth, which is given by the ratio of the injection bandwidth of the node to
the link bandwidth of every processor within the node. Here and later in the analysis of communication
in algorithms, we assume there is a single processor per node and the link bandwidth is the same as the
injection bandwidth.

For low-level modelling of communication performance, this simple model is not always sufficient.
The LogP [15] and LogGP [5] models provide a more refined parameterization of the latency overhead in
messaging and the extent to which messages can overlap. However, it is difficult to work with a theory of
algorithms that minimizes such small parameters (some known optimal algorithms in the LogP model are
not described in closed form [33]).

In modern network hardware, three types of messaging protocols are typically implemented, which
differ in the way they manage buffering,

13



• eager – sends a small message, writing to a dynamically allocated buffer then copying to destination
buffer,

– effective for small messages, where copy overhead is not an issue,

• rendezvous – first establishes a handshake via an additional small message, retrieves destination
buffer information, and writes data directly to it,

– incurs higher network latency but avoids copy overhead for large messages,

• one-sided – sends messages directly to destination buffer without synchronizing (performing a hand-
shake) with the target processor, having pre-established buffer information,

– requires special a priori buffer registration and remote destination memory access (RDMA) tech-
nology [38] but improves asynchrony and performance.

Our simple messaging model provides a reasonable cost representation for the first two types of messaging
protocols. However, analyzing algorithms in terms of the one-sided communication model would suggest
decoupling of synchronization and communication. The Bulk Synchronous Parallel (BSP) model [58] re-
flects this to an extent while maintaining a simple superstep-based parallel execution model. However,
the complexity of algorithms under synchronization-based and messaging-based models are closely re-
lated [8, 47].

4.2 Algorithmic Communication Cost

To measure the execution time of a parallel program, neither local nor cumulative measures are sufficient.
In general, we would like to understand the costs (of messaging and of local computation) incurred along
the critical path of the execution of a parallel program. This measure is given by considering all dependent
executions in an algorithm. Generally these are data-driven, so a precedence ordering between communica-
tion and computation tasks, as well as the order in which each processor executes them, provides a partial
ordering (≺) (see also Figure 7):

t1 � t2 � · · · � tN .

If T (ti) is the time taken to execute task ti, then the execution time is given by maximizing over all totally
ordered subchains in the partial ordering,

T (t1, . . . tN ) = max
{f1,...fk}⊆{t1,...tN},f1≺f2≺···≺fk

k∑
i=1

T (fi).

We define the communication cost (communication complexity) in terms of S (the number of messages)
and W (the number of words) incurred along the respective most expensive execution paths (totally ordered
sequences in the partial ordering of tasks). Our communication cost/complexity bounds the communication
time,

T comm(c1, . . . cM ) = max
{f1,...fk}⊆{c1,...cM},f1≺f2≺···≺fk

k∑
i=1

T (fi) ≤ αS + βW,

where c1, . . . cM are all communication tasks. Communication complexity can be contrasted with commu-
nication volume, which is just the sum of the costs of all communication tasks.

We consider an example to illustrate the importance of this distinction. We study the time taken for
p processors to pass a message of size s around a ring versus the time taken for each processor to pass a
different message to the next processor in the ring. In both cases, the communication volume is the same

14



Figure 7: The critical path is given by the most expensive path in the depicted 3-processor execution. On
the right, we highlight the path corresponding to the bandwidth cost component of the schedule.

(p, sp) if expressed as a pair (messages, words), while the communication complexity is either (p, sp) or
(1, s) in the same units, depending on whether a message is being passed around (communication tasks
are dependent and so totally ordered) or all messages are independent (and can be sent concurrently). Our
measure of communication time for the two cases is

• if the messages are sent simultaneously,

T sim-ring
p (s) = Tmsg(s) = α+ s · β,

• if the messages are sent in sequence,

T seq-ring
p (s) = p · Tmsg(s) = p · (α+ s · β).

Communication complexity is our measure of choice because it best reflects execution time, but commu-
nication volume may also be important for the energy consumption of an algorithm, as it reflects the total
amount of network resources utilized over the entire execution of the algorithm.

4.2.1 Message Routing

Thus far our notion of communication complexity has been oblivious to network topology. To understand
the cost and execution time of messaging on specific network topologies, we need to understand how small
and large messages are routed in a given network. Message routing algorithms can be

• minimal or nonminimal, depending on whether the shortest path is always taken,

• static or dynamic, depending on whether the same path is always taken,

• deterministic or randomized, depending on whether the path is chosen systematically or randomly,

• circuit switched or packet switched, depending on whether entire the message goes along a reserved
path or is transferred in segments that may not all take same path.

Most regular network topologies admit simple routing schemes that are static, deterministic, and min-
imal. For simple classical topologies such as meshes, tori, and hypercubes, such protocols are simple to
derive. Figure 8 depicts some example routes.

15



000

010

001

101100

011

110 111

2-D mesh hypercube

source

source

dest

dest

Figure 8: Minimal routes on a mesh and on a hypercube.

store-and-forward cut-through

P0

P1

P2

P3

P0

P1

P2

P3

Figure 9: Comparison of store-and-forward and wormhole routing.

4.2.2 Wormhole Routing and Virtual Channels

When a long message needs to be routed along a network path, the use of pipelining can improve perfor-
mance by a factor proportional to the length of the path. Store-and-forward routing handles the entire
message atomically (without breaking it up). This means that the entire message traverses its route one
network link at a time, so

T route(s, D) = (α+ βs)D, where D = distance in hops.

Store-and-forward routing corresponds to eager messaging protocols.
Cut-through or wormhole routing breaks the message into segments that are pipelined individually

through the network, with each segment forwarded as soon as it is received, so

T route(s, D) = α+ βs + thD, where th = incremental time per hop.

Generally th ≤ α, so we can treat both as network latency,

T route(s, D) = αD + βs.

Figure 9 schematically depicts the two message routing techniques.

4.2.3 Network Congestion and Virtual Channels

Network congestion (network contention) is the competition for network resources due to multiple inter-
secting message routes desiring to use a given link at the same time. Especially in the presence of wormhole
routing, any sparse interconnection network must be able to avoid deadlock and resolve network conges-
tion for any possible routing of message interchanges. Most often, network congestion is resolved via the
use of virtual channels, which are labels placed on message routes [17]. Each switch alternates servicing
among the virtual channels. This means that if two long-message routes pass through the same network link
concurrently, each will typically take twice as long, experiencing half of the nominal link bandwidth.

16



5 Collective Communication

Collective communication is a concurrent interchange of a set of messages among any set of pairs of
processors. Basic structured collective communication operations deserve attention due to their prevalence
in algorithms and applications. They serve as effective building blocks for both algorithms and software.
We can classify some of the most common collective communication operations as follows,

• One-to-All: Broadcast, Scatter

• All-to-One: Reduce, Gather

• All-to-One + One-to-All: All-reduce (Reduce+Broadcast), All-gather (Gather+Broadcast), Reduce-
Scatter (Reduce+Scatter), Scan

• All-to-All: All-to-all (also known as transpose and complete exchange)

The distinction between the last two types is made due to their different cost characteristics. The Message-
Passing Interface (MPI) standard [24] provides all of these as well as more general versions that support
variable message sizes.

We analyze the communication complexity of all of these algorithms, which are closely related to each
other. Figure 10 provides a convenient visual matrix representation of some important collectives. The most
common collective operation is broadcast, but when studying wormhole-routed collective protocols, we will
see that scatter and gather are more primitive algorithmically.

5.1 Single-Item (Store-and-Forward) Collectives

We first consider collective communication protocols that function like store-and-forward routing, moving
the whole message from processor to processor. In modern algorithm design, these are often used to generate
small amoungs of global information, e.g.,computation of a vector norm. We subsequently study many-item
(wormhole-routed) collectives, which communicate larger messages, exploiting additional parallelism to
improve efficiency. The focus of this section, single-item collectives are protocols that communicate the
message atomically (without subdividing it into chunks). In pratice, such protocols are also used when the
messages can be subdivided but are too small for this to be beneficial.

Single-Item Broadcast – a root processor sends an indivisible message of p− 1 other processors.

The most commonly used collective communication operation is broadcast. When executed on a subset
of the processors of a system, a broadcast is also sometimes called a multicast. Every single-item broadcast
protocol must propagate the message along a spanning tree of p processors. Here the specifics of our com-
munication cost model come into play. If a processor can send and receive only one message concurrently,
then a parent must choose an ordering of children to which they pass the message. This means that the first
leaf of the tree will receive the message log2(p)− 1 message passes before the last leaf does. Moreover, we
can observe that after forwarding the message to both children, many parents in the tree could further assist
algorithmic progress by passing the message to yet more processors. This intuition motivates the binomial
tree construction. A binomial tree of height h is constructed by taking a binomial tree of height h − 1 and
appending a leaf to each of its processors. The broadcast protocol is similar, after h message-sends, it prop-
agates the message from all processors in a binomial tree of size h to their respective neighbors in a larger
binomial tree of size h+ 1, until reaching all processors. With p processors, the height of the binomial tree
is as low as log2(p+ 1), meaning that the communication time of a binomial tree broadcast is

T bcast-binomial
p (s) = (log2(p+ 1)− 1)Tmsg(s) = (log2(p+ 1)− 1)(α+ β s).

17



A0 A1 A2 A3 A4 A5 scatter

gather

A0
A1
A2
A3
A4
A5

A0 A1 A2 A3 A4 A5
B0 B1 B2 B3 B4 B5
C0 C1 C2 C3 C4 C5
D0 D1 D2 D3 D4 D5
E0 E1 E2 E3 E4 E5
F0 F1 F2 F3 F4 F5

A0 B0 C0 D0 E0 F0
A1 B1 C1 D1 E1 F1
A2 B2 C2 D2 E2 F2
A3 B3 C3 D3 E3 F3
A4 B4 C4 D4 E4 F4
A5 B5 C5 D5 E5 F5

complete
exchange

A0
B0
C0
D0
E0
F0

allgather

A0 B0 C0 D0 E0 F0
A0 B0 C0 D0 E0 F0
A0 B0 C0 D0 E0 F0
A0 B0 C0 D0 E0 F0
A0 B0 C0 D0 E0 F0
A0 B0 C0 D0 E0 F0

A0

data

broadcast
pr
oc
es
se
s A0

A0
A0
A0
A0
A0

Figure 10: Depiction of collective communications using a messages-by-processors matrix [23].

18



Figure 11: Comparison of binary and binomial trees for single-item broadcast. The binomial tree can be
used to perform a single-item broadcast over 15 processors in the same communication time as a binary tree
takes to do 7.

1

2

3

3 3

3

2-D mesh hypercube

1
3

2

4

2
3 3 3

4 4 4 4

4 4 4

2

Figure 12: Example optimal broadcast trees on mesh and hypercube networks.

A binomial tree is optimal for broadcasting in synchronization cost (α prefactor in communication time) in
our messaging model [20]. Figure 11 displays its advantage over a binary tree by dilating each edge in time.
In the LogGP model, the best broadcast spanning tree depends nontrivially on the model parameters [33].

On a hypercube network topology, we can embed the binomial tree broadcast protocol and execute a
multi-item broadcast optimally. On a mesh or torus topology of dimensions d, we can generally build a
spanning tree of height proportional to the diameter O(p1/d). Figure 12 demonstrates examples of how
these broadcast protocols are realized on these two types of networks.

Single-Item Reduction – indivisble values from each of p processors are combined by applying a
specified associative operation ⊕ (e.g.,sum, product, max, min, logical OR, logical AND) to produce a
single value stored on the root processor.

The dual operation to broadcast is reduction, which combines values from all processors into a single
value stored on one processor. Any broadcast protocol can be reversed to construct a reduction protocol,
and vice versa. The cost of the computation in reductions is often disregarded, but presents technical chal-
lenges when implementing reductions directly into network hardware, causing broadcasts to be faster than
reductions on typical systems.

Collectives such as scatter and (all)gather, as well as reduce-scatter and all-reduce, can be done in similar
ways to broadcasts and reductions in the single-item case. The hierarchy among these becomes clearer if we
consider them more generally in the multi-item case.

19



(a) Butterfly Schematic (b) Butterfly Scatter (Recursive Halving) (c) Butterfly Gather (Recursive Doubling)

Figure 13: 8-processor butterfly collective protocol schematics for recursive-halving to scatter messages and
recursive-doubling to gather messages.

5.2 Multi-Item Collectives

Multi-item collectives can be thought of as concurrent executions of many independent single-item collec-
tives. They are of independent interest, and are usually viewed as the basic general definition of collectives
because they can be performed with more sophisticated and efficient protocols than simply a sequence of
single-item collectives. In practice, they are also typically of greatest importance, as they can be used to
achieve bulk movement of data.

There are numerous protocols to consider for each collective communication operation. We choose to
focus on butterfly collective communication protocols, due to their generality and near-optimality. We
refer the reader to the following alternate surveys of communication collectives [13, 31, 46, 55].

5.2.1 Gather and Scatter

Scatter – a root processor sends a distinct message of size s/p to each of p− 1 other processors.

One of the simplest multi-item collectives is the scatter operation. Efficient algorithms for scatter are
achieved by disseminating messages down a spanning tree, but unlike broadcast, sending different data to
each child in the tree. Simply pipelining the messages down any spanning tree is one way to achieve good
efficiency, and is a generic strategy we can employ on many networks. But we can also achieve near-
optimality via recursive-halving, which uses a binomial spanning tree, with each processor sending half
as much data at each successive algorithmic step. This strategy is demonstrated in Figure 13(b), where
the binomial tree is embedded in a butterfly. The butterfly depicts all processors at each level (column) as
displayed in Figure 13(a), so it does not correspond to the network topology.

Gather – each processor sends a message of size s/p to the root processor.

The dual operation to scatter is gather. Reduce-scatter and all-gather are more balanced but more ex-
pensive versions of scatter and gather. They can be done with a butterfly protocol, with full utilization as
demonstrated in Figure 14(a) and Figure 14(b). Such a protocol could be executed without slowdown on a
hypercube network topology.

All of the butterfly collective protocols we have seen thus far increase or reduce the message size sent
at each level of the butterfly by a factor of two. This characteristic enables them to obtain a bandwidth cost
that is linear in the overall message size s. To analyze the cost of butterfly protocols, it helps to note their

20



(a) Butterfly Reduce-Scatter (b) Butterfly All-Gather

Figure 14: 8-processor butterfly collective protocol schematics for reduce-scatter and all-gather.

recursive structure. For example, after the first exchange of messages in the scatter-reduce protocol, two
independent smaller butterfly protocols are executed. On the other hand, in the all-gather protocol the last
step combines results computed by two independent butterfly protocols.

The butterfly network protocol for all-gather simply executes two independent butterfly all-gather proto-
cols on each half of the processors, then combines the result by a pairwise exchange of messages of size s/2,
which has cost Tmsg(s/2). Therefore, we can express the communication time complexity of the butterfly
protocol for all-gather as a recurrence,

T all-gather
p (s) =

{
0 : p = 1

T
all-gather
p/2 (s/2) + α+ β(s/2) : p > 1

≈ α log2(p) + β

log2 p∑
i=1

s/2i

≈ α log2(p) + βs.

The communication time of scatter, gather, and reduce-scatter butterfly protocols are the same as that of
all-gather,

T all-gather
p (s) = T scatter

p (s) = T gather
p (s) = T reduce-scatter

p (s).

5.2.2 Broadcast and Reduction

Now we can use these four basic one-to-all and all-to-one butterfly collective protocols to execute more
complex operations efficiently, in particular broadcast and reduction.

Broadcast – a root processor sends same message of size s to each of p− 1 other processors.

Broadcast can be done by performing a scatter followed by an all-gather (see Figure 15) in time

T bcast = T scatter + T all-gather = 2T all-gather.

21



Figure 15: Multi-item broadcast done by butterfly scatter and all-gather protocols.

Reduction – s values for each of p processors are combined by applying a specified associative operation
⊕ (e.g.,sum, product, max, min, logical OR, logical AND) to produce a single value stored on the root
processor.

A reduction can be done effectively by performing a reduce-scatter and a gather in time

T reduce = T reduce-scatter + T gather = 2T all-gather.

An all-reduction (where the result of the reduction is replicated on all processors) can be done effectively by
performing a reduce-scatter followed by an all-gather (see Figure 16) in time

T all-reduce = T reduce-scatter + T all-gather = 2T all-gather.

Figure 16: Multi-item all-reduce done by butterfly reduce-scatter and all-gather protocols. It still retains a
recursive structure, i.e., a butterfly all-reduce will (1) sum different halves of the data owned by respective
pairs of processors, (2) perform all-reduce recursively among the the two halves of the processors, (3) all-
gather the resulting data among the same pairs and return.

Multi-item all-reduce done by butterfly reduce-scatter and all-gather protocols still retains a recursive
structure as shown in Figure 17. If operating on k processors, the all-reduce pairs processor i with processor
i+ k/2 or i− k/2 and

1. has each processor interchange half of their items with their pairing neighbor and sums its respective
half,

2. performs an all-reduce recursively on the two-way partition of processors induced by the pairings,

3. has each processor collect the results of the all-reduce obtained by its pairing neighbor.

This butterfly all-reduce protocol is specified in full detail in Algorithm 1.
We can compare these algorithms to the cost of single-item collectives executed with a larger message:

22



Figure 17: Nested/recursive structured of butterfly all-reduce protocol.

Algorithm 1 [v]← All-reduce(A,Π)

Require: Π has P processors, A is a s× P matrix, Π(j) owns A(1 : s, j)
if P = 1 then Return v = A
end if
Define ranges L = 1 : s

2 and R = s
2 + 1 : s

Let x = j + P
2 and y = j − P

2
if j ≤ P/2 then

Π(j) sends A(R, j) to Π(x) and receives A(L, x) from Π(x)

[v(L)]← All-reduce
(
A(L, j) +A(L, x),Π(1 : P

2 )
)

Π(j) sends v(L) to Π(x) and receives v(R) from Π(x)
else

Π(j) sends A(L, j) to Π(y) and receives A(R, y) from Π(y)

[v(R)]← All-reduce
(
A(R, j) +A(R, y),Π(P2 + 1 : P )

)
Π(j) sends v(R) to Π(y) and receives v(L) from Π(y)

end if
Ensure: Every processor owns v = [v(L); v(R)], where v(i) =

∑P
j=1A(i, j)

• 1-D mesh: T si-bcast-1D
p (s) = (p− 1) (α+ βs),

• 2-D mesh: T si-bcast-2D
p (s) = 2(

√
p− 1) (α+ βs),

• hypercube: T si-bcast-hcube
p (s) = log2 p (α+ βs).

The hypercube cost corresponds to a binomial tree collective that is optimal for the single-item case. The
cost of a broadcast done via butterfly collective protocols for scatter and all-gather is

T bcast
p (s) = 2T all-gather

p (s) = 2 log2 pα+ 2βs.

As we can see, this protocol can be better than the binomial tree on a hypercube, T si-bcast-hcube, by a factor
of log2(p)/2 for large messages, but can be slower by a factor of 2 for small messages. Furthermore, the
butterfly collective protocol for broadcast is always within a factor of 2 of optimality.

To design bandwidth-efficient broadcasts for specific network topologies, such as meshes, we can take
any spanning tree of the network and pipeline messages through it. For instance, if we pipeline messages
using packets of size b in a 1-D mesh topology, the communication time becomes

T 1D-pipe
p (s, b) = (p+ s/b− 2)(α+ bβs),

23



Figure 18: Depiction of pipelined wrapped-butterfly broadcast, which alternates among log2(p) different
binomial spanning trees of the hypercube to route each successive packet.

as each packet takes α + bβs time to travel across a link, the last packet will leave the root after s/b − 1
other sends and arrive at its destination p − 1 passes later. As we can see, a variable packet size allows us
to balance latency and bandwidth costs associated with a message. A similar technique can be applied for
higher-dimensional mesh topologies. An alternative approach is to build multiple edge-disjoint spanning
trees in the network and pipeline different parts of the message along each of these. This approach can be
better, as edge-disjoint spanning trees can operate concurrently, which allows us to reduce delays associated
with each spanning tree. A particularly good example of this is the pipelined double binary tree, where
delays associated with the need to route a packet to the left child before a right child are eliminated by
concurrent operation of another binary tree [50].

5.2.3 State of the Art: Optimal Broadcasting

For any broadcasting protocol that uses a static packet size to communicate messages, a lower bound on
the communication time is

T bcast
p (s) ≥ (

√
α log2(p− 1) +

√
βs)2.

This lower bound can be shown by taking into consideration (1) the time it takes for the root to send out
all packets and (2) the minimum amount of time in which the last packet can reach all processors [31].

The butterfly-based broadcast protocol we introduced attains this bound when α log2(p − 1) = βs ,
and is otherwise always within a factor of 2. Interestingly, the protocol does not fall in the space of
those considered by the lower bound, as it uses variable size messages. It is not known whether a
variable-message broadcast protocol can achieve a time faster than the above lower bound.

However, there are known broadcast protocols [31,49,57] that use a static packet size and attain the bound
for arbitrary p, s, α, β. These optimal broadcast protocols can also be implemented on hypercube network
topologies. Butterflies again provide a convenient representation for the these broadcast protocols, but
instead of using recursive halving and recursive doubling, which propagate information according to a
butterfly network and a reverse butterfly network, we concatenate butterfly networks and consider various
spanning trees from the root processor.

Figure 18 demonstrates an optimal packet-based broadcast protocol, which leverages different binomial
spanning trees of the hypercube network. These are naturally enumerated by considering the binomial

24



trees induced by starting from processor 0 at successive levels of the butterfly network schematic. Picking
the optimal packet size allows the protocol to attain the aforementioned lower bound.

5.2.4 Scan

The butterfly communication protocols we demonstrate for collective communication are also effective ex-
ecution patterns for other algorithms.

An example of particular importance, is the scan or prefix sum operation.

Scan – each of p processors starts with s items, given by a column in s× p matrix A, and we compute
prefix sums of each row, so that each processor owns a columns of s × p matrix B, where Bij =∑j−1

k=1Aik and
∑

applies any specified associative operation ⊕ (e.g.,sum, product, max, min, logical
OR, logical AND).

In the parallel algorithms literature, single-item scans (s = 1) are widely prevalent and regarded as
fundamental primitives [9, 26]. The efficacy of prefix sum as a parallel primitive is its parallelizability. We
can execute the scan operation in essentially the same communication time as all-reduce [50].

Define the segmented scan operation as B = S(A). Separate A and B into odd and even columns,

Aodd = [A(:, 1), A(:, 3), . . . A(:, P − 1)],

Aeven = [A(:, 2), A(:, 4), . . . A(:, P )].

Now observe that Beven = S(Aeven + Aodd) and that Bodd = Beven + Aeven. Single-item prefix scan
algorithms use this recursive structure to implement the algorithm in bottom-up and top-down traversal of
a tree. Algorithm 2 provides a butterfly-based scan algorithm that is similar to all-reduce (Algorithm 1),
except that some information must be stored before every recursive call and reused thereafter. The cost

Algorithm 2 [B]← Scan(A,Π)

Require: Π has P processors, A is a s × p matrix, Π(j) owns A(1 : s, j)
if P = 1 then Return B = A
end if
Define ranges L = 1 : s

2 and R = s
2 + 1 : s

Let x = j + 1 and y = j − 1
if j ≡ 0 mod 2 then

Π(j) sends A(R, j) to Π(x) and receives A(L, x) from Π(x)

[W (L, j)]← Scan
(
A(L, j) +A(L, x),Π(1 : p

2)
)

Π(j) sends W (L, j) to Π(x) and receives W (R, x) from Π(x)
B(:, j) = [W (L, j);W (R, j)]

else
Π(j) sends A(L, j) to Π(y) and receives A(R, y) from Π(y)

[W (R, j)]← Scan
(
A(R, j) +A(R, y),Π(p2 + 1 : p)

)
Π(j) sends W (R, j) to Π(y) and receives W (L, y) from Π(y)
B(:, j) = [W (L, j) +A(L, j);W (R, j) +A(R, j)]

end if
Ensure: Processor j owns B(:, j), such that B(i, j) =

∑j−1
k=1A(i, k)

25



Figure 19: Butterfly collective protocol for all-to-all exchange.

recurrence for the above algorithm is

T scan
p (s) = T scan(s/2, p/2) + 2(α+ βs/2) = 2(α log2 p+ βs).

As we see, the scan operation (which is also provided in the MPI standard [24]) can be done in the same
fashion and cost as a seemingly unrelated basic collective communication operation such as broadcast.

5.2.5 All-to-All

An important collective communication operation that has a somewhat greater cost than the collectives
previously discussed is the all-to-all. A convenient representation of all-to-all is as a matrix transpose, going
from a row-blocked to a column-blocked layout, or vice versa. The major distinction is that the overall input
and output scales with the the number of processors, and unlike all-reduction or scan, is irreducible.

All-to-all – Every processor exchanges messages of size s/p with every other processor.

We can use a butterfly protocol to execute all-to-all, as demonstrated in Figure 19. The size of the
messages sent is the same at each level, however, yielding an overall communication time of

T all-to-all
p (s) = α log2(p) + βs log2(p)/2,

which is a factor of log2(p) higher in bandwidth cost than the collectives we have previously analyzed. It is
possible to do all-to-all with less bandwidth cost (as low as βs by sending directly to targets) but at the cost
of more messages. In particular, if all messages are sent directly, the cost of all-to-all is

T all-to-all-direct
p (s) ≈ αp+ βs.

We are not aware of a complete characterization of the latency-bandwidth tradeoff in all-to-all communica-
tion within a point-to-point messaging model.

6 General References

General references on parallel computing

• G. S. Almasi and A. Gottlieb, Highly Parallel Computing, 2nd ed., Benjamin/Cummings, 1994

• J. Dongarra, et al., eds., Sourcebook of Parallel Computing, Morgan Kaufmann, 2003

• A. Grama, A. Gupta, G. Karypis, and V. Kumar, Introduction to Parallel Computing, 2nd. ed.,
Addison-Wesley, 2003

26



• G. Hager and G. Wellein, Introduction to High Performance Computing for Scientists and Engineers,
Chapman & Hall, 2011

• K. Hwang and Z. Xu, Scalable Parallel Computing, McGraw-Hill, 1998

• A. Y. Zomaya, ed., Parallel and Distributed Computing Handbook, McGraw-Hill, 1996

General references on parallel architectures

• W. C. Athas and C. L. Seitz, Multicomputers: message-passing concurrent computers, IEEE Com-
puter 21(8):9-24, 1988

• D. E. Culler, J. P. Singh, and A. Gupta, Parallel Computer Architecture, Morgan Kaufmann, 1998

• M. Dubois, M. Annavaram, and P. Stenström, Parallel Computer Organization and Design, Cam-
bridge University Press, 2012

• R. Duncan, A survey of parallel computer architectures, IEEE Computer 23(2):5-16, 1990

• F. T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes,
Morgan Kaufmann, 1992

General references on interconnection networks

• L. N. Bhuyan, Q. Yang, and D. P. Agarwal, Performance of multiprocessor interconnection networks,
IEEE Computer 22(2):25-37, 1989

• W. J. Dally and B. P. Towles, Principles and Practices of Interconnection Networks, Morgan Kauf-
mann, 2004

• T. Y. Feng, A survey of interconnection networks, IEEE Computer 14(12):12-27, 1981

• I. D. Scherson and A. S. Youssef, eds., Interconnection Networks for High-Performance Parallel
Computers, IEEE Computer Society Press, 1994

• H. J. Siegel, Interconnection Networks for Large-Scale Parallel Processing, D. C. Heath, 1985

• C.-L. Wu and T.-Y. Feng, eds., Interconnection Networks for Parallel and Distributed Processing,
IEEE Computer Society Press, 1984

References

[1] N. R. Adiga, M. A. Blumrich, D. Chen, P. Coteus, A. Gara, M. E. Giampapa, P. Heidelberger, S. Singh,
B. D. Steinmacher-Burow, T. Takken, et al. Blue Gene/L torus interconnection network. IBM Journal
of Research and Development, 49(2.3):265–276, 2005.

[2] T. Agarwal, A. Sharma, A. Laxmikant, and L. V. Kalé. Topology-aware task mapping for reducing
communication contention on large parallel machines. In Parallel and Distributed Processing Sympo-
sium, 2006. IPDPS 2006. 20th International, pages 10–pp. IEEE, 2006.

[3] A. Aggarwal, A. K. Chandra, and M. Snir. Communication complexity of PRAMs. Theoretical
Computer Science, 71(1):3 – 28, 1990.

27



[4] Y. Ajima, S. Sumimoto, and T. Shimizu. Tofu: A 6D mesh/torus interconnect for exascale computers.
Computer, 42(11), 2009.

[5] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Scheiman. LogGP: incorporating long mes-
sages into the LogP model – one step closer towards a realistic model for parallel computation. In
Proceedings of the Seventh Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA
’95, pages 95–105, New York, NY, USA, 1995. ACM.

[6] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer, D. A. Patterson, W. L.
Plishker, J. Shalf, S. W. Williams, et al. The landscape of parallel computing research: A view from
Berkeley. Technical report, Technical Report UCB/EECS-2006-183, EECS Department, University of
California, Berkeley, 2006.

[7] M. Besta and T. Hoefler. Slim Fly: A cost effective low-diameter network topology. In High Per-
formance Computing, Networking, Storage and Analysis, SC14: International Conference for, pages
348–359. IEEE, 2014.

[8] G. Bilardi, K. T. Herley, A. Pietracaprina, G. Pucci, and P. Spirakis. BSP vs LogP. In Proceedings
of the eighth annual ACM symposium on Parallel algorithms and architectures, pages 25–32. ACM,
1996.

[9] G. E. Blelloch. Scans as primitive parallel operations. IEEE Transactions on computers, 38(11):1526–
1538, 1989.

[10] M. Bohr. A 30 year retrospective on Dennard’s MOSFET scaling paper. IEEE Solid-State Circuits
Society Newsletter, 12(1):11–13, Winter 2007.

[11] K. M. Bresniker, S. Singhal, and R. S. Williams. Adapting to thrive in a new economy of memory
abundance. Computer, 48(12):44–53, 2015.

[12] W. W. Carlson, J. M. Draper, D. E. Culler, K. Yelick, E. Brooks, and K. Warren. Introduction to
UPC and language specification. Technical report, Technical Report CCS-TR-99-157, IDA Center for
Computing Sciences, 1999.

[13] E. Chan, M. Heimlich, A. Purkayastha, and R. van de Geijn. Collective communication: theory,
practice, and experience. Concurrency and Computation: Practice and Experience, 19(13):1749–
1783, 2007.

[14] D. Chen, N. A. Eisley, P. Heidelberger, R. M. Senger, Y. Sugawara, S. Kumar, V. Salapura, D. L.
Satterfield, B. Steinmacher-Burow, and J. J. Parker. The IBM Blue Gene/Q interconnection network
and message unit. In Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’11, pages 26:1–26:10, New York, NY, USA, 2011. ACM.

[15] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramonian, and T. von
Eicken. LogP: towards a realistic model of parallel computation. In Proceedings of the Fourth ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPOPP ’93, pages 1–12,
New York, NY, USA, 1993. ACM.

[16] W. J. Dally. Performance analysis of k-ary n-cube interconnection networks. IEEE Transactions on
Computers, 39(6):775–785, Jun 1990.

[17] W. J. Dally. Virtual-channel flow control. IEEE Transactions on Parallel and Distributed systems,
3(2):194–205, 1992.

28



[18] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc. Design of ion-implanted
MOSFET’s with very small physical dimensions. IEEE Journal of Solid-State Circuits, 9(5):256–268,
1974.

[19] J. J. Dongarra, P. Luszczek, and A. Petitet. The LINPACK benchmark: past, present and future.
Concurrency and Computation: practice and experience, 15(9):803–820, 2003.

[20] A. Farley. Broadcast time in communication networks. SIAM Journal on Applied Mathematics,
39(2):385–390, 1980.

[21] R. P. Feynman. Simulating physics with computers. International journal of theoretical physics,
21(6):467–488, 1982.

[22] M. J. Flynn. Some computer organizations and their effectiveness. IEEE transactions on computers,
100(9):948–960, 1972.

[23] W. Gropp and E. Lusk. Using MPI-2. In 12th European PVM/MPI Users’ Group Meeting-Recent
Advances in Parallel Virtual Machine and Message Passing Interface, 2005.

[24] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable parallel programming with the message-
passing interface. MIT Press, Cambridge, MA, USA, 1994.

[25] P. R. Hafner. Geometric realisation of the graphs of McKay–Miller–Širáň. Journal of Combinatorial
Theory, Series B, 90(2):223–232, 2004.

[26] M. Harris, S. Sengupta, and J. D. Owens. Parallel prefix sum (scan) with CUDA. GPU gems,
3(39):851–876, 2007.

[27] M. T. Heath. A tale of two laws. The International Journal of High Performance Computing Applica-
tions, 29(3):320–330, 2015.

[28] W. D. Hillis. The connection machine. MIT press, 1989.

[29] T. Hoefler and M. Snir. Generic topology mapping strategies for large-scale parallel architectures. In
Proceedings of the international conference on Supercomputing, pages 75–84. ACM, 2011.

[30] A. J. Hoffman and R. R. Singleton. On Moore graphs with diameters 2 and 3. IBM Journal of Research
and Development, 4(5):497–504, 1960.

[31] S. L. Johnsson and C.-T. Ho. Optimum broadcasting and personalized communication in hypercubes.
IEEE Trans. Comput., 38:1249–1268, September 1989.

[32] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia, N. Boden,
A. Borchers, et al. In-datacenter performance analysis of a tensor processing unit. arXiv preprint
arXiv:1704.04760, 2017.

[33] R. M. Karp, A. Sahay, E. E. Santos, and K. E. Schauser. Optimal broadcast and summation in the LogP
model. In Proceedings of the fifth annual ACM symposium on Parallel algorithms and architectures,
pages 142–153. ACM, 1993.

[34] R. E. Kessler and J. L. Schwarzmeier. CRAY T3D: A new dimension for Cray Research. In Compcon
Spring’93, Digest of Papers., pages 176–182. IEEE, 1993.

29



[35] J. Kim, W. J. Dally, S. Scott, and D. Abts. Technology-driven, highly-scalable Dragonfly topology. In
Proceedings of the 35th Annual International Symposium on Computer Architecture, ISCA ’08, pages
77–88, Washington, DC, USA, 2008. IEEE Computer Society.

[36] N. S. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J. S. Hu, M. J. Irwin, M. Kandemir, and
V. Narayanan. Leakage current: Moore’s law meets static power. Computer, 36(12):68–75, Dec 2003.

[37] C. E. Leiserson. Fat-trees: universal networks for hardware-efficient supercomputing. IEEE transac-
tions on Computers, 100(10):892–901, 1985.

[38] J. Liu, J. Wu, and D. K. Panda. High performance RDMA-based MPI implementation over InfiniBand.
International Journal of Parallel Programming, 32(3):167–198, 2004.

[39] C. A. Mack. Fifty years of Moore’s law. IEEE Transactions on semiconductor manufacturing,
24(2):202–207, 2011.

[40] B. D. McKay, M. Miller, and J. Širáň. A note on large graphs of diameter two and given maximum
degree. Journal of Combinatorial Theory, Series B, 74(1):110–118, 1998.

[41] C. Moore and M. Nilsson. Parallel quantum computation and quantum codes. SIAM Journal on
Computing, 31(3):799–815, 2001.

[42] M. A. Nielsen and I. Chuang. Quantum computation and quantum information, 2002.

[43] J. Nieplocha, R. J. Harrison, and R. J. Littlefield. Global Arrays: A nonuniform memory access
programming model for high-performance computers. The Journal of Supercomputing, 10:169–189,
1996.

[44] R. W. Numrich and J. Reid. Co-Array Fortran for parallel programming. In ACM Sigplan Fortran
Forum, volume 17, pages 1–31. ACM, 1998.

[45] K. Olukotun and L. Hammond. The future of microprocessors. Queue, 3(7):26–29, 2005.

[46] J. Pješivac-Grbović, T. Angskun, G. Bosilca, G. E. Fagg, E. Gabriel, and J. J. Dongarra. Performance
analysis of MPI collective operations. Cluster Computing, 10:127–143, June 2007.

[47] V. Ramachandran, B. Grayson, and M. Dahlin. Emulations between QSM, BSP, and LogP: a frame-
work for general-purpose parallel algorithm design. In Symposium on Discrete Algorithms: Proceed-
ings of the tenth annual ACM-SIAM symposium on Discrete algorithms, volume 17, pages 957–958,
1999.

[48] R. M. Russell. The CRAY-1 computer system. Communications of the ACM, 21(1):63–72, 1978.

[49] Y. Saad and M. H. Schultz. Data communication in hypercubes. Journal of Parallel and Distributed
Computing, 6(1):115 – 135, 1989.

[50] P. Sanders, J. Speck, and J. L. Träff. Two-tree algorithms for full bandwidth broadcast, reduction and
scan. Parallel Computing, 35(12):581–594, 2009.

[51] R. R. Schaller. Moore’s law: past, present and future. IEEE Spectrum, 34(6):52–59, Jun 1997.

[52] J. Shalf, S. Dosanjh, and J. Morrison. Exascale Computing Technology Challenges, pages 1–25.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

30



[53] D. E. Shaw, J. Grossman, J. A. Bank, B. Batson, J. A. Butts, J. C. Chao, M. M. Deneroff, R. O. Dror,
A. Even, C. H. Fenton, et al. Anton 2: raising the bar for performance and programmability in a
special-purpose molecular dynamics supercomputer. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, pages 41–53. IEEE Press, 2014.

[54] E. Strohmaier. Highlights of the 45th TOP500 List. International Conference on Supercomputing
(ICS), 2015.

[55] R. Thakur, R. Rabenseifner, and W. Gropp. Optimization of collective communication operations in
MPICH. International Journal of High Performance Computing Applications, 19(1):49–66, 2005.

[56] A. Tiskin. The bulk-synchronous parallel random access machine. Theoretical Computer Science,
196(1):109–130, 1998.

[57] J. L. Träff and A. Ripke. Optimal broadcast for fully connected networks. In HPCC, pages 45–56.
Springer, 2005.

[58] L. G. Valiant. A bridging model for parallel computation. Commun. ACM, 33(8):103–111, Aug. 1990.

[59] Wikimedia Commons. Fat tree network. [Online: accessed on August 27, 2017].

[60] Wikimedia Commons. Transistor count and Moore’s law - 2011. [Online: accessed on August 27,
2017].

31


	Motivation
	Need for Parallelism
	Moore's Law
	Supercomputing

	Parallel Computer Architectures
	Parallel Taxonomy
	Memory Organization

	Interconnection Networks
	Network Topologies
	Graph Representation
	Graph Embedding and Emulation
	Hypercubes
	Fat Trees
	State of the Art: Constant-Diameter Networks

	Topology Awareness of Algorithms

	Communication
	Message Passing
	Algorithmic Communication Cost
	Message Routing
	Wormhole Routing and Virtual Channels
	Network Congestion and Virtual Channels


	Collective Communication
	Single-Item (Store-and-Forward) Collectives
	Multi-Item Collectives
	Gather and Scatter
	Broadcast and Reduction
	State of the Art: Optimal Broadcasting
	Scan
	All-to-All


	General References

