High Performance Tensor Computations

Edgar Solomonik

Department of Computer Science
University of Illinois at Urbana-Champaign

SPCL_Bcast(COMM_WORLD) seminar
Laboratory for Parallel Numerical Algorithms

Recent/ongoing research topics (*-covered today)

- parallel matrix computations
 - matrix factorizations
 - eigenvalue problems
 - preconditioners
- tensor computations
 - tensor decomposition*
 - sparse tensor kernels*
 - tensor completion
- simulation of quantum systems
 - tensor networks*
 - quantum chemistry*
 - quantum circuits*
- fast bilinear algorithms
 - convolution algorithms
 - tensor symmetry*

http://lpna.cs.illinois.edu
Tensor Contractions

- A tensor of order N has N modes and dimensions $s \times \cdots \times s$

- Two or more tensors can be contracted together in various ways

Matrix Multiplication

\[
c_{ij} = \sum_k a_{ik} b_{kj}
\]

\[
\begin{array}{c}
\text{C} \\
\text{j} \\
\text{i}
\end{array}
= \begin{array}{c}
\text{A} \\
\text{k} \\
\text{i}
\end{array}
\begin{array}{c}
\text{B} \\
\text{j}
\end{array}
\]

Hadamard Product

\[
c_{ij} = a_{ij} b_{ij}
\]

\[
\begin{array}{c}
\text{C} \\
\text{j} \\
\text{i}
\end{array}
= \begin{array}{c}
\text{A} \\
\text{i}
\end{array}\begin{array}{c}
\text{B} \\
\text{j}
\end{array}
\]

Tensor Times Matrix (TTM)

\[
c_{ijl} = \sum_k t_{ikl} b_{kj}
\]

\[
\begin{array}{c}
\text{C} \\
\text{j} \\
\text{i}
\end{array}
= \begin{array}{c}
\text{T} \\
\text{k} \\
\text{i}
\end{array}\begin{array}{c}
\text{B} \\
\text{j}
\end{array}
\]

MTTKRP

(matricized tensor times Khatri-Rao product)

\[
u_{ir} = \sum_{jk} t_{ijk} v_{jr} w_{kr}
\]

\[
\begin{array}{c}
\text{U} \\
\text{r} \\
\text{i}
\end{array}
= \begin{array}{c}
\text{T} \\
\text{j} \\
\text{k}
\end{array}\begin{array}{c}
\text{V} \\
\text{r}
\end{array}\begin{array}{c}
\text{W} \\
\text{k}
\end{array}
\]
Tensor Decompositions

- Canonical polyadic (CP) tensor decomposition\(^1\)

\[t_{ijk} = \sum_{r=1}^{R} u_{ir} v_{jr} w_{kr} \]

- 1D tensor network / Matrix product state (MPS) / tensor train (TT) decomposition

\[t_{ijk} = \sum_r \sum_s u_{ir} v_{rjs} w_{sk} \]

- 2D tensor network / projected entangled pair state (PEPS)

\(^1\)T.G. Kolda and B.W. Bader, SIAM Review 2009
Tensor Network Methods

\[\Psi = \begin{array}{c}
\begin{array}{cccccccc}
\dfrac{d}{m_1} & \dfrac{d}{m_2} & \dfrac{d}{m_3} & \dfrac{d}{m_4} & \dfrac{d}{m_5} & \dfrac{d}{m_6} & \dfrac{d}{m_7}
\end{array}
\end{array}
\quad \mathcal{H} = \begin{array}{c}
\begin{array}{cccccccc}
\dfrac{d}{d} & \dfrac{d}{d} & \dfrac{d}{d} & \dfrac{d}{d} & \dfrac{d}{d} & \dfrac{d}{d} & \dfrac{d}{d}
\end{array}
\end{array} \]

\[\begin{array}{c}
\begin{array}{cccccccc}
\dfrac{d}{d} & \dfrac{d}{d} & \dfrac{d}{d} & \dfrac{d}{d} & \dfrac{d}{d} & \dfrac{d}{d} & \dfrac{d}{d}
\end{array}
\end{array} = E \quad I
\]

\[\begin{array}{c}
\begin{array}{cccccccc}
\dfrac{d}{d} & \dfrac{d}{d} & \dfrac{d}{d} & \dfrac{d}{d} & \dfrac{d}{d} & \dfrac{d}{d} & \dfrac{d}{d}
\end{array}
\end{array} = E \quad I
\]

\[\begin{array}{c}
\begin{array}{cccccccc}
\dfrac{d}{d} & \dfrac{d}{d} & \dfrac{d}{d} & \dfrac{d}{d} & \dfrac{d}{d} & \dfrac{d}{d} & \dfrac{d}{d}
\end{array}
\end{array} = E
\]

\[\begin{array}{c}
\begin{array}{cccccccc}
\dfrac{d}{d} & \dfrac{d}{d} & \dfrac{d}{d} & \dfrac{d}{d} & \dfrac{d}{d} & \dfrac{d}{d} & \dfrac{d}{d}
\end{array}
\end{array} \approx \begin{array}{c}
\begin{array}{cccccccc}
\dfrac{d}{d} & \dfrac{d}{d} & \dfrac{d}{d} & \dfrac{d}{d} & \dfrac{d}{d} & \dfrac{d}{d} & \dfrac{d}{d}
\end{array}
\end{array} \]
Applications

- **Tensor Decompositions**
 - data mining e.g., high-order clustering, typically low-rank decomposition augmented with constraints
 - model/data compression e.g., neural networks and quantum chemistry, relatively high rank needed for accuracy
 - discovery of bilinear algorithms (e.g., Strassen’s algorithm for matrix multiplication), small sparse tensors with relatively high rank
Applications

- **Tensor Decompositions**
 - data mining e.g., high-order clustering, typically low-rank decomposition augmented with constraints
 - model/data compression e.g., neural networks and quantum chemistry, relatively high rank needed for accuracy
 - discovery of bilinear algorithms (e.g., Strassen’s algorithm for matrix multiplication), small sparse tensors with relatively high rank

- **Tensor Networks**
 - eigenvalue and least squares problems where system of equations and vector are represented by low rank tensor networks
 - prevalent in simulation of quantum systems (spins, electrons, qubits) given Hamiltonian or quantum circuit description
Applications

- **Tensor Decompositions**
 - data mining e.g., high-order clustering, typically low-rank decomposition augmented with constraints
 - model/data compression e.g., neural networks and quantum chemistry, relatively high rank needed for accuracy
 - discovery of bilinear algorithms (e.g., Strassen’s algorithm for matrix multiplication), small sparse tensors with relatively high rank

- **Tensor Networks**
 - eigenvalue and least squares problems where system of equations and vector are represented by low rank tensor networks
 - prevalent in simulation of quantum systems (spins, electrons, qubits) given Hamiltonian or quantum circuit description

- **Tensor Contractions**
 - prevalent within tensor network and tensor decomposition methods
 - also arise in high-accuracy quantum chemistry methods (e.g., coupled cluster), where tensors often have symmetries
Software Abstractions for Tensor Computations

Applications
- Quantum Circuit Simulation
- Condensed Matter Physics
- Quantum Chemistry
- Data Analysis

Methods
- Tensor network simulation
- AutoHOOT (automatic differentiation)
- Koala (tensor network state simulation)
- Tensor decomp. and completion
- Graph Processing

Software Abstractions
- OpenMP
- CUBLAS
- MPI
- BLAS
- HPTT (tensor transpose)
- MKL (sparse mat-mul)
- ScaLAPACK (matrix factorizations)

Cyclops
- (tensor contractions)
- Python interface
- C++ interface
CP Tensor Decomposition Algorithms

- Tensor of order N has N modes and dimensions $s \times \cdots \times s$
- Canonical polyadic (CP) tensor decomposition\(^1\)

\[x = \sum_{i=1}^{R} b_i \circ e_i \circ a_i \]

- Alternating least squares (ALS) is most widely used method
 - Optimize one factor matrix at a time, yielding quadratic optimization subproblems
 - Achieves monotonic linear convergence
- Gauss-Newton method is an emerging alternative
 - Optimizes all factor matrices at once by quadratic approximation of nonlinear objective function
 - Non-monotonic, but can achieve quadratic convergence

\(^1\)T.G. Kolda and B.W. Bader, SIAM Review 2009
New algorithm: pairwise perturbation (PP)1 approximates ALS

- based on perturbative expansion of ALS update to approximate MTTKRP
- approximation is accurate when ALS updates stagnate
- rank $R < s^{N-1}$ CP decomposition:
 - ALS sweep cost $O(s^N R) \Rightarrow O(s^2 R)$, up to 33x speed-up

1 Linjian Ma, E.S. arXiv:1811.10573
Parallel Pairwise Perturbation Algorithm

![Graphs showing fitness over time for PP, MSDT, and DT]

Effective parallelization by decomposing MTTKRP into local MTTKRPs\(^1\):

$$U = \text{MTTKRP}(\mathcal{T}, V, W) \Rightarrow U_i = \sum_{j,k} \text{MTTKRP}(\mathcal{T}_{ijk}, V_j, W_k)$$

- processor (i, j, k) owns \mathcal{T}_{ijk}, V_j, and W_k
- pairwise perturbation can be used to approximate local MTTKRPs, reducing communication cost
- multi-sweep dimension-tree (MSDT) amortizes terms across sweeps

\(^1\) L. Ma, E.S. to appear on arXiv, October 2020.
New regularization scheme\(^1\) for Gauss-Newton CP with implicit CG\(^2\)

- Oscillates regularization parameter geometrically between lower and upper thresholds
- Achieves higher convergence likelihood
- More accurate than ALS in applications
- Faster than ALS sequentially and in parallel

\(^1\) Navjot Singh, Linjian Ma, Hongru Yang, and E.S. arXiv:1910.12331

\(^2\) P. Tichavsky, A. H. Phan, and A. Cichocki., 2013
Sparse Tensor Decomposition

- Sparse tensor decomposition is dominated by MTTKRP

$$u_{ir} = \sum_{j,k} t_{ijk} v_{jr} w_{kr}$$

- Sparse MTTKRP can be done faster all-at-once than by contracting two tensors at a time.

![Graph showing the performance of different tensor operations with varying dimensions and negative log density.](image)
New contraction algorithms reduce cost via permutational symmetry\(^1\)

- Symmetry is hard to use in contraction e.g. \(y = Ax\) with \(A\) symmetric
- For contraction of order \(s + v\) and \(v + t\) tensors to produce an order \(s + t\) tensor, previously known approaches reduce cost by \(s!t!v!\)
- New algorithm reduces number of products by \(\omega!\) where \(\omega = s + t + v\), leads to same reduction in cost for partially-symmetric contractions

\[
C = AB + BA \Rightarrow c_{ij} = \sum_k [(a_{ij} + a_{ik} + a_{jk}) \cdot (b_{ij} + b_{ik} + b_{jk})] - \ldots
\]

\(^1\) E.S, J. Demmel, CMAM 2020
New contraction algorithm, *irreducible representation alignment* uses new reduced form to handle group symmetry (momentum conservation, spin, quantum numbers, etc.) without looping over blocks or sparsity\(^1\)

\(^1\)Y. Gao, P. Helms, G. Chan, and E.S., arXiv:2007.08056
Quantum Circuit Simulation with Tensor Networks

- A quantum circuit is a direct description of a tensor network\(^1\)

![Quantum Circuit Diagram]

- Why use HPC to (approximately) simulate quantum circuits?
 - enable development/testing/tuning of larger quantum circuits
 - understand approximability of different quantum algorithms
 - quantify sensitivity of algorithms to noise/error
 - potentially enable new hybrid quantum-classical algorithms

- Cyclops utilized to simulate 49-qubit circuits by IBM+LLNL team via direct contraction\(^2\) and by another team from via exact PEPS evolution/contraction\(^3\)

\(^1\) Markov and Shi, SIAM JC 2007

\(^2\) Pednault et al. arXiv:1710.05867

\(^3\) Guo et al. Phys Rev Letters, 2019
Consider application of a two-site operator on neighboring PEPS sites

Simple update (QR-SVD) algorithm:

1.
2.
3. SVD
4.
5.

We provide an efficient distributed implementation of QR-SVD

This operation is an instance of what we’ll refer to as einsumsvd and QR-SVD is one algorithm/implementation
Implicit Randomized einsumsvd

- The einsumsvd primitive will also enable effective algorithms for PEPS contraction

![Diagram](image)

- An efficient general implementation is to leverage randomized SVD / orthogonal iteration, which iteratively computes a low-rank SVD by a matrix–matrix product that can be done implicitly via tensor contractions
Exact contraction of PEPS is \#P-complete, so known methods have exponential cost in the number of sites.

PEPS contraction is needed to compute expectation values.

Boundary contraction is common for finite PEPS and can be simplified with einsumsvd.
We introduce a new library, Koala\(^1\), for high-performance simulation of quantum circuits and time evolution with PEPS\(^2\).

```python
from koala import peps, Observable
from tensorbackends.interface import ImplicitRandomizedSVD

# Create a 2-by-3 PEPS in distributed memory using CTF
qstate = peps.computational_zeros(nrow=2, ncol=3, backend='ctf')

# Construct operators and apply them to the quantum state
Y = qstate.backend.astensor([0, -1j, 1j, 0]).reshape(2, 2)
CX = qstate.backend.astensor([1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0])
CX = CX.reshape(2, 2, 2, 2)
qstate.apply_operator(Y, [1])
qstate.apply_operator(CX, [1, 4], update_option=peps.QRUpdate(rank=2))

# Construct an observable and calculate the expectation with IBMPS
observable = Observable.ZZ(3, 4) + 0.2 * Observable.X(1)
result = qstate.expectation(
    observable, use_cache=True,
    contract_option=peps.BMPS(ImplicitRandomizedSVD(rank=4)),
)
```

\(^1\)https://github.com/cyclops-community/koala

Koala achieves good parallel scalability for approximate gate application (evolution) and contraction

Approximation can be effective even for adversarially-designed circuits such as Google’s random quantum circuit model (figure on right)
ITE code achieves improvable accuracy with increased PEPS bond dimension, but approximation in PEPS contraction is not variational.

Variational quantum eigensolver (VQE), which represents a wavefunction using a parameterized circuit $U(\theta)$ and minimizes

$$\langle U(\theta) \mid H \mid U(\theta) \rangle,$$

also achieves improvable accuracy with higher PEPS bond dimension.
Automatic Differentiation for Tensor Computations

- Tensor network and tensor decomposition methods all typically based on applying Newton’s method on a sequence of subsets of variables

- Automatic differentiation (AD) in principle enables automatic generation of these methods

- However, existing AD tools such as Jax (used by TensorFlow) are designed for deep learning and are ineffective for more complex tensor computations
 - these focus purely on first order optimization via Jacobian-vector products
 - unable to propagate tensor algebra identities such as $(A \otimes B)^{-1} = A^{-1} \otimes B^{-1}$ to generate efficient code
AutoHOOT: Automatic High-Order Optimization for Tensors

- AutoHOOT\(^1\) provides a tensor-algebra centric AD engine
- Designed for einsum expressions and alternating minimization common in tensor decomposition and tensor network methods
- Python-level AD is coupled with optimization of contraction order and caching of intermediates
- Generates code for CPU/GPU/supercomputers using high-level back-end interface to tensor contractions

\[^1\]Linjian Ma, Jiayu Ye, and E.S. arXiv:2005.04540, 2020
Acknowledgements

- Laboratory for Parallel Numerical Algorithms (LPNA) at University of Illinois, lpna.cs.illinois.edu and collaborators
- Funding from NSF awards: #1839204 (RAISE-TAQS), #1931258 (CSSI), #1942995 (CAREER)
- Stampede2 resources at TACC via XSEDE

http://lpna.cs.illinois.edu
Cyclops Tensor Framework\(^1\) sparse/dense generalized tensor algebra

- Cyclops is a C++ library that distributes each tensor over MPI
- Used in chemistry (PySCF, QChem)\(^2\), quantum circuit simulation (IBM/LLNL)\(^3\), and graph analysis (betweenness centrality)\(^4\)
- Summations and contractions specified via Einstein notation
 \[E["aixbjy"] += X["aixbjy"] - U["abu"]*V["iju"]*W["xyu"] \]
- Best distributed contraction algorithm selected at runtime via models
- Support for Python (numpy.ndarray backend), OpenMP, and GPU
- Simple interface to core ScaLAPACK matrix factorization routines

1. https://github.com/cyclops-community/ctf
4. E.S., M. Besta, F. Vella, T. Hoefler, SC 2017
CCSD up to 55 (50) water molecules with cc-pVDZ
CCSDT up to 10 water molecules with cc-pVDZ

compares well to NWChem (up to 10x speed-ups for CCSDT)
Faster Parallel Algorithms for Cholesky and QR

Cholesky-QR2\(^1\) with 3D Cholesky gives a practical 3D QR algorithm\(^2\)

- Compute \(A = \hat{Q}R\) using Cholesky \(A^T A = R^T R\)
- Correct computed factorization by Cholesky-QR of \(\hat{Q}\)
- Attains full accuracy so long as \(\text{cond}(A) < 1/\sqrt{\epsilon_{\text{mach}}}\)

\(^1\) T. Fukaya, Y. Nakatsukasa, Y. Yanagisawa, Y. Yamamoto, 2014
\(^2\) E. Hutter, E.S., IPDPS 2019

Edward Hutter
New tool critter accelerates autotuning by conditional execution1

- Avoids execution of computation and communication kernels if their performance is predictable using past observations
- Leverages critical path profiling to determine needed model accuracy for each kernel

1E. Hutter, Edgar Solomonik, to appear on arXiv