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Talk Overview

Linjian Ma and ES. Fast and accurate randomized algorithms for low-rank
tensor decompositions, NeurIPS 2021, arXiv:2104.01101.

problem: efficiently sketch the (standard) HOOI algorithm for low-rank
Tucker decomposition of sparse tensors

results: algorithms based on randomized range finding, leverage score
sampling, and TensorSketch; error bounds and experimental analysis

Linjian Ma and ES. Cost-efficient Gaussian tensor network embeddings for
tensor-structured inputs, NeurIPS 2022, arXiv:2205.13163.

problem: if X is represented by a tensor network, choose a tensor
network sketch S to minimize cost of sketching (computing SX)

results: sufficient condition for JL lemma for any tensor network graph,
cost-optimal tensor network sketch under this condition

https://linjianma.github.io/
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Tensor Diagrams

Tensor diagram: each tensor represented by a
vertex, joining edges means contraction

Scalar Vector Matrix Order 3
tensor

Examples:
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Tensor Decompositions and Tensor Networks

Tensor network: a set of tensors contracted according to a (hyper)graph

Tensor decomposition: represent a (high-dimensional) tensor with a tensor
network

Kronecker product canonical polyadic (CP) Tucker

matrix product state
(MPS)

hierarchical Tucker tensor ring projected entangled pair states
(PEPS)

Applications: addressing curse of dimensionality, useful for many tasks in
signal processing, machine learning, quantum simulation
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Alternating Optimization
CP decomposition

TTT ≈
R∑

r=1

ar ◦ br ◦ cr

TTT ∈ Rn×n×n,
A = [a1, . . . , aR] ∈ Rn×R

Tucker decomposition

TTT ≈ XXX ×1 A×2 B ×3 C

TTT ∈ Rn×n×n, XXX ∈ RR×R×R

A,B,C ∈ Rn×R orthogonal

CP-Alternating least squares (CP-ALS)

min
A

∥∥∥(C ⊙B)AT − TT
(1)

∥∥∥
F

Higher order orthogonal iteration (HOOI)

min
A,XXX

∥∥∥(C ⊗B)XT
(1)A

T − TT
(1)

∥∥∥
F

HOOI interpretation: solve a rank-constrained linear least squares problem

min
X,rank(X)=R

∥QX −B∥F

Amenable to sketching: rank-constraint :(, Q = C ⊗B is orthogonal :)
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Accurately Sketching an Orthogonal Matrix

Seek random matrix S ∈ Rm×n so that solution to sketched problem

min
X,rank(X)=R

∥SQX − SB∥F

X̂ = (SQ)+SB

satisfies ∥QX̂ −B∥F ≤ (1 + ϵ)∥QX∗ −B∥F relative to the optimal
X∗ with probability 1− δ

Using known error bounds on sketching of matrix products, we show

leverage score sampling satisfies above with

m = Õ(RN−1/(ϵ2δ))

TensorSketch1 satisfies this with

m = O((3R)N−1(RN−1 + 1/ϵ2)/δ)

1
O. Malik and S. Becker, 2018
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Efficient Sketching for HOOI

Leverage score sampling

Since Q = C ⊗B, leverage scores satisfy

l(i−1)n+j(Q) = ∥q(i−1)n+j∥22 = ∥ci∥22∥bj∥22 = li(C)lj(B)

hence we can take products of independent samples of rows of A and
B to obtain the leverage-score based distribution of columns of Q

Since A, B, C are changing, we must sample the tensor for each
optimization step

TensorSketch reduces the amount of necessary sampling to 1 round
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Sketched HOOI algorithm

Input: Input order N tensor TTT , Tucker rank R, number of sweeps Imax

Output:
{
XXX , A(1), . . . , A(N)

}
For n ∈ {2, ..., N} do

A(n) ← Init-RRF(T(n), R, ϵ) // Randomized range finder with com-
posite sketch (Gaussian + CountSketch)
Endfor
For i ∈ {1, ..., Imax} do
For n ∈ {1, ..., N} do
Build the sketching matrix S
Y ← ST(n) // Can be done outside i loop for TensorSketch

Z ← S(n)(A(1) ⊗ · · · ⊗A(n−1) ⊗A(n+1) ⊗ · · · ⊗A(N))
XT

(n), A
(n) ← Solve-truncate(Z, Y,R)

Endfor
Endfor
Return

{
XXX , A(1), . . . , A(N)

}
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Cost comparison for order 3 tensor

ALS + TensorSketch (Malik and Becker, NeurIPS 2018)

Solving for each factor matrix or the core tensor at a time

minA
1
2

∥∥∥(C ⊗B)XT
(1)A

T − TT
(1)

∥∥∥2
F
or

minXXX
1
2 ∥(C ⊗B ⊗A)vec(X)− vec(T )∥2F

Algorithm for Tucker LS subproblem cost Sketch size (k)
HOOI Ω(nnz(TTT )R) /

ALS + TensorSketch Õ(knR+ kR3) O((R2/δ) · (R2 + 1/ϵ))
HOOI + TensorSketch O(knR+ kR4) O((R2/δ) · (R2 + 1/ϵ2))
HOOI + leverage scores O(knR+ kR4) O(R2/(ϵ2δ))
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Experiments: Tensors with Spiked Signal
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(a) 5 sweeps, sample size
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(b) 5 sweeps, sample size
KR2
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(c) sample size 16R2

TTT = TTT 0 +
∑5

i=1 λiai ◦ bi ◦ ci, each ai, bi, ci has unit 2-norm, λi = 3∥TTT 0∥F

i1.5

Leading low-rank components obey the power-law distribution

Tensor size 200× 200× 200, R = 5

TS-ref: (Malik and Becker, NeurIPS 2018)
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Experiments: CP decomposition
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TTT =
∑Rtrue

i=1 ai ◦ bi ◦ ci, Rtrue/R = 1.2

Tensor size 2000× 2000× 2000, R = 10, sample size 16R2

Lev CP: leverage score sampling for CP-ALS (Larsen and Kolda,
arXiv:2006.16438)

Tucker+CP: Run Tucker HOOI first, then run CP-ALS on the Tucker core

Run Tucker HOOI with 5 sweeps, CP-ALS with 25 sweeps
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Sketching General Tensor Networks

Problem: Given a tensor network input data, x, find
a Gaussian tensor network embedding, S, such that
the embedding is (ϵ, δ)-accurate and

The number of rows of S (sketch size m) is low

Asymptotic cost to compute Sx is minimized

An (oblivious) embedding S ∈ Rm×s is (ϵ, δ)-accurate if1

Pr

[∣∣∣∣∥Sx∥2 − ∥x∥2∥x∥2

∣∣∣∣ > ϵ

]
≤ δ for any x

1Woodruff, Sketching as a tool for numerical linear algebra, 2014
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Sketching Tensor Network Data

Previous work:

Kronecker product embedding1: inefficient in computational cost

Tree embedding (e.g. MPS)2: efficient for specific data (Kronecker
product, MPS), but efficiency unclear for general tensor network data

Assumptions throughout our analysis:

Classical O(n3) matmul cost

Consider embeddings defined on graphs
with no hyperedges

Each dimension to be sketched

has a size lower bounded by the
sketch size
is only adjacent to one data tensor

1Ahle et al, Oblivious sketching of high-degree polynomial kernels, SODA 2020
2Rakhshan and Rabusseau, Tensorized random projections, AISTATS 2020
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Sufficient condition for (ϵ, δ)-accurate embedding

The embedding G = (V,E,w) is accurate if there exists a linear ordering
of V such that in its induced DAG, the weighted sum of out-going edges
adjacent to each v ∈ V is Ω(m), where m = N log(1/δ)/ϵ2

Proof of accuracy leverages two key prior results1

1 If S is (ϵ, δ)-accurate, so is I ⊗ S ⊗ I

2 If S1, . . . , SN are (O(ϵ/
√
N), δ)-accurate, S1 · · ·SN is (ϵ, δ)-accurate

1Ahle et al, Oblivious sketching of high-degree polynomial kernels, SODA 2020
LPNA Sketching for Tensor Networks March 3rd, 2023 14 / 18



Efficient General Sketching
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Tensor network sketch contains

1 Kronecker product
embedding

2 binary tree of small tensor
network gadgets

Each gadget sketches product of
two tensors

chosen to minimize cost
depending on connectivity

may or may not be a tree

Can reduce cost by up to O(
√
m)

relative to binary tree

near-optimal under assumptions
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Applications of Tensor Network Sketching

If input data is Khatri-Rao product or tensor product

new gadgets reduce cost by O(
√
m) relative to Gaussian binary tree

embedding

this allows acceleration of sketching for CP decomposition

tree-like sketch structure also allows intermediate reuse during
optimization (dimension trees)

When data is an MPS (tensor train)

plain tree sketch is efficient (sketch can be binary tree or MPS-like)

shows optimality (subject to our sufficient condition) of prior work1

1Al Daas, Hussam, et al. Randomized algorithms for rounding in the tensor-train
format, SISC 2023.
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Summary and Conclusions

Sketching for Tucker decomposition

Sketching HOOI gives accurate decomposition with enough sketch size

TensorSketch permits 1-pass (streaming) Tucker and CP

High polynomial scaling in rank; for CP addressable by indirect leverage
score sampling1

Gaussian tensor network sketching

achieves linear cost relative to number of input tensors

limited analysis to Gaussian tensors, classical matrix multiplication cost

not considering hyperedges in sketch, e.g., Khatri-Rao product in
TensorSketch

1Bharadwaj, Vivek, et al. Fast exact leverage score sampling from Khatri-Rao
products with applications to tensor decomposition, 2023. arXiv:2301.12584
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