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Laboratory for Parallel Numerical Algorithms

Recent/ongoing research topics
(*-covered today)

parallel matrix computations

matrix factorizations
eigenvalue problems
preconditioners

tensor computations

tensor decomposition*
sparse tensor kernels*
tensor completion

simulation of quantum systems

tensor networks*
quantum chemistry*
quantum circuits*

fast bilinear algorithms

convolution algorithms
tensor symmetry* http://lpna.cs.illinois.edu
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Tensor Contractions

A tensor of order N has N modes and dimensions s× · · · × s

Two or more tensors can be contracted together in various ways
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Tensor Decompositions

Canonical polyadic (CP) tensor
decomposition1

tijk =

R∑
r=1

uirvjrwkr

1D tensor network / Matrix
product state (MPS) / tensor
train (TT) decomposition

tijk =
∑
r

∑
s

uirvrjswsk

2D tensor network / projected
entangled pair state (PEPS)

1
T.G. Kolda and B.W. Bader, SIAM Review 2009

LPNA High Performance Tensor Computations October 22, 2020 4 / 26



Tensor Network Methods

H =Ψ =
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Applications

Tensor Decompositions

data mining e.g., high-order clustering, typically low-rank
decomposition augmented with constraints

model/data compression e.g., neural networks and quantum chemistry,
relatively high rank needed for accuracy

discovery of bilinear algorithms (e.g., Strassen’s algorithm for matrix
multiplication), small sparse tensors with relatively high rank

Tensor Networks

eigenvalue and least squares problems where system of equations and
vector are represented by low rank tensor networks

prevalent in simulation of quantum systems (spins, electrons, qubits)
given Hamiltonian or quantum circuit description

Tensor Contractions

prevalent within tensor network and tensor decomposition methods

also arise in high-accuracy quantum chemistry methods (e.g., coupled
cluster), where tensors often have symmetries
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Software Abstractions for Tensor Computations
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CP Tensor Decomposition Algorithms

Tensor of order N has N modes and dimensions s× · · · × s

Canonical polyadic (CP) tensor decomposition1

Alternating least squares (ALS) is most widely used method

Optimize one factor matrix at a time, yielding quadratic optimization
subproblems

Achieves monotonic linear convergence

Gauss-Newton method is an emerging alternative

Optimizes all factor matrices at once by quadratic approximation of
nonlinear objective function

Non-monotonic, but can achieve quadratic convergence
1

T.G. Kolda and B.W. Bader, SIAM Review 2009
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Pairwise Perturbation Algorithm
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New algorithm: pairwise perturbation (PP)1 approximates ALS

based on perturbative expansion of ALS update to
approximate MTTKRP

approximation is accurate when ALS updates stagnate

rank R < sN−1 CP decomposition:

ALS sweep cost O(sNR)⇒ O(s2R), up to 33x speed-up Linjian Ma
1

L. Ma, E.S. arXiv:1811.10573
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Parallel Pairwise Perturbation Algorithm
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Effective parallelization by decomposing MTTKRP into local MTTKRPs 1

U = MTTKRP(TTT ,V ,W )⇒ Ui =
∑
j,k

MTTKRP(TTT ijk,Vj ,Wk)

processor (i, j, k) owns TTT ijk, Vj , and Wk

pairwise perturbation can be used to approximate local MTTKRPs,
reducing communication cost

multi-sweep dimension-tree (MSDT) amortizes terms across sweeps
1

L. Ma, E.S. to appear on arXiv, October 2020.
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Regularization and Parallelism for Gauss-Newton
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New regularization scheme1 for Gauss-Newton CP with implicit CG2

Oscillates regularization parameter geometrically
between lower and upper thresholds

Achieves higher convergence likelihood

More accurate than ALS in applications

Faster than ALS sequentially and in parallel Navjot Singh

1
Navjot Singh, Linjian Ma, Hongru Yang, and E.S. arXiv:1910.12331

2
P. Tichavsky, A. H. Phan, and A. Cichocki., 2013
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Sparse Tensor Decomposition

Sparse tensor decomposition is dominated by MTTKRP

uir =
∑
j,k

tijkvjrwkr

Sparse MTTKRP can be done faster all-at-once than by contracting
two tensors at a time
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Permutational Symmetry in Tensor Contractions
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New contraction algorithms reduce cost via permutational symmetry1

Symmetry is hard to use in contraction e.g. y = Ax with A symmetric

For contraction of order s+ v and v + t tensors to produce an order s+ t tensor,
previously known approaches reduce cost by s!t!v!

New algorithm reduces number of products by ω! where ω = s+ t+ v, leads to
same reduction in cost for partially-symmetric contractions

C = AB +BA⇒ cij =
∑
k

[(aij + aik + ajk) · (bij + bik + bjk)]− . . .

1
E.S, J. Demmel, CMAM 2020
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Group Symmetry in Tensor Contractions

New contraction algorithm, irreducible representation alignment uses new reduced

form to handle group symmetry (momentum conservation, spin, quantum

numbers, etc.) without looping over blocks or sparsity1
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Loop Blocks (1 Proc, NumPy)
Symtensor (1 Proc, BLAS)
Symtensor (1 Proc, CTF)
Loop Blocks (64 Proc, NumPy)
Symtensor (64 Proc, BLAS)
Symtensor (64 Proc, CTF)

1
Y. Gao, P. Helms, G. Chan, and E.S., arXiv:2007.08056
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Quantum Circuit Simulation with Tensor Networks

A quantum circuit is a direct description of a tensor network1

Why use HPC to (approximately) simulate quantum circuits?
enable development/testing/tuning of larger quantum circuits
understand approximability of different quantum algorithms
quantify sensitivity of algorithms to noise/error
potentially enable new hybrid quantum-classical algorithms

Cyclops utilized to simulate 49-qubit circuits by IBM+LLNL team via
direct contraction2 and by another team from via exact PEPS
evolution/contraction3

1Markov and Shi SIAM JC 2007
2Pednault et al. arXiv:1710.05867
3Guo et al. Phys Rev Letters, 2019
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Tensor Network State Simulation
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Approximate Application of Two-Site Operators

Consider application of a two-site operator on neighboring PEPS sites

Simple update (QR-SVD) algorithm:

We provide an efficient distributed implementation of QR-SVD

This operation is an instance of what we’ll refer to as einsumsvd and
QR-SVD is one algorithm/implementation

LPNA High Performance Tensor Computations October 22, 2020 17 / 26



Implicit Randomized einsumsvd

The einsumsvd primitive will also enable effective algorithms for
PEPS contraction

An efficient general implementation is to leverage randomized SVD /
orthogonal iteration, which iteratively computes a low-rank SVD by a
matrix–matrix product that can be done implicitly via tensor
contractions
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PEPS Contraction

Exact contraction of PEPS is #P-complete, so known methods have
exponential cost in the number of sites

PEPS contraction is needed to compute expectation values

Boundary contraction is common for finite PEPS and can be
simplified with einsumsvd
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Koala

We introduce a new library, Koala1, for high-performance simulation
of quantum circuits and time evolution with PEPS2

1https://github.com/cyclops-community/koala
2Yuchen Pang, Tianyi Hao, Annika Dugad, Yiqing Zhou, and E.S., to appear in

proceedings of SC 2020, arXiv:2006.15234.
LPNA High Performance Tensor Computations October 22, 2020 20 / 26

https://github.com/cyclops-community/koala


PEPS Benchmark Performance
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Koala achieves good parallel scalability for approximate gate
application (evolution) and contraction

Approximation can be effective even for adversarially-designed circuits
such as Google’s random quantum circuit model (figure on right)
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PEPS Accuracy for Quantum Simulation

0 15 30 45 60 75 90 105 120 135 150
Step

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00

En
er

gy
 p

er
 si

te

state vector
r = 1, m = r2

r = 2, m = r2

r = 3, m = r2

r = 4, m = r2

r = 1, m = r
r = 2, m = r
r = 3, m = r
r = 4, m = r

0 10 20 30 40 50
Number of iterations

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

Gr
ou

nd
 st

at
e 

en
er

gy
 p

er
 si

te

ground state
state vector
peps, r = 1
peps, r = 2
peps, r = 3
peps, r = 4

ITE code achieves improvable accuracy with increased PEPS bond
dimension, but approximation in PEPS contraction is not variational

Variational quantum eigensolver (VQE), which represents a
wavefunction using a parameterized circuit U(θ) and minimizes

〈U(θ)|H |U(θ)〉 ,

also achieves improvable accuracy with higher PEPS bond dimension
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Automatic Differentiation for Tensor Computations

Tensor network and tensor decomposition methods all typically based
on applying Newton’s method on a sequence of subsets of variables

Automatic differentiation (AD) in principle enables automatic
generation of these methods

However, existing AD tools such as Jax (used by TensorFlow) are
designed for deep learning and are ineffective for more complex tensor
computations

these focus purely on first order optimization via Jacobian-vector
products
unable to propagate tensor algebra identities such as
(A⊗B)−1 = A−1 ⊗B−1 to generate efficient code
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AutoHOOT: Automatic High-Order Optimization for
Tensors

AutoHOOT1 provides a tensor-algebra centric AD engine

Designed for einsum expressions and alternating minimization
common in tensor decomposition and tensor network methods

Python-level AD is coupled with optimization of contraction order
and caching of intermediates

Generates code for CPU/GPU/supercomputers using high-level
back-end interface to tensor contractions
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1Linjian Ma, Jiayu Ye, and E.S. arXiv:2005.04540, 2020
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Software Abstractions for Tensor Computations

LPNA High Performance Tensor Computations October 22, 2020 25 / 26



Acknowledgements

Laboratory for Parallel
Numerical Algorithms (LPNA)
at University of Illinois,
lpna.cs.illinois.edu and
collaborators

Funding from NSF awards:
#1839204 (RAISE-TAQS),
#1931258 (CSSI), #1942995
(CAREER)

Stampede2 resources at TACC
via XSEDE

http://lpna.cs.illinois.edu

LPNA High Performance Tensor Computations October 22, 2020 26 / 26

lpna.cs.illinois.edu
http://lpna.cs.illinois.edu


Backup slides

LPNA High Performance Tensor Computations October 22, 2020 27 / 26



Library for Massively-Parallel Tensor Computations

Cyclops Tensor Framework1 sparse/dense generalized tensor algebra

Cyclops is a C++ library that distributes each tensor over MPI

Used in chemistry (PySCF, QChem)2, quantum circuit simulation
(IBM/LLNL)3, and graph analysis (betweenness centrality)4

Summations and contractions specified via Einstein notation

E["aixbjy"] += X["aixbjy"] - U["abu"]*V["iju"]*W["xyu"]

Best distributed contraction algorithm selected at runtime via models

Support for Python (numpy.ndarray backend), OpenMP, and GPU

Simple interface to core ScaLAPACK matrix factorization routines

1https://github.com/cyclops-community/ctf
2

E.S., D. Matthews, J. Hammond, J.F. Stanton, J. Demmel, JPDC 2014
3

E. Pednault, J.A. Gunnels, G. Nannicini, L. Horesh, T. Magerlein, E. S., E. Draeger, E. Holland, and R. Wisnieff, 2017
4

E.S., M. Besta, F. Vella, T. Hoefler, SC 2017
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Electronic structure calculations with Cyclops

CCSD up to 55 (50) water molecules with cc-pVDZ
CCSDT up to 10 water molecules with cc-pVDZ
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compares well to NWChem (up to 10x speed-ups for CCSDT)
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Faster Parallel Algorithms for Cholesky and QR
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Cholesky / QR Matrix Factorization

Cholesky-QR21 with 3D Cholesky gives a practical 3D QR algorithm2

Compute A = Q̂R using Cholesky ATA = RTR

Correct computed factorization by Cholesky-QR of Q̂

Attains full accuracy so long as cond(A) < 1/
√
εmach

Edward Hutter

1
T. Fukaya, Y. Nakatsukasa, Y. Yanagisawa, Y. Yamamoto, 2014

2
E. Hutter, E.S., IPDPS 2019

LPNA High Performance Tensor Computations October 22, 2020 30 / 26



Accelerating Autotuning using Critter
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New tool critter accelerates autotuning by conditional execution1

Avoids execution of computation and communication
kernels if their performance is predictable using past
observations

Leverages critical path profiling to determine needed
model accuracy for each kernel Edward Hutter

1
E. Hutter, Edgar Solomonik, to appear on arXiv
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