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Overview

General framework for communication lower bounds based on rank
structure of bilinear algorithm

Communication lower bounds of bilinear algorithms for symmetric
tensor contractions
E.S., James Demmel, and Torsten Hoefler (SISC 2021,
arXiv:1707.04618)

Communication lower bounds for nested bilinear algorithms

Communication lower bounds for nested bilinear algorithms
Caleb Ju, Yifan Zhang, and E.S. (arXiv:2107.09834)
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Bilinear Algorithms

A bilinear algorithm1 Λ = (F (A),F (B),F (C)) computes

c = F (C)[(F (A)Ta)� (F (B)Tb)]

where a and b are inputs and � is the Hadamard (pointwise) product

1Victor Pan, How to multiply matrices faster. 1984.
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Example: Convolution Bilinear Algorithm

Given a, b ∈ Rn, compute

ci =
∑
k

akbi−k

Equivalent to product of polynomials, compute via interpolation

c = V −1[(V Ta)� (V Tb)]

where V is a Vandermonde matrix

Known as Toom-Cook algorithm; with complex roots of unity as
nodes, V is DFT matrix, enabling use of FFT algorithm

Other bilinear algorithms and problem variants possible1

1Caleb Ju and E.S., Derivation and analysis of fast bilinear algorithms for
convolution. SIAM Review 2020.
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Bilinear Algorithms as Tensor Factorizations

A bilinear algorithm corresponds to a CP tensor decomposition
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r=1
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For example, the convolution problem is defined by

tijk = 1 iff i = j + k

so that
ci =

∑
j,k

tijkajbk =
∑
k

akbi−k
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Bilinear Problems

convolution of n-dimensional vectors

optimal rank1: R = Θ(n)

matrix multiplication of n× n matrices

best currently known algorithm2: R = O(n2.37286)

symmetric tensor contraction with n× · · · × n tensors

for symmetry preserving algorithms3, e.g., AB + BA via

cij =
∑
k

(aij + aik + ajk)(bij + bik + bjk)− . . .

R = nd

d! +O(nd−1), where d is total number of indices in contraction

1Ke Ye and Lek-Heng Lim, FoCM 2018.
2Josh Alman and V. V. Williams, A refined laser method and faster matrix

multiplication. SODA 2020.
3E.S. and James Demmel, Fast bilinear algorithms for symmetric tensor contractions.

CMAM 2021.
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Communication Lower Bounds for Bilinear Algorithms

How much communication does a bilinear algorithm require?

bilinear algorithm specifies only products, not order of additions, need
to consider various partial sums
measure two types of communication:

vertical – words communicated between memory and cache of size H
horizontal – words communicated by some processor of p

assume load-balanced input/output and no replication of work
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Execution DAG

Model computation by dependency graph (execution DAG)

vertex – input/output/computed value

edge – input to operation computing a value

parallelization – graph partitioning

cache-blocking – pebbling game on DAG

Communication lower bounds characterize minimal comm. cost of one or a
family of execution DAG

various orderings of a sum permitted by expressing it as a hyperedge1

columns of bilinear algorithm matrices encode such hyperedges

1
E.S., E. Carson, N. Knight, Trade-offs between synchronization, communication, and computation in parallel linear algebra

computations. TOPC 2016.
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Some Known Lower Bounds

Matrix multiplication of n× n matrices

classical O(n3) algorithm requires Q = Θ(n3/
√
H) vertical1 and W = Θ(n/p2/3)

horizontal communication2

Strassen’s O(nlog2 7) algorithm requires Q = Θ(nlog2 7H/H log4 7) vertical and
W = Θ(n2/p1/ log4 7) horizontal communication3

bounds for many numerical linear algebra algorithms (LU, QR, SVD, eigensolvers)
depend on above4

Convolution of n-dimensional vectors

FFT requires Q = Θ(n logn/ logH) vertical1 and W = Θ(n logn/ log(n/p))
horizontal comm.5

Given computational complexity f(n), these bounds share a common form

Q = Θ(f(n) ·H/f̃(H)) W = Θ(f̃−1(f(n)/p))

1
Jia-Wei Hong and H.T. Kung, I/O complexity: The red-blue pebble game. STOC 1981

2
D. Irony, S. Toledo, A. Tiskin, Communication lower bounds for distributed-memory matrix multiplication. JPDC 2004.

3
G. Ballard, J. Demmel, O. Holtz, O. Schwartz, Graph expansion and comm. costs of fast mat. mult., JACM 2013.

4
G. Ballard, J. Demmel, O. Holtz, O. Schwartz. Minimizing communication in numerical linear algebra. SIMAX 2011.

5
A. Aggarwal, A.K. Chandra, M. Snir, Communication complexity of PRAMs, 1990.
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Lower Bounds for Bilinear Algorithms

Communication lower bounds based on the rank R of the bilinear algorithm

lower bound information needed to compute any subset of the R products

consider inputs and outputs symmetrically
products are columns in bilinear matrices, so seek lower bound on rank
of submatrices

above expansion bound f̃ yields horiz. and vertical comm. lower bounds

lower bound on amount of useful work with O(H) input/output words
yields vertical communication lower bound

Q = Ω(R ·H/f̃(H))

some processor computes at least R/p products, use f̃ to bound
information it must send/receive

W = Ω(f̃−1(R/p)− (#inputs + #outputs)/p)
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Bilinear Algorithm Expansion Bound

generally, for bilinear algorithm Λ seek function EΛ(x, y, z), s.t., for
any subset of k ≤ R products

k ≤ EΛ

(
rank(F

(A)
sub ), rank(F

(B)
sub ), rank(F

(C)
sub )

)
where F

(A)
sub is the submatrix of F (A) obtained from extracting k

columns, and similar for respective columns of F (B) and F (C)

EΛ(x, y, z) describes the amount of useful work we can do with m
information

f̃(m) = max
x+y+z≤m

EΛ(x, y, z)
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Rank Expansion of Matrices

Let σF (X)(k) be the minimum rank of a subset k columns of F (X),
then

EΛ(x, y, z) ≤ max
x+y+z≤m

min(σ−1
F (A)(x), σ−1

F (B)(y), σ−1
F (C)(z))

so we may simply consider the rank expansion σ(k) of each bilinear
algorithm matrix

stronger bounds are sometimes possible by considering all three
matrices simultaneously (since the subset of columns must be
matching among the 3 matrices)

e.g., for classical matrix multiplication, this is needed to use the
surface-to-volume-ratio argument (Loomis-Whitney inequality)

in other cases, it suffices to consider σ for each bilinear matrix
separately, e.g., compare

cij ← aikbkj to {cij , cik, cjk} ← (aij + aik + ajk)(bij + bik + bjk)
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Rank Expansion of Matrices

We are then interested in characterizing by σ(k), the minimum rank of a
subset of k columns of a given matrix C

σC(k) = k if C is full rank

the first kink in σC is determined by the Kruskal rank of C (largest k
such that any subset of k columns of C are linearly independent)

if C is sparse (e.g., banded), lower bounds on σC(k) may be derived
based on sparsity

nested (recursive) bilinear algorithms, (e.g., Strassen’s algorithm)
result in matrices with Kronecker product structure

C = A⊗B

since rank(C) = rank(A) rank(B), can we characterize σC in terms
of σA and σB?
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Rank Expansion of Kronecker-Product-Structured Matrices

suppose we select kA columns of A (A1) and kB columns of B
(B1), then

rank(A1 ⊗B1) = rank(A1) rank(B1)

consequently, we expect that

σA⊗B(k) ≥ min
kAkB≥k

σA(kA)σB(kB)

we formalize this intuition into a proof and quantify when it holds1

1Caleb Ju, Yifan Zhang, and E.S., Communication lower bounds for nested bilinear
algorithms. arXiv 2021.
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Proof of Rank Expansion Bound under Kronecker Product

We associate a given subset of columns of C with grid points ai ⊗ bj

then we transform and shrink the set of grid points in a way that can only
decrease rank of the associated submatrix of C
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Proof of Rank Expansion Bound under Kronecker Product

We then prove that the compactified grid has a minimal basis (subset of
grid points spanning original set) with a Kronecker product structure
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Proof of Rank Expansion Bound under Kronecker Product

Having identified a nicely-structured minimal basis, we can upper bound
the total number of columns it can span using σA and σB
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Proof of Rank Expansion Bound under Kronecker Product

Finally, we can transform the shape of the geometric region (set of
columns spanned by basis) by removing ’stairs’ without decreasing area

the optimal region for general concave σA and σB is L-shaped
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General Kronecker-Product Rank-Expansion Bound

Theorem

Let f(x) = σ−1
A (x), g(x) = σ−1

B (x). If

f̂(x) =
f(rA)− f(rA − x)

xf ′(rA − x)
, ĝ(x) =

g(rB)− g(rB − x)

xg′(rB − x)
,

are increasing on (0, rA) and (0, rB), respectively, then

σC(k) = min
kA∈[dA,nA], kB∈[dB ,nB ]

kA∈{ dA,nA } or kB∈{ dB ,nB },
kAkB≥k

σA(kA) · σB(kB)

is a rank expansion lower bound of C = A⊗B.

The conditions are satisfied e.g., when f and g are monomial or
exponential
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Applications and Conclusion

We apply the nested rank expansion bounds to derive communciation lower bounds for
various nested bilinear algorithms

Algorithm Previous (V) Previous (H) Our Work (V) Our Work (H)

Strassen’s
nlog2(7)

H log4(7)−1

n2

plog7(4)
nlog2(7)

H log2(3)−1

nlog3(7)

plog3(2)

Recursive
convolution

nlogk(2k−1)

H logk(2k−1)−1
- Match Prev

n

plog2k−1(k)

For contraction among symmetric tensors of order s + v and v + t over v modes

asymptotically more communication is required by symmetry-preserving techniques
when s, t, v are unequal

comm. lower bounds for symmetry preserving algorithms on some contractions of
partially-symmetric tensors follow from nested bound

For further details, see arXiv:2107.09834
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Backup slides
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Symmetric Matrix Vector Product

Consider computing c = Ab with A = AT

Typically requires n2 multiplications since aijbj 6= ajibi and n2 − n
additions

Instead can compute

vi =

i−1∑
j=1

uij +

n∑
j=i+1

uji where uij = aij(bi + bj)

using n(n− 1)/2 multiplications (since we only need uij for i > j) and
about 3n2/2 additions, then

ci = (2aii −
n∑

j=1

aij)bi + vi

using n more multiplications and n2 additions

Beneficial when multiplying elements of A and b costs more than
addition

This technique yields a bilinear algorithm with rank n(n+ 1)/2
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Partially-Symmetric Tensor Times Matrix (TTM)

Can use symmetric mat-vec algorithm to accelerate TTM with
partially symmetric tensor from 2n4 operations to (3/2)n4 +O(n3)

Given AAA ∈ Rn×n×n with symmetry aijk = ajik and B ∈ Rn×n, we
compute

cikl =
∑
j

aijkbjl

We can think of this as a set of symmetric matrix-vector products

c(k,l) = A(k)b(l)

and apply the fast bilinear algorithm

vikl =

i−1∑
j=1

uijkl +

n∑
j=i+1

uijkl where uijkl = aijk(bil + bjl)

cikl = (2aiik −
n∑

j=1

aijk)bil + vikl

using about n4/2 multiplications and n4 +O(n3) additions (need only
n3 distinct sums of elements of B) to compute VVV, then O(n3)
operations to get CCC from VVV
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Permutational Symmetry in Tensor Contractions
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Performance of nested AB+BA on full KNL node

symmetry preserving algorithm, n=16
symmetry preserving algorithm, n=64

direct evaluation algorithm, n=16
direct evaluation algorithm, n=64

New contraction algorithms reduce cost via permutational symmetry1

Symmetry is hard to use in contraction e.g. y = Ax with A symmetric

For contraction of order s + v and v + t tensors to produce an order s + t tensor,
previously known approaches reduce cost by s!t!v!

New algorithm reduces number of products by ω! where ω = s + t + v, leads to
same reduction in cost for partially-symmetric contractions

C = AB + BA⇒ cij =
∑
k

[(aij + aik + ajk) · (bij + bik + bjk)]− . . .

1
E.S, J. Demmel, CMAM 2020
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