
Tradeoffs between synchronization,
communication, and computation in parallel linear

algebra computations

Edgar Solomonik, Erin Carson, Nicholas Knight,
and James Demmel

Department of EECS, UC Berkeley

Symposium of Parallel Algorithms and Architectures (SPAA) 2014
Prague, Czech Republic

June 25, 2014

SPAA 2014 Prague, CZ June 25, 2014 Tradeoffs between synchronization, communication, and computation 1/ 19



Summary

Talk overview

Introduction of our distributed-memory cost model

Motivation via dense linear algebra algorithms

Presentation of a dependency graph analysis technique

Tradeoffs/lower-bounds for dense linear algebra algorithms

Synchonization-communication tradeoffs for sparse methods

Topics omitted in talk but present in paper

Reduction from dependency graphs to hypergraphs

Lower bounds on balanced hypergraph cuts

Various other proof details and technicalities

SPAA 2014 Prague, CZ June 25, 2014 Tradeoffs between synchronization, communication, and computation 2/ 19



Summary

Talk overview

Introduction of our distributed-memory cost model

Motivation via dense linear algebra algorithms

Presentation of a dependency graph analysis technique

Tradeoffs/lower-bounds for dense linear algebra algorithms

Synchonization-communication tradeoffs for sparse methods

Topics omitted in talk but present in paper

Reduction from dependency graphs to hypergraphs

Lower bounds on balanced hypergraph cuts

Various other proof details and technicalities

SPAA 2014 Prague, CZ June 25, 2014 Tradeoffs between synchronization, communication, and computation 2/ 19



Summary

Talk overview

Introduction of our distributed-memory cost model

Motivation via dense linear algebra algorithms

Presentation of a dependency graph analysis technique

Tradeoffs/lower-bounds for dense linear algebra algorithms

Synchonization-communication tradeoffs for sparse methods

Topics omitted in talk but present in paper

Reduction from dependency graphs to hypergraphs

Lower bounds on balanced hypergraph cuts

Various other proof details and technicalities

SPAA 2014 Prague, CZ June 25, 2014 Tradeoffs between synchronization, communication, and computation 2/ 19



Summary

Talk overview

Introduction of our distributed-memory cost model

Motivation via dense linear algebra algorithms

Presentation of a dependency graph analysis technique

Tradeoffs/lower-bounds for dense linear algebra algorithms

Synchonization-communication tradeoffs for sparse methods

Topics omitted in talk but present in paper

Reduction from dependency graphs to hypergraphs

Lower bounds on balanced hypergraph cuts

Various other proof details and technicalities

SPAA 2014 Prague, CZ June 25, 2014 Tradeoffs between synchronization, communication, and computation 2/ 19



Summary

Talk overview

Introduction of our distributed-memory cost model

Motivation via dense linear algebra algorithms

Presentation of a dependency graph analysis technique

Tradeoffs/lower-bounds for dense linear algebra algorithms

Synchonization-communication tradeoffs for sparse methods

Topics omitted in talk but present in paper

Reduction from dependency graphs to hypergraphs

Lower bounds on balanced hypergraph cuts

Various other proof details and technicalities

SPAA 2014 Prague, CZ June 25, 2014 Tradeoffs between synchronization, communication, and computation 2/ 19



Summary

Talk overview

Introduction of our distributed-memory cost model

Motivation via dense linear algebra algorithms

Presentation of a dependency graph analysis technique

Tradeoffs/lower-bounds for dense linear algebra algorithms

Synchonization-communication tradeoffs for sparse methods

Topics omitted in talk but present in paper

Reduction from dependency graphs to hypergraphs

Lower bounds on balanced hypergraph cuts

Various other proof details and technicalities

SPAA 2014 Prague, CZ June 25, 2014 Tradeoffs between synchronization, communication, and computation 2/ 19



Representation of an algorithm

We cannot derive communication lower bounds for problems
directly, but only specific algorithms

We can represent an algorithm as a graph G = (V ,E ) where

V includes the input, intermediate, and output values used by
the algorithm
E represents the dependencies between pairs of values
e.g. to compute c = a · b, we have a, b, c ∈ V and
(a, c), (b, c) ∈ E

Reduction trees may be abstracted away as hypergraph edges

SPAA 2014 Prague, CZ June 25, 2014 Tradeoffs between synchronization, communication, and computation 3/ 19



Representation of an algorithm

We cannot derive communication lower bounds for problems
directly, but only specific algorithms

We can represent an algorithm as a graph G = (V ,E ) where

V includes the input, intermediate, and output values used by
the algorithm

E represents the dependencies between pairs of values
e.g. to compute c = a · b, we have a, b, c ∈ V and
(a, c), (b, c) ∈ E

Reduction trees may be abstracted away as hypergraph edges

SPAA 2014 Prague, CZ June 25, 2014 Tradeoffs between synchronization, communication, and computation 3/ 19



Representation of an algorithm

We cannot derive communication lower bounds for problems
directly, but only specific algorithms

We can represent an algorithm as a graph G = (V ,E ) where

V includes the input, intermediate, and output values used by
the algorithm
E represents the dependencies between pairs of values

e.g. to compute c = a · b, we have a, b, c ∈ V and
(a, c), (b, c) ∈ E

Reduction trees may be abstracted away as hypergraph edges

SPAA 2014 Prague, CZ June 25, 2014 Tradeoffs between synchronization, communication, and computation 3/ 19



Representation of an algorithm

We cannot derive communication lower bounds for problems
directly, but only specific algorithms

We can represent an algorithm as a graph G = (V ,E ) where

V includes the input, intermediate, and output values used by
the algorithm
E represents the dependencies between pairs of values
e.g. to compute c = a · b, we have a, b, c ∈ V and
(a, c), (b, c) ∈ E

Reduction trees may be abstracted away as hypergraph edges

SPAA 2014 Prague, CZ June 25, 2014 Tradeoffs between synchronization, communication, and computation 3/ 19



Representation of an algorithm

We cannot derive communication lower bounds for problems
directly, but only specific algorithms

We can represent an algorithm as a graph G = (V ,E ) where

V includes the input, intermediate, and output values used by
the algorithm
E represents the dependencies between pairs of values
e.g. to compute c = a · b, we have a, b, c ∈ V and
(a, c), (b, c) ∈ E

Reduction trees may be abstracted away as hypergraph edges

SPAA 2014 Prague, CZ June 25, 2014 Tradeoffs between synchronization, communication, and computation 3/ 19



Representation of a parallel schedule

asynchronous point-to-point
communication

progress must be guaranteed
via synchronization

synchronization can be done
collectively

cost given by critical (most
expensive) path

efficiently simulates BSP
algorithms

efficiently simulates LogP
algorithms when L ≈ o

Schedule for (a, b) =
∑

i (ai , bi )

SPAA 2014 Prague, CZ June 25, 2014 Tradeoffs between synchronization, communication, and computation 4/ 19



Representation of a parallel schedule

asynchronous point-to-point
communication

progress must be guaranteed
via synchronization

synchronization can be done
collectively

cost given by critical (most
expensive) path

efficiently simulates BSP
algorithms

efficiently simulates LogP
algorithms when L ≈ o

Schedule for (a, b) =
∑

i (ai , bi )

SPAA 2014 Prague, CZ June 25, 2014 Tradeoffs between synchronization, communication, and computation 4/ 19



Representation of a parallel schedule

asynchronous point-to-point
communication

progress must be guaranteed
via synchronization

synchronization can be done
collectively

cost given by critical (most
expensive) path

efficiently simulates BSP
algorithms

efficiently simulates LogP
algorithms when L ≈ o

Schedule for (a, b) =
∑

i (ai , bi )

SPAA 2014 Prague, CZ June 25, 2014 Tradeoffs between synchronization, communication, and computation 4/ 19



Representation of a parallel schedule

asynchronous point-to-point
communication

progress must be guaranteed
via synchronization

synchronization can be done
collectively

cost given by critical (most
expensive) path

efficiently simulates BSP
algorithms

efficiently simulates LogP
algorithms when L ≈ o

Schedule for (a, b) =
∑

i (ai , bi )

SPAA 2014 Prague, CZ June 25, 2014 Tradeoffs between synchronization, communication, and computation 4/ 19



Representation of a parallel schedule

asynchronous point-to-point
communication

progress must be guaranteed
via synchronization

synchronization can be done
collectively

cost given by critical (most
expensive) path

efficiently simulates BSP
algorithms

efficiently simulates LogP
algorithms when L ≈ o

Schedule for (a, b) =
∑

i (ai , bi )

SPAA 2014 Prague, CZ June 25, 2014 Tradeoffs between synchronization, communication, and computation 4/ 19



Representation of a parallel schedule

asynchronous point-to-point
communication

progress must be guaranteed
via synchronization

synchronization can be done
collectively

cost given by critical (most
expensive) path

efficiently simulates BSP
algorithms

efficiently simulates LogP
algorithms when L ≈ o

Schedule for (a, b) =
∑

i (ai , bi )

SPAA 2014 Prague, CZ June 25, 2014 Tradeoffs between synchronization, communication, and computation 4/ 19



Cost model

We quantify interprocessor communication and synchronization
costs of a parallelization via a flat network model

γ - cost for a single computation (flop)

β - cost for a transfer of each byte between any pair of
processors

α - cost for a synchronization between any pair of processors

We measure the cost of a parallelization along the longest sequence
of dependent computations and data transfers (critical path)

F - critical path payload for computation cost

W - critical path payload for communication (bandwidth) cost

S - critical path payload for synchronization cost

SPAA 2014 Prague, CZ June 25, 2014 Tradeoffs between synchronization, communication, and computation 5/ 19



Cost model

We quantify interprocessor communication and synchronization
costs of a parallelization via a flat network model

γ - cost for a single computation (flop)

β - cost for a transfer of each byte between any pair of
processors

α - cost for a synchronization between any pair of processors

We measure the cost of a parallelization along the longest sequence
of dependent computations and data transfers (critical path)

F - critical path payload for computation cost

W - critical path payload for communication (bandwidth) cost

S - critical path payload for synchronization cost

SPAA 2014 Prague, CZ June 25, 2014 Tradeoffs between synchronization, communication, and computation 5/ 19



Solving a dense triangular system

For lower triangular dense matrix L and vector y of dimension n,
solve for x in

L · x = y.

Parallel algorithms for the triangular solve

wavefront algorithms [Heath 1988]

diamond DAG algorithms and lower bounds given by
[Papadimitriou and Ullman 1987] and [Tiskin 1998]

For p ∈ [1, n] processors, these algorithms have costs

computation: FTRSV = Θ(n2/p)

bandwidth: WTRSV = Θ(n)

synchronization: STRSV = Θ(p)

Tradeoff between computation (⇓ with p) and synchronization cost
(⇑ with p).

SPAA 2014 Prague, CZ June 25, 2014 Tradeoffs between synchronization, communication, and computation 6/ 19



Solving a dense triangular system

For lower triangular dense matrix L and vector y of dimension n,
solve for x in

L · x = y.

Parallel algorithms for the triangular solve

wavefront algorithms [Heath 1988]

diamond DAG algorithms and lower bounds given by
[Papadimitriou and Ullman 1987] and [Tiskin 1998]

For p ∈ [1, n] processors, these algorithms have costs

computation: FTRSV = Θ(n2/p)

bandwidth: WTRSV = Θ(n)

synchronization: STRSV = Θ(p)

Tradeoff between computation (⇓ with p) and synchronization cost
(⇑ with p).

SPAA 2014 Prague, CZ June 25, 2014 Tradeoffs between synchronization, communication, and computation 6/ 19



Solving a dense triangular system

For lower triangular dense matrix L and vector y of dimension n,
solve for x in

L · x = y.

Parallel algorithms for the triangular solve

wavefront algorithms [Heath 1988]

diamond DAG algorithms and lower bounds given by
[Papadimitriou and Ullman 1987] and [Tiskin 1998]

For p ∈ [1, n] processors, these algorithms have costs

computation: FTRSV = Θ(n2/p)

bandwidth: WTRSV = Θ(n)

synchronization: STRSV = Θ(p)

Tradeoff between computation (⇓ with p) and synchronization cost
(⇑ with p).

SPAA 2014 Prague, CZ June 25, 2014 Tradeoffs between synchronization, communication, and computation 6/ 19



Cholesky factorization

The Cholesky factorization of a symmetric positive definite matrix
A of dimension n is

A = L · LT ,

for a lower-triangular matrix L.

With p ∈ [1, n3/2] processors and a free parameter c ∈ [1, p1/3]
[Tiskin 2002] and [S., Demmel 2011] achieve the costs

computation: FCh = O(n3/p)

bandwidth: WCh = O(n2/
√
cp)

synchronization: SCh = O(
√
cp)

Tradeoffs:

synchronization ⇑ with p, bandwidth and computation costs ⇓
synchronization ⇑ with c , bandwidth cost ⇓

Algorithms with the same asymptotic costs also exist for LU with
pairwise and tournament pivoting as well as for QR factorization,
the symmetric eigenproblem, and the SVD

SPAA 2014 Prague, CZ June 25, 2014 Tradeoffs between synchronization, communication, and computation 7/ 19



Cholesky factorization

The Cholesky factorization of a symmetric positive definite matrix
A of dimension n is

A = L · LT ,

for a lower-triangular matrix L.
With p ∈ [1, n3/2] processors and a free parameter c ∈ [1, p1/3]
[Tiskin 2002] and [S., Demmel 2011] achieve the costs

computation: FCh = O(n3/p)

bandwidth: WCh = O(n2/
√
cp)

synchronization: SCh = O(
√
cp)

Tradeoffs:

synchronization ⇑ with p, bandwidth and computation costs ⇓
synchronization ⇑ with c , bandwidth cost ⇓

Algorithms with the same asymptotic costs also exist for LU with
pairwise and tournament pivoting as well as for QR factorization,
the symmetric eigenproblem, and the SVD

SPAA 2014 Prague, CZ June 25, 2014 Tradeoffs between synchronization, communication, and computation 7/ 19



Cholesky factorization

The Cholesky factorization of a symmetric positive definite matrix
A of dimension n is

A = L · LT ,

for a lower-triangular matrix L.
With p ∈ [1, n3/2] processors and a free parameter c ∈ [1, p1/3]
[Tiskin 2002] and [S., Demmel 2011] achieve the costs

computation: FCh = O(n3/p)

bandwidth: WCh = O(n2/
√
cp)

synchronization: SCh = O(
√
cp)

Tradeoffs:

synchronization ⇑ with p, bandwidth and computation costs ⇓
synchronization ⇑ with c , bandwidth cost ⇓

Algorithms with the same asymptotic costs also exist for LU with
pairwise and tournament pivoting as well as for QR factorization,
the symmetric eigenproblem, and the SVD

SPAA 2014 Prague, CZ June 25, 2014 Tradeoffs between synchronization, communication, and computation 7/ 19



Dependency bubble

To prove these tradeoffs are unavoidable, we analyze
interdependent computations (bubbles) in the dependency graphs
of these algorithms

Definition (Dependency bubble)

Given two vertices u, v in a directed acyclic graph G = (V ,E ), the
dependency bubble B(G , (u, v)) is the union of all paths in G from
u to v .

SPAA 2014 Prague, CZ June 25, 2014 Tradeoffs between synchronization, communication, and computation 8/ 19



Path-expander graph

Definition ((ε, σ)-path-expander)

Graph G = (V ,E ) is a (ε, σ)-path-expander if there exists a path
(u1, . . . un) ⊂ V , such that the dependency bubble B(G , (ui , ui+b))
for each i , b has size Θ(σ(b)) and a minimum cut of size Ω(ε(b)).

An example of a (b, b2)-path-expander

SPAA 2014 Prague, CZ June 25, 2014 Tradeoffs between synchronization, communication, and computation 9/ 19



Scheduling tradeoffs of path-expander graphs

Theorem (Path-expander communication lower bound)

Any parallel schedule of an algorithm with a (ε, σ)-path-expander
dependency graph about a path of length n and some b ∈ [1, n]
incurs computation (F), bandwidth (W), and latency (S) costs,

F = Ω (σ(b) · n/b) , W = Ω (ε(b) · n/b) , S = Ω (n/b) .

Corollary

If σ(b) = bd and ε(b) = bd−1, the above theorem yields,

F · Sd−1 = Ω
(
nd
)
, W · Sd−2 = Ω

(
nd−1

)
.

SPAA 2014 Prague, CZ June 25, 2014 Tradeoffs between synchronization, communication, and computation 10/ 19



Tradeoffs for triangular solve

Theorem

Any parallelization of any dependency graph GTRSV(n) incurs the
following computation (F ), bandwidth (W), and latency (S) costs,
for some b ∈ [1, n],

FTRSV = Ω (n · b) , WTRSV = Ω (n) , STRSV = Ω (n/b) ,

and furthermore, FTRSV · STRSV = Ω
(
n2
)
.

Proof.

Proof by application of path-based tradeoffs since GTRSV(n) is a
(b, b2)-path-expander dependency graph.

With p = n/b processors, we’ve now established,

FTRSV = Θ(n2/p), WTRSV = Θ(n), STRSV = Θ(p)

SPAA 2014 Prague, CZ June 25, 2014 Tradeoffs between synchronization, communication, and computation 11/ 19



Tradeoffs for Cholesky

Theorem

Any parallelization of any dependency graph GCh(n) incurs the
following computation (F ), bandwidth (W), and latency (S) costs,
for some b ∈ [1, n],

FCh = Ω
(
n · b2

)
, WCh = Ω (n · b) , SCh = Ω (n/b) ,

and furthermore, FCh · S2
Ch = Ω

(
n3
)
, WCh · SCh = Ω

(
n2
)
.

Proof.

Proof shows that GCh(n) is a (b2, b3)-path-expander about the
path corresponding to the calculation of the diagonal of L.

Therefore, with p ∈ [1, n3/2] processors and c ∈ [1, p1/3],

FCh = Θ(n3/p), WCh = Θ(n2/
√
cp), SCh = Θ(

√
cp)

SPAA 2014 Prague, CZ June 25, 2014 Tradeoffs between synchronization, communication, and computation 12/ 19



Krylov subspace methods

We consider the s-step Krylov subspace basis computation

x(l) = A · x(l−1),

for l ∈ {1, . . . , s} where the graph of the symmetric sparse matrix
A is a (2m + 1)d -point stencil.

SPAA 2014 Prague, CZ June 25, 2014 Tradeoffs between synchronization, communication, and computation 13/ 19



The standard algorithm (1D 2-pt stencil diagram)

Perform one matrix vector multiplication at a time, and
synchronize each time

SPAA 2014 Prague, CZ June 25, 2014 Tradeoffs between synchronization, communication, and computation 14/ 19



The matrix-powers kernel

Avoid synchronization by blocking across matrix-vector multiplies

In general for a (2m + 1)d -point stencil, s/b invocations of the
matrix-powers kernel compute an s-dimensional Krylov subspace
basis with cost

FKr = O
(
md ·bd · s

)
,WKr = O

(
md ·bd−1 · s

)
,SKr = O (s/b) .

SPAA 2014 Prague, CZ June 25, 2014 Tradeoffs between synchronization, communication, and computation 15/ 19



The matrix-powers kernel

Avoid synchronization by blocking across matrix-vector multiplies

In general for a (2m + 1)d -point stencil, s/b invocations of the
matrix-powers kernel compute an s-dimensional Krylov subspace
basis with cost

FKr = O
(
md ·bd · s

)
,WKr = O

(
md ·bd−1 · s

)
, SKr = O (s/b) .

SPAA 2014 Prague, CZ June 25, 2014 Tradeoffs between synchronization, communication, and computation 15/ 19



Communication lower bounds for Krylov subspace methods

Theorem

Any parallel execution of an s-step Krylov subspace basis
computation for a (2m + 1)d -point stencil on a regular mesh,
requires the following computation, bandwidth, and latency costs
for some b ∈ {1, . . . s},

FKr = Ω
(
md ·bd · s

)
,WKr = Ω

(
md ·bd−1 · s

)
, SKr = Ω (s/b) .

and furthermore,

FKr · Sd
Kr = Ω

(
md · sd+1

)
, WKr · Sd−1

Kr = Ω
(
md · sd

)
.

This lower bound is tight with respect to the matrix-powers kernel
when nd/p ≥ md · bd , where nd is the number of mesh points.

SPAA 2014 Prague, CZ June 25, 2014 Tradeoffs between synchronization, communication, and computation 16/ 19



Proof of tradeoffs for Krylov subspace methods

Proof.

Done by showing that the dependency graph of a s-step
(2m + 1)d -point stencil is a (mdbd ,mdbd+1)-path-expander.

sample graph for 2-point 1-dimensional stencil
(ignoring one direction of dependencies with respect to 3-point stencil)

SPAA 2014 Prague, CZ June 25, 2014 Tradeoffs between synchronization, communication, and computation 17/ 19



Illustration of import region of the matrix-powers kernel

SPAA 2014 Prague, CZ June 25, 2014 Tradeoffs between synchronization, communication, and computation 18/ 19



Summary and conclusion

Novel lower bounds on cost tradeoffs

Cholesky factorization
FCh · S2

Ch = Ω
(
n3
)

and WCh · SCh = Ω(n2)

s-step Krylov subspace methods on (2m + 1)d -pt stencils
FKr · Sd

Kr = Ω
(
md · sd+1

)
and WKr · Sd−1

Kr = Ω
(
md · sd

)

Extensions to graph algorithms

Floyd-Warshall is analogous to Cholesky factorization

Bellman-Ford is analogous to Krylov subspace methods

Future work is to analyze other (e.g. power-law) graphs

However, there exist alternative work-efficient algorithms for some
of these problems that do O(log(p)) synchronizations

Matrix inversion [Csanky 1976] (but numerically unstable)

APSP [Tiskin 2001]

SPAA 2014 Prague, CZ June 25, 2014 Tradeoffs between synchronization, communication, and computation 19/ 19



Summary and conclusion

Novel lower bounds on cost tradeoffs

Cholesky factorization
FCh · S2

Ch = Ω
(
n3
)

and WCh · SCh = Ω(n2)

s-step Krylov subspace methods on (2m + 1)d -pt stencils
FKr · Sd

Kr = Ω
(
md · sd+1

)
and WKr · Sd−1

Kr = Ω
(
md · sd

)
Extensions to graph algorithms

Floyd-Warshall is analogous to Cholesky factorization

Bellman-Ford is analogous to Krylov subspace methods

Future work is to analyze other (e.g. power-law) graphs

However, there exist alternative work-efficient algorithms for some
of these problems that do O(log(p)) synchronizations

Matrix inversion [Csanky 1976] (but numerically unstable)

APSP [Tiskin 2001]

SPAA 2014 Prague, CZ June 25, 2014 Tradeoffs between synchronization, communication, and computation 19/ 19



Summary and conclusion

Novel lower bounds on cost tradeoffs

Cholesky factorization
FCh · S2

Ch = Ω
(
n3
)

and WCh · SCh = Ω(n2)

s-step Krylov subspace methods on (2m + 1)d -pt stencils
FKr · Sd

Kr = Ω
(
md · sd+1

)
and WKr · Sd−1

Kr = Ω
(
md · sd

)
Extensions to graph algorithms

Floyd-Warshall is analogous to Cholesky factorization

Bellman-Ford is analogous to Krylov subspace methods

Future work is to analyze other (e.g. power-law) graphs

However, there exist alternative work-efficient algorithms for some
of these problems that do O(log(p)) synchronizations

Matrix inversion [Csanky 1976] (but numerically unstable)

APSP [Tiskin 2001]

SPAA 2014 Prague, CZ June 25, 2014 Tradeoffs between synchronization, communication, and computation 19/ 19



The all-pairs shortest-paths problem

Given a weighted graph G = (V ,E ) with n vertices and a
corresponding adjacency matrix A, we seek to find the shortest
paths between all pairs of vertices in G

seek the closure, A∗, of A over the tropical semiring

c = c ⊕ a⊗ b on the tropical semiring implies
c = min(c , a + b)
the identity matrix I on the tropical semiring is 0 on the
diagonal and ∞ everywhere else
A∗ = I⊕ A⊕ A2 ⊕ . . .⊕ An = (I⊕ A)n

on the sum-product ring A∗ = (I− A)−1

on the tropical semiring it is commonly computed by the
Floyd-Warshall algorithm with W · S = Θ(n2)

it is also possible to compute A∗ via log n steps of repeated
squaring (path doubling)

SPAA 2014 Prague, CZ June 25, 2014 Tradeoffs between synchronization, communication, and computation 20/ 19



Tiskin’s all-pairs shortest-paths algorithm

Tiskin gives a way to do path-doubling in F = O(n3/p) operations.
We can partition each Ak by path size (number of edges)

Ak = I⊕ Ak(1)⊕ Ak(2)⊕ . . .⊕ Ak(k)

where each Ak(l) contains the shortest paths of up to k ≥ l edges,
which have exactly l edges. We can see that

Al(l) ≤ Al+1(l) ≤ . . . ≤ An(l) = A∗(l),

in particular A∗(l) corresponds to a sparse subset of Al(l).
The algorithm works by picking l ∈ [k/2, k] and computing

(I⊕ A)3k/2 ≤ (I⊕ Ak(l))⊗ Ak ,

which finds all paths of size up to 3k/2 by taking all paths of size
exactly l ≥ k/2 followed by all paths of size up to k .

SPAA 2014 Prague, CZ June 25, 2014 Tradeoffs between synchronization, communication, and computation 21/ 19


	Appendix

