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Representation of an algorithm

We cannot derive communication lower bounds for problems
directly, but only specific algorithms

We can represent an algorithm as a graph G = (V ,E ) where

V includes the input, intermediate, and output values used by
the algorithm
E represents the dependencies between pairs of values
e.g. to compute c = a · b, we have a, b, c ∈ V and
(a, c), (b, c) ∈ E

Reduction trees may be abstracted away as hypergraph edges
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Representation of a parallel schedule

asynchronous point-to-point
communication

progress must be guaranteed
via synchronization

synchronization can be done
collectively

cost given by critical (most
expensive) path

efficiently simulates BSP
algorithms

efficiently simulates LogP
algorithms when L ≈ o

Schedule for (a, b) =
∑

i (ai , bi )
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Cost model

We quantify interprocessor communication and synchronization
costs of a parallelization via a flat network model

γ - cost for a single computation (flop)

β - cost for a transfer of each byte between any pair of
processors

α - cost for a synchronization between any pair of processors

We measure the cost of a parallelization along the longest sequence
of dependent computations and data transfers (critical path)

F - critical path payload for computation cost

W - critical path payload for communication (bandwidth) cost

S - critical path payload for synchronization cost

SPAA 2014 Prague, CZ June 25, 2014 Tradeoffs between synchronization, communication, and computation 5/ 19



Cost model

We quantify interprocessor communication and synchronization
costs of a parallelization via a flat network model

γ - cost for a single computation (flop)

β - cost for a transfer of each byte between any pair of
processors

α - cost for a synchronization between any pair of processors

We measure the cost of a parallelization along the longest sequence
of dependent computations and data transfers (critical path)

F - critical path payload for computation cost

W - critical path payload for communication (bandwidth) cost

S - critical path payload for synchronization cost

SPAA 2014 Prague, CZ June 25, 2014 Tradeoffs between synchronization, communication, and computation 5/ 19



Solving a dense triangular system

For lower triangular dense matrix L and vector y of dimension n,
solve for x in

L · x = y.

Parallel algorithms for the triangular solve

wavefront algorithms [Heath 1988]

diamond DAG algorithms and lower bounds given by
[Papadimitriou and Ullman 1987] and [Tiskin 1998]

For p ∈ [1, n] processors, these algorithms have costs

computation: FTRSV = Θ(n2/p)

bandwidth: WTRSV = Θ(n)

synchronization: STRSV = Θ(p)

Tradeoff between computation (⇓ with p) and synchronization cost
(⇑ with p).
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Cholesky factorization

The Cholesky factorization of a symmetric positive definite matrix
A of dimension n is

A = L · LT ,

for a lower-triangular matrix L.

With p ∈ [1, n3/2] processors and a free parameter c ∈ [1, p1/3]
[Tiskin 2002] and [S., Demmel 2011] achieve the costs

computation: FCh = O(n3/p)

bandwidth: WCh = O(n2/
√
cp)

synchronization: SCh = O(
√
cp)

Tradeoffs:

synchronization ⇑ with p, bandwidth and computation costs ⇓
synchronization ⇑ with c , bandwidth cost ⇓

Algorithms with the same asymptotic costs also exist for LU with
pairwise and tournament pivoting as well as for QR factorization,
the symmetric eigenproblem, and the SVD
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Dependency bubble

To prove these tradeoffs are unavoidable, we analyze
interdependent computations (bubbles) in the dependency graphs
of these algorithms

Definition (Dependency bubble)

Given two vertices u, v in a directed acyclic graph G = (V ,E ), the
dependency bubble B(G , (u, v)) is the union of all paths in G from
u to v .
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Path-expander graph

Definition ((ε, σ)-path-expander)

Graph G = (V ,E ) is a (ε, σ)-path-expander if there exists a path
(u1, . . . un) ⊂ V , such that the dependency bubble B(G , (ui , ui+b))
for each i , b has size Θ(σ(b)) and a minimum cut of size Ω(ε(b)).

An example of a (b, b2)-path-expander
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Scheduling tradeoffs of path-expander graphs

Theorem (Path-expander communication lower bound)

Any parallel schedule of an algorithm with a (ε, σ)-path-expander
dependency graph about a path of length n and some b ∈ [1, n]
incurs computation (F), bandwidth (W), and latency (S) costs,

F = Ω (σ(b) · n/b) , W = Ω (ε(b) · n/b) , S = Ω (n/b) .

Corollary

If σ(b) = bd and ε(b) = bd−1, the above theorem yields,

F · Sd−1 = Ω
(
nd
)
, W · Sd−2 = Ω

(
nd−1

)
.
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Tradeoffs for triangular solve

Theorem

Any parallelization of any dependency graph GTRSV(n) incurs the
following computation (F ), bandwidth (W), and latency (S) costs,
for some b ∈ [1, n],

FTRSV = Ω (n · b) , WTRSV = Ω (n) , STRSV = Ω (n/b) ,

and furthermore, FTRSV · STRSV = Ω
(
n2
)
.

Proof.

Proof by application of path-based tradeoffs since GTRSV(n) is a
(b, b2)-path-expander dependency graph.

With p = n/b processors, we’ve now established,

FTRSV = Θ(n2/p), WTRSV = Θ(n), STRSV = Θ(p)
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Tradeoffs for Cholesky

Theorem

Any parallelization of any dependency graph GCh(n) incurs the
following computation (F ), bandwidth (W), and latency (S) costs,
for some b ∈ [1, n],

FCh = Ω
(
n · b2

)
, WCh = Ω (n · b) , SCh = Ω (n/b) ,

and furthermore, FCh · S2
Ch = Ω

(
n3
)
, WCh · SCh = Ω

(
n2
)
.

Proof.

Proof shows that GCh(n) is a (b2, b3)-path-expander about the
path corresponding to the calculation of the diagonal of L.

Therefore, with p ∈ [1, n3/2] processors and c ∈ [1, p1/3],

FCh = Θ(n3/p), WCh = Θ(n2/
√
cp), SCh = Θ(

√
cp)
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Krylov subspace methods

We consider the s-step Krylov subspace basis computation

x(l) = A · x(l−1),

for l ∈ {1, . . . , s} where the graph of the symmetric sparse matrix
A is a (2m + 1)d -point stencil.
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The standard algorithm (1D 2-pt stencil diagram)

Perform one matrix vector multiplication at a time, and
synchronize each time
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The matrix-powers kernel

Avoid synchronization by blocking across matrix-vector multiplies

In general for a (2m + 1)d -point stencil, s/b invocations of the
matrix-powers kernel compute an s-dimensional Krylov subspace
basis with cost

FKr = O
(
md ·bd · s

)
,WKr = O

(
md ·bd−1 · s

)
,SKr = O (s/b) .
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Communication lower bounds for Krylov subspace methods

Theorem

Any parallel execution of an s-step Krylov subspace basis
computation for a (2m + 1)d -point stencil on a regular mesh,
requires the following computation, bandwidth, and latency costs
for some b ∈ {1, . . . s},

FKr = Ω
(
md ·bd · s

)
,WKr = Ω

(
md ·bd−1 · s

)
, SKr = Ω (s/b) .

and furthermore,

FKr · Sd
Kr = Ω

(
md · sd+1

)
, WKr · Sd−1

Kr = Ω
(
md · sd

)
.

This lower bound is tight with respect to the matrix-powers kernel
when nd/p ≥ md · bd , where nd is the number of mesh points.
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Proof of tradeoffs for Krylov subspace methods

Proof.

Done by showing that the dependency graph of a s-step
(2m + 1)d -point stencil is a (mdbd ,mdbd+1)-path-expander.

sample graph for 2-point 1-dimensional stencil
(ignoring one direction of dependencies with respect to 3-point stencil)
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Illustration of import region of the matrix-powers kernel
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Summary and conclusion

Novel lower bounds on cost tradeoffs

Cholesky factorization
FCh · S2

Ch = Ω
(
n3
)

and WCh · SCh = Ω(n2)

s-step Krylov subspace methods on (2m + 1)d -pt stencils
FKr · Sd

Kr = Ω
(
md · sd+1

)
and WKr · Sd−1

Kr = Ω
(
md · sd

)

Extensions to graph algorithms

Floyd-Warshall is analogous to Cholesky factorization

Bellman-Ford is analogous to Krylov subspace methods

Future work is to analyze other (e.g. power-law) graphs

However, there exist alternative work-efficient algorithms for some
of these problems that do O(log(p)) synchronizations

Matrix inversion [Csanky 1976] (but numerically unstable)

APSP [Tiskin 2001]
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The all-pairs shortest-paths problem

Given a weighted graph G = (V ,E ) with n vertices and a
corresponding adjacency matrix A, we seek to find the shortest
paths between all pairs of vertices in G

seek the closure, A∗, of A over the tropical semiring

c = c ⊕ a⊗ b on the tropical semiring implies
c = min(c , a + b)
the identity matrix I on the tropical semiring is 0 on the
diagonal and ∞ everywhere else
A∗ = I⊕ A⊕ A2 ⊕ . . .⊕ An = (I⊕ A)n

on the sum-product ring A∗ = (I− A)−1

on the tropical semiring it is commonly computed by the
Floyd-Warshall algorithm with W · S = Θ(n2)

it is also possible to compute A∗ via log n steps of repeated
squaring (path doubling)
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Tiskin’s all-pairs shortest-paths algorithm

Tiskin gives a way to do path-doubling in F = O(n3/p) operations.
We can partition each Ak by path size (number of edges)

Ak = I⊕ Ak(1)⊕ Ak(2)⊕ . . .⊕ Ak(k)

where each Ak(l) contains the shortest paths of up to k ≥ l edges,
which have exactly l edges. We can see that

Al(l) ≤ Al+1(l) ≤ . . . ≤ An(l) = A∗(l),

in particular A∗(l) corresponds to a sparse subset of Al(l).
The algorithm works by picking l ∈ [k/2, k] and computing

(I⊕ A)3k/2 ≤ (I⊕ Ak(l))⊗ Ak ,

which finds all paths of size up to 3k/2 by taking all paths of size
exactly l ≥ k/2 followed by all paths of size up to k .
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