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Pervasive paradigms in scientific computing

What commonalities exist in simulation and data analysis applications?
e multidimensional datasets (observations, discretizations)

@ higher-order relations: equations, maps, graphs, hypergraphs

@ sparsity and symmetry in structure of relations

@ relations lead to solution directly or as an iterative criterion

@ algebraic descriptions of datasets and relations
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Pervasive paradigms in scientific computing

What abstractions are needed in high performance computing?
@ data abstractions reflecting native dimensionality and structure
@ functions orchestrating communication and synchronization

e provably efficient building-block algorithms
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Matrix computations C tensor computations

Tensors are convenient abstractions for multidimensional data
@ one type of object for any homogeneous dataset
@ enable expression of symmetries
@ reveal sparsity structure of relations in multidimensional space

Tensor computations naturally extend numerical linear algebra
@ = often reduce to or employ matrix algorithms
e can leverage high performance matrix libraries

@ + high-order tensors can ‘act’ as many matrix unfoldings
@ + symmetries lower memory footprint and cost

@ -+ tensor factorizations (CP, Tucker, tensor train, ...)
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Applications of high-order tensor representations

Numerical solution to differential equations

@ higher-order Taylor series expansion terms

@ nonlinear terms and differential operators
Computer vision and graphics

e 2D image ® angle ® time

@ compression (tensor factorizations, sparsity)

Machine learning

@ sparse multi-feature discrete datasets

@ reduced-order models (tensor factorizations)
Graph computations

@ hypergraphs, time-dependent graphs

o clustering/partitioning/path-finding (eigenvector computations)
Divide-and-conquer algorithms representable by tensor folding
@ bitonic sort, FFT, scans
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Applications to quantum systems

Manybody Schrodinger equation
@ ‘“curse of dimensionality” — exponential state space
Condensed matter physics
@ tensor network models (e.g. DMRG), tensor per lattice site
@ highly symmetric multilinear tensor representation
@ exponential state space localized — factorized tensor form
Quantum chemistry (electronic structure calculations)
@ models of molecular structure and chemical reactions
@ methods for calculating electronic correlation:
e “Post Hartree-Fock”: configuration interaction, coupled cluster,
Mgller-Plesset perturbation theory
@ multi-electron states as tensors,
e.g. electron ® electron ® orbital ® orbital
@ nonlinear equations of partially (anti)symmetric tensors

@ interactions diminish with distance — sparsity, low rank
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Outline and highlights

@ Symmetry-preserving tensor algorithms

e contraction of order 2s symmetric tensors in gf)); fewer multiplies
e up to 9X speed-up for partially-symmetric contractions in coupled cluster
@ Communication-avoiding parallel algorithms
e novel tradeoffs: synchronization vs communication in Cholesky and stencils
o algorithms with p/° less communication on p processors for LU, QR, eigs
e topology-aware implementations: 12X speed-up for MM, 2X for LU
© Cyclops Tensor Framework (CTF)
o first distributed-memory tensor framework supporting arbitrary contractions
e symmetry, sparsity, multitype functions, redistributions, high-level language
© Applications to electronic structure calculations
e codes using CTF for wavefunction methods: Aquarius, QChem, VASP, Psi4
e coupled cluster faster than NWChem by > 10X, nearly 1 petaflop/s
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Exploiting symmetry in tensors

Tensor symmetry (e.g. A;j = Aj;) reduces memory and cost!
o for order d tensor, d! less memory

dot product Zi,j A,JB,J =2 Zi<j A,'_,'BU + Zi A;iB;i

@ matrix-vector multiplication (A; = Aj)!

c,:ZA,-jbj = ZAU(b;+bj)—<ZA,j>b,
J J J

Ajib; # Ajib; but A;i(b; + b;) = Aji(b; + bi) — (1/2)n? multiplies
partially-symmetric case: Afjm = Ajkl’"

g (S5 (S

Jm J m m J

let Zk’ Som Ak’"(bml + bm’) and observe Zk’ Zk’
Z,-jf’ can be computed using (1/2)n° multlplles and (1/2)n5 adds

15., Demmel; Technical Report, ETH Zurich, 2015.
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Symmetry preserving algorithms

By exploiting symmetry, reduce multiplies (but increase adds)?
@ rank-2 vector outer product

Cj=aibj+ajbj = (ai + aj)(b,- + bj) — ajb; — ajb;

@ squaring a symmetric matrix A (or AB + BA)

Ci=Y AAy = > (Au+Ag+Aj)’—
P P

@ for symmetrized contraction of symmetric order s+ v and v + t tensors

(s+t+v)!

1y fewer multiplies
sltlv!

e.g. cases above are
e s=1t=1v=0— reduction by 2X
e s=1t=1,v=1— reduction by 6X

25., Demmel; Technical Report, ETH Zurich, 2015.
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Applications of symmetry preserving algorithms

Extensions and applications:
@ algorithms generalize to antisymmetric and Hermitian tensors

@ cost reductions in partially-symmetric coupled cluster contractions:
2X-9X for select contractions, 1.3X-2.1X for methods

e for Hermitian tensors, multiplies cost 3X more than adds

o Hermitian matrix multiplication and tridiagonal reduction (BLAS and
LAPACK routines) with 25% fewer operations

o (2/3)n3 bilinear rank for squaring a nonsymmetric matrix

@ decompose symmetric contractions into smaller symmetric contractions
Further directions:

@ high performance implementation

@ symmetry in tensor equations (e.g. Cholesky factors)

@ generalization to other group actions

@ relationships to fast matrix multiplication and structured matrices
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Beyond computation cost

Algorithms should minimize communication, not just computation

@ data movement and synchronization cost more energy than flops
@ two types of data movement:

o vertical (intranode memory—cache)

e horizontal (internode network transfers)

@ parallel algorithm design involves tradeoffs: computation vs
communication vs synchronization

@ lower bounds and parameterized algorithms provide optimal solutions
within a well-defined tuning space
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Cost model for parallel algorithms

Given a schedule of work and communication tasks on p processors,

consider the following costs, accumulated along chains of tasks (as in
a — (3, BSP, and LogGP models),

@ F — computation cost
3-processor schedule O ~computation
@ Q — vertical communication cost S HBM‘E’,{S &-message
@ W — horizontal communication cost >/<
. . (0] 2GB d
@ S — synchronization cost D~..gome
O
o GB .- ,<>‘60MB N
- “d
D
O
>‘~-»~..__;__z_MB )
>\§ ------
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Communication lower bounds: previous work

Multiplication of n x n matrices

@ horizontal communication lower bound?

Q™
Wum = < >
p2/3

@ memory-dependent horizontal communication lower bound*

- (%)

e with M = cn?/p memory, hope to obtain communication cost

W = O(r/\/ep)

@ libraries like ScaLAPACK, Elemental optimal only for c =1

3Aggarwa|, Chandra, Snir, TCS, 1990
Irony, Toledo, Tiskin, JPDC, 2004
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Communication-efficient matrix multiplication

Communication-avoiding algorithms for matrix multiplication have been
studied extensively®

They continue to be attractive on modern architectures®
2.5D MM on BG/P (n=65,536) Matrix multiplication strong scaling on Mira (BG/Q)
10 T 25D SUMMA —— 20 F oM nbs 53 e ]
i o 2D SUMMA 2D MM n=65,536 i
8ol ScalAPACKPDGEMM —&— | | 25D MMn-10.384

60

40

Percentage of machine peak
Gigaflop/s/node

20

0 ‘ ‘ 0 ‘ ; ‘
256 512 1024 2048 256 512 1024 2048 4096
#nodes #nodes

12X speed-up, 95% reduction in comm. for n = 8K on 16K nodes of BG/P

5Berntsen, Par. Comp., 1989; Agarwal, Chandra, Snir, TCS, 1990; Agarwal, Balle, Gustavson, Joshi, Palkar, IBM, 1995;
McColl, Tiskin, Algorithmica, 1999; ...

65., Bhatele, Demmel, SC, 2011
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Synchronization cost lower bounds

Unlike matrix multiplication, many algorithms in numerical linear algebra
have polynomial depth (contain a long dependency path)

@ matrix multiplication synchronization cost bound’

n3
son = (G172)

@ algorithms for Cholesky, LU, QR, SVD do not attain this bound

@ low granularity computation increases synchronization cost

7Ba|lard, Demmel, Holtz, Schwartz, SIAM JMAA, 2011
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Tradeoffs in the diamond DAG

Computation vs synchronization tradeoff for the n x n diamond DAG,?

F-S=Q(n)

L D

Dependency chain P Monochrome dependency intervals ~ Multicolored dependency intervals
We generalize this idea®
@ additionally consider horizontal communication

o allow arbitrary (polynomial or exponential) interval expansion

8 papadimitriou, Ullman, SIAM JC, 1987
S., Carson, Knight, Demmel, SPAA 2014 (extended version, JPDC 2016)
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Tradeoffs involving synchronization

We apply tradeoff lower bounds to dense linear algebra algorithms,
represented via dependency hypergraphs:?

For triangular solve with an n X n matrix,
Frrsv - Strsv = Q (n%)
For Cholesky of an n x n matrix,
FeroL - SéroL = Q2 (n*) Wenol - Schol = Q (n?)
Proof employs classical Loomis-Whitney inequality:

for any R C N x N x N, three projections of R onto N x N have total size
at least |R|?/3

aS., Carson, Knight, Demmel, SPAA 2014 (extended version, JPDC 2016)
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Communication-efficient LU factorization

For any c € [1, p*/3], use cn?/p memory per processor and obtain

Wiy = O(n?//cp), Stu = O(Vep)

LU with tournament pivoting on BG/P (n=65,536)
100

! ideal scaling ------
25D LU —+—

; 2D L
80 [~ : ScaLAPACK PDGETRF —&— |

Percentage of machine peak

0
256 512 1024 2048
#nodes

o LU with pairwise pivoting!® extended to tournament pivoting!?

o first implementation of a communication-optimal LU algorithm?!?

0rigkin, FGCS, 2007
115., Demmel, Euro-Par, 2011
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Communication-efficient QR factorization

® Wqr = O(n?/,/cp), Sqr = O(,/cp) using Givens rotations?
@ Householder form can be reconstructed quickly from TSQR®

Q=1/-YTYT = LU(/ — Q) = (Y, TYT)
@ enables communication-optimal Householder QR®

@ Householder aggregation yields performance improvements

QR weak scaling on Cray XE6 (n=15K to n=131K)

20 [ Two-Level CAQR-HR —— | j
Elemental QR :
ScalAPACK GR —&— -

Teraflops

0 : i i i
144 288 576 1152 2304 4608 9216
#cores

Further directions: 2.5D QR implementation, lower bounds, pivoting

Tiskin, FGCS, 2007
bBaIIard, Demmel, Grigori, Jacquelin, Nguyen, S., IPDPS, 2014

‘s., UCB, 2014
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Communication-efficient eigenvalue computation

For the dense symmetric matrix eigenvalue problem?
Wse = O(n*/\/cp), Sqr = O(y/cplog’ p)

@ above costs obtained by left-looking algorithm with Householder aggregation,
however, with increased vertical communication

@ successive band reduction minimizes both communication costs

R - updatel

Kate’

Further directions: implementations (ongoing), eigenvector computation, SVD

aS., UCB, 2014. S., Hoefler, Demmel, in preparation
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Synchronization tradeoffs in stencils

Our lower bound analysis extends to sparse iterative methods:12
For computing s applications of a (2m + l)d—point stencil

Fst - Sgt =Q (m2d ' Sd+1> Wet - Sg;l =0 (md ' Sd)

@ proof requires generalization of Loomis-Whitney inequality to order d
set and order d — 1 projections

@ time-blocking lowers synchronization and vertical communication costs,
but raises horizontal communication

@ we suggest alternative approach that minimizes vertical and horizontal
communication, but not synchronization

o further directions:

o implementation of proposed algorithm
o lower bounds for graph traversals

125., Carson, Knight, Demmel, SPAA 2014 (extended version, JPDC 2016)
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Beyond the Loomis-Whitney inequalities

Loomis-Whitney inequalities are not sufficient for all computations

@ symmetry preserving tensor contraction algorithms have arbitrary order
projections from order d set

@ bilinear algorithms!3 provide a more general framework
@ a bilinear algorithm is defined by matrices F(A) F(B) F(C),

c = FOOUFATL) o (FEBTp)]

where o is the Hadamard (pointwise) product

T T

X X X X XX X X X X X X X X X
X X X X X X X XX X X X X X X

X X X X X X XX XX X X

Cl=|x X X X X X X al|o X X X b
X X X X X X X X X

X X XX X X X X X X X X

X X X X X X X XX X XX X X XXX

@ communication lower bounds derived based on matrix rank!*

13Pan, Springer, 1984
S., Hoefler, Demmel, in preparation
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Communication cost of symmetry preserving algorithms

For contraction of order s + v tensor with order v 4 t tensor
@ symmetry preserving algorithm requires % fewer multiplies
@ matrix-vector-like algorithms (min(s, v, t) = 0)

e vertical communication dominated by largest tensor

o horizontal communication asymptotically greater if only unique elements
are stored and s #£ v # t

15

@ matrix-matrix-like algorithms (min(s, v, t) > 0)

e vertical and horizontal communication costs asymptotically greater for
symmetry preserving algorithm when s # v # ¢t

o further work: bounds for nested and iterative bilinear algorithms

155., Hoefler, Demmel; Technical Report, ETH Zurich, 2015.
Edgar Solomonik
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Tensor algebra as a programming abstraction

Cyclops Tensor Framework!®
@ contraction/summation/functions of tensors
o distributed symmetric-packed/sparse storage via cyclic layout
e parallelization via MPI4+-OpenMP(4CUDA)

165., Hammond, Demmel, UCB, 2011. S., Matthews, Hammond, Demmel, IPDPS, 2013
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Tensor algebra as a programming abstraction

Cyclops Tensor Framework
@ contraction/summation/functions of tensors
o distributed symmetric-packed/sparse storage via cyclic layout
@ parallelization via MPI4+-OpenMP(+CUDA)

Jacobi iteration (solves Ax = b iteratively) example code snippet

Vector<> Jacobi(Matrix<> A, Vector<> b, int n){
// split A = R + diag(1./d)
do {
x["i"1 = d["i"I*x(b["i"1-RL["ij"1*x["3"1);
r["i”]1 = b["i"]1-A["ij"1*x["j"]1; // compute residual
} while (r.norm2() > 1.E-6); // check for convergence
return x;
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Tensor algebra as a programming abstraction

Cyclops Tensor Framework
@ contraction/summation/functions of tensors
o distributed symmetric-packed/sparse storage via cyclic layout
@ parallelization via MPI4+-OpenMP(+CUDA)

Jacobi iteration (solves Ax = b iteratively) example code snippet

Vector<> Jacobi(Matrix<> A, Vector<> b, int n){

Matrix<> R(A);
R["ii"] = 0.0;
Vector<> x(n), d(n), r(n);
Function<> inv([](double & d){ return 1./d; });
d["i"] = inv(AL"ii"1); // set d to inverse of diagonal of A
do {

x["i"] = d["i"I*(bL"i"1-RL"ij"1*x["j"1);

r["i"] = bL["i"]1-AL"ij"1*x["j"1; // compute residual
} while (r.norm2() > 1.E-6); // check for convergence
return x;
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Tensor algebra as a programming abstraction

Cyclops Tensor Framework

@ contraction/summation/functions of tensors

o distributed symmetric-packed/sparse storage via cyclic layout
@ parallelization via MPI4+-OpenMP(+CUDA)

Mgller-Plesset perturbation theory (MP3) code snippet

Z["abij"] += Fab["af"1xT["fbij"];
2["abij”] -= Fij["ni"1*T["abnj"1;
Z["abij"] += 0.5xVabcd["abef"1*T["efij"1;
Z["abij"] += @.5xVijkl["mnij"]*T["abmn"1;
Z["abij”] -= Vaibj["amei”]1*T["ebmj"];
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Betweenness centrality

Betweenness centrality code snippet, for k of n nodes

void btwn_central (Matrix<int> A, Matrix<path> P, int n, int k){
Monoid<path> mon(...,
[I(path a, path b){
if (a.w<b.w) return a;
else if (b.w<a.w) return b;
else return path(a.w, a.m+b.m);

}y "');

Matrix<path> Q(n,k,mon); // shortest path matrix
Q["ij"] = P["ij"];

Function<int,path> append([](int w, path p){
return path(w+p.w, p.m);
3 )

for (int i=0; i<n; i++)
Q["ij"] = append(A["ik"]’Q["kj"]);
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Performance of CTF for dense computations

CTF is highly tuned for massively-parallel machines
@ virtualized multidimensional processor grids
@ topology-aware mapping and collective communication
@ performance-model-driven decomposition done at runtime

@ optimized redistribution kernels for tensor transposition

BG/Q matrix multiplication

2048 T T T T
CTF —+— i
1024 - Scalapack

Teraflop/s
N
(==

8 i i i i i
4096 8192 16384 32768 65536 131072 262144
#cores
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Performance of CTF for sparse computations

MP3 leveraging sparse-dense tensor contractions?

Weak scaling of MP3 (m=40, n=160 on 24 cores)

Strong scaling of MP3 with m=40, n=160

T T
dense —+—

40 - 16% sparse -=@-=
36 | 8%sparse -
32 4% sparse - % -
2% sparse a
1% sparse

3 16 T T

T T

dense —+—

16% sparse =0
8% sparse - -

4% sparse - % -
2% sparse a

1% sparse

#cores

I
192

I i
384 24 48 96 192 384 768
#cores

All-pairs shortest-paths based on path doubling with sparsification?

Weak scaling of APSP (n=2K on 24 cores)

Strong scaling of APSP with n=2K

140 T T T T T T T
regular path doubling —+— regular path doubling —+—
120 | sparse path doubling 4l 24 sparse path doubling T
100 ] 20 - 1
g w0 1 g er q
8 8
g 60 4 g ]
40 4 8 4
20 4 4t 4
0 I I I 0 I I | i
24 48 % 192 384 24 48 % 192 384 768

#cores

aS., Hoefler, Demmel, arXiv, 2015
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Coupled cluster methods

Coupled cluster provides a systematically improvable approximation to the
manybody time-independent Schrédinger equation H|W) = E|V)

the Hamiltonian has one- and two- electron components H = F + V
Hartree-Fock (SCF) computes mean-field Hamiltonian: F, V

Coupled-cluster methods (CCSD, CCSDT, CCSDTQ) consider
transitions of (doubles, triples, and quadruples) of electrons to
unoccupied orbitals, encoded by tensor operator,
T=T+T+ T3+ 14

they use an exponential ansatz for the wavefunction, ¥V = e’ ¢
where ¢ is a Slater determinant

expanding 0 = (¢/|H|V) yields nonlinear equations for {T;} in F,V
1_,..
0=Vi*+P(a,b) Y TiF, = SP(iJ) Y T V" T + ..
e mnef

where P is an antisymmetrization operator
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CCSD using CTF

Extracted from Aquarius (Devin Matthews' code,
https://github.com/devinamatthews/aquarius)

FMI["mi"]

WMNIJ["mnij"]

FAE["ae"]

WAMEI["amei"]

Z2["abij"]
Z2["abij"1]
Z2["abij"]
Z2["abij"]
Z2["abij"1]
Z2["abij"]

+= @.5*WMNEF["mnef"1*xT2["efin"];
+= O.5*WMNEF["mnef"1*T2["efij"];
-= @.5*WMNEF["mnef"1*T2["afmn"];
-= @.5*xWMNEF["mnef"]1*T2["afin"];

WMNEF["ijab"];
FAE["af"1xT2["fbij"1;
FMI["ni"1*T2["abnj"1;
0.5*WABEF["abef"]1*T2["efij"];
Q.5*WMNIJ["mnij"]1*T2["abmn"];
WAMEI["”amei”1*T2["ebmj"1;

CTF-based CCSD codes exist in Aquarius, QChem, VASP, and Psi4

Edgar Solomonik
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https://github.com/devinamatthews/aquarius

Comparison with NWChem

NWChem is the most commonly-used distributed-memory quantum
chemistry method suite

@ provides CCSD and CCSDT
e derives equations via Tensor Contraction Engine (TCE)
@ generates contractions as blocked loops leveraging Global Arrays

Strong scaling CCSDT on Edison
Strong scaling CCSD on Edison

T T T T T T T
T T T T T T : ! NWChem w3 - ¢ -~
NWChem w20 -l -
toos | - ] 1024 we —F--
W0 e Aquarius-CTF w4 ———
We -ee ¢
266 L Aouarivs CTF w20 —l— | 256 .
wis —F— 1%]
° W0 —X— [ e
° we —— 5] 64
s 64 Tt 3
8 ) 7} i
© 16
. 4
i i T i
I 2 M s 16 3 64 128 256 1 2 4 8 16 32 64 128 256
#nodes #nodes

Edgar Solomonik Algorithms as Multilinear Tensor Equations 30/33



Coupled cluster on IBM BlueG and Cray XC30

CCSD up to 55 (50) water molecules with cc-pVDZ
CCSDT up to 10 water molecules with cc-pvVDZ?

Weak scaling on BlueGene/Q Weak scaling on BlueGene/Q

1024 60
Aquarius-CTF CCSD — ! Aquarius-CTF CCSD ——
512 | Aquarius-CTF CCSDT --)-- 50 | Aquarius-CTF CCSDT --X-- |
256 : : =
_____ X 2 ol | . i i
2 128 ~4 g [
S @
s 64 N g 30[] T 2 i B
5 =
= 2 4 8
3 & ot ! ] | i i
16} N . VS e Sy
sl X i [0 S S o — o
4 i i i i i i i i i
512 1024 2048 4096 8192 16384 32768 512 1024 2048 4096 8192 16384
#nodes #nodes
Weak scaling on Edison Weak scaling on Edison
512 — . : . 1 350 — . :
256 |- Aquarius-CTF CCSD —(—— Aquarius-CTF CCSD ——
Aquarius-CTF CCSDT --¢-- 300 Aquarius-CTF CCSDT --»¢--
128 : -
; S 250 [ : | f o
q 6 =3 108
& =3 4 % 200
5 e ] &
e 5 150
8 4 2o
4l 1 © 100
2 - 50
1 ” L L
32 64 128 256 512 1024 2048 4096 32 64 128 256 512 1024 2048 4096
#nodes #nodes
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Summary of contributions

Novel results described in this talk:
@ symmetry preserving algorithms
e reduce number of multiplications in symmetric contractions by w!
o reduce cost of basic Hermitian matrix operations by 25%
o reduce cost of some contractions in coupled cluster by 2X in CCSD (1.3X
overall), 4X in CCSDT (2.1X overall), 9X in CCSDTQ
@ communication and synchronization lower bounds
e tradeoffs: synchronization vs computation or communication in TRSV,
Cholesky, and stencils
e rank-based lower bounds to analyze symmetric contractions
@ communication-avoiding matrix factorizations
e new algorithms and implementations with up to p!/® less communication
for LU, QR, symmetric eigenvalue problem
o speed-ups of up to 2X for LU and QR over vendor-optimized libraries
@ Cyclops Tensor Framework
o first fully robust distributed-memory tensor contraction library
e supports symmetry, sparsity, general algebraic structures
e coupled cluster performance more than 10X faster than state-of-the-art,

reaching 1 petaflop/s performance
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Impact and future work

@ symmetry in tensor computations
e cost improvements — fast library implementations — application speed-ups
e study symmetries in tensor equations and factorizations
e consider other symmetries and relation to fast matrix multiplication

@ communication-avoiding algorithms

o existing fast implementations already used by applications (e.g. QBox)
o find efficient methods of searching larger tuning spaces

e algorithms for computing eigenvectors, SVD, tensor factorizations
study (randomized) algorithms for sparse matrix factorization

@ Cyclops Tensor Framework

o already widely-adapted in quantum chemistry, many requests for features
e study algorithms for tensor expressions — factorization, scheduling, ...
e engage new application domains (via sparsity and algebraic structures)

@ tensor networks for condensed matter-physics, particle methods

@ graph algorithms, discrete data analysis

@ graphics, computer vision, machine learning
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Backup slides
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Symmetry preserving algorithm vs Strassen’s algorithm

Symmetry preserving alg. vs Strassen’s alg. (s=t=v=w/3)

1 | |
10 100 1000 10000 100000 1e+06
n%/s! (matrix dimension)

k=)
[V
c 64 T ; ~ : !
2 Strassen’s algorithm ——
28 Sym. preserving @=6 ====-
ST 32 Sym. preserving @=3 ====== "~ T 7]
T O : : :
O | | ‘
53
==
E'O
#3
=8
Z0o
KX
3
Eo
?
e)
[0}
[0}
o
K
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Nesting of bilinear algorithms

Given two bilinear algorithms:

A =(FY PP FE)
Mo =(FY, FP) F{O)

We can nest them by computing their tensor product

M@ A =(FA o FN FE o FE) F© o FE)
rank(A1 ® Az) =rank(A1) - rank(Az)

Edgar Solomonik Algorithms as Multilinear Tensor Equations 36/33



Block-cyclic algorithm for s-step methods

[c o e ala o 0o o o
D } )
[0 0 o o [& s o 0! o-dummy computation
o o o oo o :
|I=3u=l:0 0o o © ’ % o o] u=2 x(3)
2 oo w2
=1 u=1l:e o oo o o o]uy=2 x(1)

For s-steps of a (2m + 1)?-point stencil with block-size of H/?/m,

msn® d msn®
Wik, = O (Hl/dp> Skr = O(sn?/(pH)) Qir = O<Hl/dp>

which are good when H = ©(n?/p), so the algorithm is useful when the
cache size is a bit smaller than n?/p
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2.5D LU on MIC

LU factorization strong scaling on Stampede (MIC + Sandy Bridge)

450
! 2. 5D hybrid LU n= 131 072 —¥— .
2D hybrid LU n=131,072 —3—
400 2.5D pure-cpu LU n=131,072 n
2.5D hybrid LU n=65,536 ——
o 2.5D pure-cpu LU n=65,536 —l—
38 q :
£ 300 P~
°
P R i D et JECEEIEEEIEERRIEEEE
o )
T 250 o oo s e e T
e e
(O] !
L e s
150 - e s s e oo s o oo e o R
100
16 32 64 128 256
#nodes
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Topology-aware mapping on BG/Q

LU factorization strong scaling on Mira (BG/Q), n=65,536

100 T T
2D LU, custom mapping —¥—
2D LU, default mapping b o T e 7

] e B S — .

Gigaflop/s/node
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Symmetric matrix representation

Symmetric matrix Unique part of symmetric matrix

I
Tm
|

Edgar Solomonik Algorithms as Multilinear Tensor Equations



Blocked distributions of a symmetric matrix

Naive blocked layout Block-cyclic layout

T [
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Cyclic distribution of a symmetric matrix

Cyclic layout ~ Improved blocked layout
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Our CCSD factorization

Credit to John F. Stanton and Jurgen Gauss
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Our CCSD factorization
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Stability of symmetry preserving algorithms

Relative error of c=A*b with positive A and alternating b Relative error of squaring a Householder transformation
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Performance breakdown on BG/Q

Performance data for a CCSD iteration with 200 electrons and 1000
orbitals on 4096 nodes of Mira

4 processes per node, 16 threads per process

Total time: 18 mins

v-orbitals, o-electrons

kernel % of time | complexity architectural bounds
DGEMM 45% O(v*0?/p) flops/mem bandwidth
broadcasts 20% O(v*0%/pv/M) | multicast bandwidth
prefix sum 10% O(p) allreduce bandwidth
data packing | 7% O(v?0?/p) integer ops
all-to-all-v 7% O(v?0?/p) bisection bandwidth
tensor folding | 4% O(v?0?/p) memory bandwidth
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Tiskin's path doubling algorithm

Tiskin gives a way to do path-doubling in F = O(n3/p) operations. We
can partition each A¥ by path size (number of edges)

Ak =13 A 1)@ AKQ2) @ ... @ AK(K)

where each AK(/) contains the shortest paths of up to k > / edges, which
have exactly / edges. We can see that

Al() < AT < ... < A1) = A*()),

in particular A*(/) corresponds to a sparse subset of A’(/).
The algorithm works by picking / € [k/2, k] and computing

(1a APF2 < (1a AX(]) @ A,

which finds all paths of size up to 3k/2 by taking all paths of size exactly
I > k/2 followed by all paths of size up to k.
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