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Electronic Structure Calculation via Coupled Cluster

Coupled Cluster (CC) is a computational method for solving the
Schrodinger equation,

H|Ψ〉 = E |Ψ〉,

In CC, the approximate wave-function is

|Ψ〉 = eT̂ |Φ〉

where |Φ〉 is the Slater determinant. The T̂ operator in CC has the
form

T̂ = T̂1 + T̂2 + T̂3 . . .

where Tn is a nth rank (dimension) tensor representing nth level
electron excitations.
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Coupled Cluster excitation level

Computing Tn involves iteratively solving a set of non-linear
equations of tensors up to dimension n. CCSD (n = 4) accounts
for all single (S) and double (D) electron excitations. A sample
contraction computed in CCSD is

C c<d
a<b =

∑
ij

Ai<j
a<b · B

c<d
i<j

It is of interest to compute CCSDT (triples) and CCSDTQ
(quadruples), which operate on tensors up to dimension 6 and 8,
respectively.
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Tensor contractions

Coupled Cluster motivates tensor contraction algorithms which

I exploit symmetry in tensors

I efficiently support contractions among tensors of diverse
dimension and shape

I are suitable for long and repeated contraction sequences

Tensor symmetry inherent to physics is computationally important

I d-dimensional symmetry requires a factor of d! less
memory

I exploiting symmetry can also lower the arithmetic cost
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Tensor contraction design hierarchy

1. define sequence of contractions to be computed
I done by Tensor Contraction Engine (TCE) inside NWChem

2. decompose symmetric contractions into triangular
contractions

I done by TCE inside NWChem

3. perform triangular tensor contractions
I done with support of Global Arrays in NWChem
I function of Cyclops Tensor Framework
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Tensor symmetry
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Blocked vs block-cyclic vs cyclic decompositions

Blocked layout Block-cyclic layout Cyclic layout

Red denotes padding / load imbalanceGreen denotes fill (unique values)
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Cyclops Tensor Framework (CTF)

Big idea:

I decompose tensors cyclically among processors

I pick cyclic phase to preserve partial/full symmetry
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3D tensor contraction
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3D tensor cyclic decomposition
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3D tensor mapping
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A cyclic layout is still challenging

I In order to retain partial symmetry, all symmetric dimensions
of a tensor must be mapped with the same cyclic phase

I The contracted dimensions of A and B must be mapped with
the same phase

I And yet the virtual mapping, needs to be mapped to a
physical topology, which can be any shape
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Virtual processor grid dimensions

I Our virtual cyclic topology is somewhat restrictive and the
physical topology is very restricted

I Virtual processor grid dimensions serve as a new level of
indirection

I If a tensor dimension must have a certain cyclic phase, adjust
physical mapping by creating a virtual processor dimension

I Allows physical processor grid to be ’stretchable’
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Virtual processor grid construction

Matrix multiply on 2x3 processor grid. Red lines represent
virtualized part of processor grid. Elements assigned to blocks by

cyclic phase.

X =

A
B

C
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Cyclops Tensor Framework (CTF)

Input:

I Tensors (dimension, edge lengths, symmetries)

I Tensor data (written by global index)

I Indexed operation (contraction, summation, scale)

I Sequential kernel

Contraction algorithm:

1. Search for best tensor mapping satisfying operational
constraints

2. Redistribute tensors accordingly

3. Run distributed contraction using sequential kernel

Output:

I Read tensor data by global index

Edgar Solomonik Cyclops Tensor Framework 16/ 22



Introduction
Parallel tensor contractions

Preliminary performance
Conclusion

CTF status

General framework

I supports tensors with any dimension, symmetry, or shape

I performs any 1,2,3 tensor operation given sequential kernel

I maps onto a torus network of any dimension and shape

Development status

I mostly functional but not fully tested

I lacking good symmetric sequential contraction kernels

I performance for ’DGEMM’ contractions, e.g.

C c<d
a<b =

∑
ij

Ai<j
a<b · B

c<d
i<j
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Preliminary performance results on Blue Gene/P
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Benefit from using symmetry (preliminary)

Memory savings (CCSD 4x), (CCSDT 36x), (CCSDTQ 576x)
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Performance target: 2.5D algorithms
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Ongoing and future work

Testing and verification

I combinatorial explosion of symmetries and processor grids
with dimension

I robust verification of low-dimensional contractions

I testing of contractions specific to Coupled Cluster

Performance optimizations

I memory-aware computing: 2.5D algorithms

I better performance models and mapping heuristics

I tuning on BG/Q architecture

New features

I efficient sequential symmetric contraction kernels

I tensor sparsity
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2D matrix multiplication
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2.5D matrix multiplication
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Performance of multicast (BG/P vs Cray)
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Preliminary performance results on Hopper (Cray XE6)
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