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CP Tensor Decomposition Algorithms

@ Tensor of order N has N modes and dimensions s X --- X s

@ CP and Tucker tensor decompositions®
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o Alternating least squares (ALS) is most widely used method

o Optimize one factor matrix at a time, yielding quadratic optimization
subproblems

e Achieves monotonic linear convergence

@ Gauss-Newton method is an emerging alternative

o Optimizes all factor matrices at once by quadratic approximation of
nonlinear objective function

e Non-monotonic, but can achieve quadratic convergence

1Kolda and Bader, SIAM Review 2009
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Pairwise Perturbation Algorithm
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New algorithm: pairwise perturbation (PP)! approximates ALS

@ based on perturbative expansion of ALS update to
approximate MTTKRP

@ approximation is accurate when ALS updates stagnate o

e rank R < s~ CP decomposition:

-

o ALS sweep cost O(sV R) = O(s?R), up to 33x speed-up  Linjian Ma

1Linjian Ma, E.S. arXiv:1811.10573
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Parallel Pairwise Perturbation Algorithm
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Effective parallelization by decomposing MTTKRP into local MTTKRPs !

U = MTTKRP(T,V, W) = U, = Y MTTKRP(T 1, V;, W;,)

gk

e processor (i, j, k) owns Tk, V;, and Wy,

@ pairwise perturbation can be used to approximate local MTTKRPs
@ multi-sweep dimension-tree (MSDT) amortizes terms across sweeps

1Linjian Ma, E.S. IPDPS 2021
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Regularization and Parallelism for Gauss-Newton

Random low rank tensor with s=4

3 H20 system with R=200
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New regularization scheme! for Gauss-Newton CP with implicit CG?

@ Oscillates regularization parameter geometrically
between lower and upper thresholds

@ Achieves higher convergence likelihood

@ More accurate than ALS in applications

o Faster than ALS sequentially and in parallel Navjot Singh

1Navjot Singh, Linjian Ma, Hongru Yang, and E.S. arXiv:1910.12331
P. Tichavsky, A. H. Phan, and A. Cichocki., 2013
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Tensor Completion

Cyclops TTTP with m=1B, R=60 on 4096 Cores of Stampede2 Random tensor w/ s=100 R=20 frac= 0.3
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@ Tensor times tensor product (TTTP) enables CP tensor completion

Tijk = Z bijkWir Vjr Wy
T
@ For ALS, explicit parallel direct solves® are fastest
@ Via the Cyclops Python interface, we have implemented parallel (over
MPI) completion with SGD, CCD, ALS (with iterative and direct
solves), and Gauss-Newton, with support for generalized loss?

1Shaden Smith, Jongsoo Park, and George Karypis, 2016
2Navjot Singh, Zecheng Zhang, Xiaoxiao Wu, Naijing Zhang, Siyuan Zhang, and Edgar Solomonik arXiv:1910.02371
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Quantum Circuit Simulation with Tensor Networks

e A quantum circuit is a direct description of a tensor network?

10) — : : ;
0y - @ e P
e Why use HPC to (approximately) simulate quantum circuits?

enable development/testing/tuning of larger quantum circuits
understand approximability of different quantum algorithms
quantify sensitivity of algorithms to noise/error

potentially enable new hybrid quantum-classical algorithms

! Markov and Shi SIAM JC 2007
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Tensor Network State Simulation
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PEPS Contraction

@ Exact contraction of PEPS is #P-complete, so known methods have
exponential cost in the number of sites

@ PEPS contraction is needed to compute expectation values

@ Boundary contraction is common for finite PEPS and can be
simplified with einsumsvd
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Implicit Randomized einsumsvd

@ The einsumsvd primitive provides an effective abstraction for tensor
network simulation methods

L oo @

@ Alternative algorithms:

e contract then SVD
e perform randomized SVD with implicit matrix-matrix products

e perform QR factorization of operands and do einsumsvd on R factors

LPNA New Methods for Tensor Computations March 2, 2021 11/16



PEPS Benchmark Performance
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e We introduce a new library, Koala®, for high-performance simulation
of quantum circuits and time evolution with PEPS?

@ Koala achieves good parallel scalability for approximate gate
application (evolution) and contraction

@ Approximation can be effective even for adversarially-designed circuits
such as Google's random quantum circuit model (figure on right)

1https://github,com/cyclopSfcommunity/koala
Yuchen Pang, Tianyi Hao, Annika Dugad, Yiqing Zhou, and E.S. SC 2020
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Automatic Differentiation for Tensor Computations

@ Tensor network and tensor decomposition methods all typically based
on applying Newton's method on a sequence of subsets of variables

TP =000 CEH=0000
T =0000 CEP=0660
e Automatic differentiation (AD) in principle enables automatic

generation of these methods

@ Existing AD tools such as Jax (used by TensorFlow) are designed for
deep learning and are ineffective for other tensor computations

o these focus on first order optimization via Jacobian-vector products

e unable to propagate tensor algebra identities such as
(A® B)™' = A~ @ B~ to generate efficient code
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Automatic High-Order Optimization for Tensors

o AutoHOOT! provides a tensor-algebra centric AD engine

@ Designed for einsum expressions and alternating minimization
common in tensor decomposition and tensor network methods

@ Python-level AD is coupled with optimization of contraction order
and caching of intermediates

@ Generates code for CPU/GPU /supercomputers using high-level
back-end interface to tensor contractions
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1Linjian Ma, Jiayu Ye, and E.S. PACT 2020
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Group Symmetry in Tensor Contractions

@ Tensor with cyclic group symmetry can be represented as block-sparse
tige.. =0 if  [i/Gi] + [j/G2] + [k/G3] +---#0 (mod G).

@ Group symmetries of multiple types arise due to conservation laws
when physical systems (quantum number symmetry, spin symmetry,
rotational symmetry, translational symmetry)

@ New contraction algorithm, irreducible representation alignment uses
new dense reduced form tensor to handle group symmetry without
looping over blocks or sparsity®

B Loop Blocks (1 Proc, NumPy)
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1Y. Gao, P. Helms, G. Chan, and E.S., arXiv:2007.08056
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Applications of CP Decomposition

@ CP and Tucker are both used for data compression
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Applications of CP Decomposition

@ CP and Tucker are both used for data compression

@ In quantum chemistry, CP decomposition is used to obtain tensor
hypercontraction (THC) format

R
Labij = g dapsd 815 dabs = g UqrUprUsy
r=1

—_————
Cholesky CP with repeating factor
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Applications of CP Decomposition

@ CP and Tucker are both used for data compression

@ In quantum chemistry, CP decomposition is used to obtain tensor
hypercontraction (THC) format

R
Labij = E dapsd 815 dabs = g UqrUprUsy
r=1

—_————
Cholesky CP with repeating factor

e THC asymptotically reduces cost of post-Hartree-Fock methods

@ CP can be used to find fast bilinear algorithms, such as Strassen’s
matrix multiplication algorithm (s =4, R =7),

tijkimn = OimOikOn; SO Cijj = E tijklmnaklbmnzg airby;
!

klmn

R R
tijklmn = § WUijrVklr Wmnr = Cij = E Uijr( § 'Uklrakl>< E wmnrbmn>
r=1 r=1 kl mn
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Randomized Methods for Sparse Tensor Decomposition

@ When seeking a low-rank R = O(1) decomposition for a sparse
tensor, sketching schemes have been shown to be efficient

@ In this regime, Tucker can be used to construct a CP decomposition

@ Leverage score sampling on the rank-constrained least squares
problem minx .k x)<r [|[AX — Bl F leads to a state-of-the-art
cost-accuracy trade-off! in approximations to Tucker-ALS

Algorithm for Tucker LS solve cost Sample size (m)

ALS O(nnz(T)RN™h) /

ALS + TensorSketch? O(mRY + msR) O(RQ(N D 3N=1/(€25))

ALS + TTMTS? O(msRN ™) O(R*™W=1 . 3871 /(¢%6))

ALS + TensorSketch? O(mR*N =2 + sRN=1) | O((RN™Y +1/€®) - (3R)N =1 /6)
ALS + leverage scores’ | O(mR?N =2 4 sRN"1) | O(RW—Y /(€26))

1Linjian Ma and E.S., in preparation
2
O. Malik and S. Becker, 2018 (assuming unconstrained LSQ)

LPNA New Methods for Tensor Computations March 2, 2021 19/16



	Introduction
	Tensor Decompositions
	Tensor Networks
	Fast Bilinear Algorithms
	Conclusion

