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BlueGene/P and BlueGene/Q

Direct torus networks

I BG/P is 3D, BG/Q is 5D

I Both are bidirectional networks (6 and 10 links per node)

I Injection bandwidth sufficient to saturate all links

I Topology-aware partition allocation and collectives
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Performance of multicast (BG/P vs Cray)
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Why the performance discrepancy in multicasts?

I Cray machines use binomial multicasts
I Form spanning tree from a list of nodes
I Route copies of message down each branch
I Network contention degrades utilization on a 3D torus

I BG/P uses rectangular (pipelined) multicasts
I Require network topology to be a k-ary n-cube
I Form 2n edge-disjoint spanning trees

I Route in different dimensional order
I Use both directions of bidirectional network
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2D rectangular pipelined multicast trees

root
2D 4X4 Torus Spanning tree 1 Spanning tree 2

Spanning tree 3 Spanning tree 4 All 4 trees combined

[Watts and Van De Geijn 95]
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Matrix multiplication
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[Van De Geijn and Watts 97]
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SUMMA and LU with rectangular vs binomial collectives

 0

 10

 20

 30

 40

 50

 60

 70

 80

MM LU LU+PVT

P
er

ce
nt

ag
e 

of
 m

ac
hi

ne
 p

ea
k

Different collectives on BG/P (n=131,072, p=16,384)

binomial
rectangular

Edgar Solomonik Split-Dimensional Cannon’s algorithm 8/ 23



Torus networks
Algorithms

Implementation
Performance
Conclusion

SUMMA
Cannon’s algorithm
SD-Cannon’s algorithm

Cannon’s algorithm
A B

Stagger left

A[i,j] := A[i,j+1]

Shift right

A[i,j] := A[i,j-1]

Starting position

Stagger up

B[i,j] := B[i+1,j]

Shift down

B[i,j] := B[i-1,j]

Starting position

...

[Cannon 69]
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Cannon’s algorithm

Advantages over SUMMA
I Uses only near-neighbor sends rather than multicasts

I lower latency cost

I Can be done in-place given near-neighbor data-swaps

Disadvantages with respect to SUMMA

I Does not generalize well to non-square processor grids

I Cannot exploit multiple links via rectangular multicasts
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Split-dimensional Cannon’s algorithm

Improves over Cannon by saturating all network links

I Subdivide whole multiply into 2n block outer products

I Use bidirectional links by shifting half the outer products in
opposite direction

I Perform each outer product in a different dimensional order

I Accumulation of outer-products into one buffer allows for
same-sized local multiplications as pure Cannon’s algorithm

I Does not require pipelined multicasts
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Split-dimensional Cannon’s algorithm

SD-Cannon on a 3-ary 6-cube

dim 1

dim 2

dim 3

Each circle corresponds to a shift along a dimension

Each color corresponds to an outer product
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MPI implementation

SD-Cannon parallel implementation using MPI

I All communication done with near-neighbor one-sided puts

I Code is simple (200 lines)

I Limited to square (k-ary n-cube) processor grids
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Charm++ virtualization

Charm++

Charm++ is an asynchronous dynamic runtime system

I Provides object-based (chares) virtualization (decouples from
process grid)

I Message-directed task invocation

I Allows topology-aware task mapping

I Provides additional features such as dynamic load balancing
and performance profiling
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One-sided MPI communication
Charm++ virtualization

Virtual topology via Charm++

Implemented Cannon and SD-Cannon in Charm++

I Can map to any torus process topology

I Code more complex, but not significantly so

I Not using one-sided communication (though possible via
CkDirect)

I Virtualization lowers task granularity
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2D BlueGene/P performance
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3D BlueGene/P performance
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Preliminary 5D BlueGene/Q performance
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K computer Tofu network

T - Torus       M - Mesh

M

M

T

TTT

Unit
Node

10 links per node / 4 torus dimensions / 2 mesh dimensions of length 2
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Tofu network is 5D not 6D

=

A two-by-two mesh is a 1D ring of length 4
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SD-Cannon K computer potential

5D K computer torus different from 5D BG/Q

I K computer injection bandwidth can saturate only 4/10 links

SD-Cannon could still be beneficial

I Can saturate 4 links rather than 2 (up to 2X speed-up)

I Does not require pipelined broadcast implementation
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Conclusion

SD-Cannon

I Breaches performance gap between Cannon and SUMMA

I Is uniquely asymptotically communication-optimal on a k-ary
n-cube

I Virtualization allows general mapping support but incurs
overhead

Topology-aware mapping and algorithm design

I Allows zero network contention

I Permits saturation of much more bandwidth on torus networks

I Pervasive for parallel scalability on high-end supercomputers
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