Scaling Betweenness Centrality using

Communication-Efficient Sparse Matrix
Multiplication

Edgar Solomonik!:2, Maciej Besta', Flavio Vella', and Torsten Hoefler!

1 Department of Computer Science
ETH Zurich

MMASIPEL

2Department of Computer Science
University of Illinois at Urbana-Champaign

L ‘PN A @CSe@lllinois

November 2017

E. Solomonik, M. Besta, F. Vella, T. Hoefler Communication-Efficient Betweenness Centrality

Outline

@ Betweenness Centrality
@ Problem Definition
@ All-Pairs Shortest-Paths
@ Brandes’ Algorithm
@ Parallel Brandes’ Algorithm

e Sparse Matrix Multiplication
@ Algebraic Shortest Path Computation
@ Parallel Sparse Matrix Multiplication

e Algebraic Parallel Programming
@ Cyclops Tensor Framework
@ Performance Results

e Conclusion

E. Solomonik, M. Besta, F. Vella, T. Hoefler Communication-Efficient Betweenness Centrality

Centrality in Graphs

Betweenness centrality - For each vertex v in G = (V, E), sum the
fractions of shortest paths s ~ ¢ that pass through v,

Av) =Y ou(s,t)/o(s,t).

s,teV

@ o(s,t) is the number (multiplicity) of shortest paths s ~ ¢
@ o,(s,t) is the number of shortest paths s ~ ¢ that pass through v
@ Shortest paths can be unweighted or weighted

@ Centrality is important in analysis of biology, transport, and social
network graphs

E. Solomonik, M. Besta, F. Vella, T. Hoefler Communication-Efficient Betweenness Centrality

Path Multiplicities

@ Let d(s,t) be the shortest distance between vertex s and vertex ¢

@ The multiplicity of shortest paths o (s,) is the number of distinct
paths s ~ ¢ with distance d(s, t)

@ If v is in some shortest path s ~ ¢, then
d(s,t) = d(s,v) +d(v,t)

@ Consequently, can compute all o,(s,t) and A(v) given all distances

oo (s,t) = o(s,v)o(v,t) :d(s,t) =d(s,v)+d(v,t)
o 0 : otherwise

E. Solomonik, M. Besta, F. Vella, T. Hoefler Communication-Efficient Betweenness Centrality

Betweenness Centrality by All-Pairs Shortest-Paths

@ We can obtain d(s,t) for all s,¢ by all-pairs shortest-paths (APSP)
@ Multiplicities (¢ and o, for each v) are easy to get given distances
@ However, the cost of APSP is prohibitive, for n-node graphs:

e Q = O(n3) work with typical algorithms (e.g. Floyd-Warshall)
e D = O(log(n)) depth’

e M = O(n?/p) memory footprint per processor

@ APSP does not effectively exploit graph sparsity

"Tiskin, Alexander. "All-pairs shortest paths computation in the BSP model."
Automata, Languages and Programming (2001): 178-189.

E. Solomonik, M. Besta, F. Vella, T. Hoefler Communication-Efficient Betweenness Centrality

Betweenness Centrality Brandes’ Algorithm

Brandes’ Algorithm for Betweenness Centrality

Ulrik Brandes proposed a memory-efficient method’
@ Compute d(s,*) and o(s,) for a given source vertex s

@ Using these calculate partial centrality factors (s, v) so

(s, v) = > o(v,t)/o(s,t)

teV, d(s,v)+d(v,t)=d(s,t)

@ Construct the centrality scores from partial centrality factors

"Brandes, Ulrik. "A faster algorithm for betweenness centrality." Journal of
mathematical sociology 25.2 (2001): 163-177.

E. Solomonik, M. Besta, F. Vella, T. Hoefler Communication-Efficient Betweenness Centrality

Betweenness Centrality Brandes’ Algorithm

Shortest Path Tree (DAG)

undirected graph shortest path tree

_— "0
/O

If any multiplicity o(s,t) > 1, shortest path tree has cross edges, so
we have a directed acyclic graph (DAG) of shortest paths

E. Solomonik, M. Besta, F. Vella, T. Hoefler Communication-Efficient Betweenness Centrality

Betweenness Centrality Brandes’ Algorithm

Shortest Path Tree Multiplicities

shortest path multiplicites

o(s,v) value displayed for each node v given colored source vertex s

E. Solomonik, M. Besta, F. Vella, T. Hoefler Communication-Efficient Betweenness Centrality

Partial Centrality Factors in Shortest Path Tree

betweenness centrality back-propagation

1/2

If (s, v) are the children of v in shortest path tree from s

= X (55t 0e0)

cem(s,v)

E. Solomonik, M. Besta, F. Vella, T. Hoefler Communication-Efficient Betweenness Centrality

Brandes’ Algorithm Overview

@ For each source vertex s € V (or a batch of source vertices)
@ Compute single-source shortest-paths (SSSP) from s

e For unweighted graphs, use breadth first search (BFS)

@ More viable choices for weighted graphs: Dijkstra, Bellman-Ford,
A-stepping, ...

@ Perform back-propagation of centrality scores on shortest path
tree from s

@ Roughly as hard as BFS regardless of whether G is weighted

E. Solomonik, M. Besta, F. Vella, T. Hoefler Communication-Efficient Betweenness Centrality 10/21

Parallelism in Brandes’ Algorithm

Sources of parallelism in Brandes’ algorithm:
@ Computation of SSSP and back-propagation

@ Concurrency and efficiency like BFS on graphs

e Bellman-Ford provides maximal concurrency for weighted graphs at
cost of extra work

@ Different source vertices can be processed in parallel as a batch
e Key additional source of concurrency

e Maintaining more distances requires greater memory footprint,
M = Q(bn/p) for batch size b

E. Solomonik, M. Besta, F. Vella, T. Hoefler Communication-Efficient Betweenness Centrality 11/21

Sparse Matrix Multiplication Algebraic Shortest Path Computation

Algebraic shortest path computations

Tropical (geodetic) semiring
@ additive operator: a ® b= min(a,b), identity: co
@ multiplicative operator: a®b=a+b, identity: 0
@ semiring matrix multiplication:

C=A®B = Cij = mkin(aik + bkj)

Bellman-Ford algorithm (SSSP) for n x n adjacency matrix A:
@ initialize v(Y) = (0,00, 00, .. ")
@ compute v via recurrence

E. Solomonik, M. Besta, F. Vella, T. Hoefler Communication-Efficient Betweenness Centrality 12/21

Algebraic View of Brandes’ Algorithm

@ Given frontier vector (Y and tentative distances w(?
yD =Axz® and wit) =w® gy®
e z(*1 given by entries if w1 that differ from w(
@ For BFS, tentative distances change only once
@ For Bellman-Ford, tentative distances can change multiple times
e At maximum as many times as the depth of the shortest path DAG
@ Thus both algorithms require iterative SpMSpV

@ Having a batch size b > 1 transforms the problem to sparse matrix
multiplication (SpGEMM or SpMSpM)

E. Solomonik, M. Besta, F. Vella, T. Hoefler Communication-Efficient Betweenness Centrality 13/21

Sparse Matrix Multiplication Parallel Sparse Matrix Multiplication

Communication Avoiding Sparse Matrix Multiplication

@ Let the bandwidth cost W be the maximum amount of data
communicated by any processor

@ We use analogue of 1D/2D/3D rectangular matrix multiplication

@ The bandwidth cost of matrix multiplication Y = AX is then

W= min nnz(A) N nnz(X) N nnz(Y)])
P1P2P3=p | P1D2 p2ps p1ps

@ In our context, nnz(A) = |E| = m, while X holds current frontiers
for b starting vertices, so nnz(X) < nb

E. Solomonik, M. Besta, F. Vella, T. Hoefler Communication-Efficient Betweenness Centrality 14/21

Sparse Matrix Multiplication Parallel Sparse Matrix Multiplication

Communication Avoiding Betweenness Centrality

@ Latency cost is proportional to number of SpMSpM calls
@ Replication of A for SpMSpMs minimizes bandwidth cost W
@ It then suffices to communicate frontiers X and reduce results Y

@ For undirected graphs, for b starting vertices, total nonzeros in X
over all iterations is nb and for Y is O(nb)

@ Best choice of b with sufficient memory gives

W = O(ny/m/p*?)
@ Memory-constrained communication cost bound given in paper

o Perfect theoretical strong scaling in communication cost

from po to @(p§/2n2/m) processors

E. Solomonik, M. Besta, F. Vella, T. Hoefler Communication-Efficient Betweenness Centrality 15/21

Cyclops Tensor Framework (CTF) '

@ Distributed-memory symmetric/sparse tensors in C++ or Python

@ For betweenness centrality, we only use CTF matrices
Matrix<int> A(n, n, AS|SP, World(MPI_COMM_WORLD));
A.read(...); A.write(...); A.slice(...); A.permute(...);

@ Matrix summation in CTF notation is
B["ij"] += A[llij"];

@ Matrix multiplication in CTF notation is
Y[lliJ'll] += T[llikll]*x[llkj"];

@ Used-defined elementwise functions can be used with either

Y["ij"1 += Function<>([1(double x){ return 1/x; })(X["ij"1);
Y["ij"1 += Function<int,double,double>(...)(A["ik"1,X["kj"1);

"E. Solomonik, D. Matthews, J. Hammond, J. Demmel, JPDC 2014

E. Solomonik, M. Besta, F. Vella, T. Hoefler Communication-Efficient Betweenness Centrality 16/21

CTF Code for Betweenness Centrality

void btwn_central(Matrix<int> A, Matrix<path> P, int n){
Monoid<path> mon(...,
[I1(path a, path b){
if (a.w<b.w) return a;
else if (b.w<a.w) return b;
else return path(a.w, a.m+b.m);
}; ---);

Matrix<path> Q(n,k,mon); // shortest path matrix
Q["ij"] = P["ij"];

Function<int,path> append([](int w, path p){
return path(w+p.w, p.m);

I HEDH

for (int i=0; i<n; i++)
QL"ij"]1 = append(AL"ik"1,QL"kj"1);

E. Solomonik, M. Besta, F. Vella, T. Hoefler Communication-Efficient Betweenness Centrality

Algebraic Parallel Programming Cyclops Tensor Framework

Symmetry and Sparsity by Cyclicity

Symmetric matrix Unique part of symmetric matrix .
Cyclic layout ~ Improved blocked layout

=Pl

A cyclic layout provides
@ preservation of packed symmetric storage format
@ load balance for sparse 1D/2D (vertex/edge) graph blocking

@ obliviousness with respect to graph structure/topology

E. Solomonik, M. Besta, F. Vella, T. Hoefler Communication-Efficient Betweenness Centrality 18/21

Data Mapping and Autotuning

The CTF workflow is as follows
@ All operations executed bulk synchronously
@ For each product, matrices can be redistributed globally

@ Arbitrary sparsity supported via compressed-sparse-row (CSR)

e Modularity permits alternative sparse matrix representations

@ Performance model used to select best contraction algorithm

e Leverages randomized distribution of nonzeros (edges)

o Model coefficients tuned using linear regression

@ Layout and algorithm choices are made at runtime using model

E. Solomonik, M. Besta, F. Vella, T. Hoefler Communication-Efficient Betweenness Centrality 19/21

Algebraic Parallel Programming Performance Results

CTF Performance for Betweenness Centrality

@ Implementation uses CTF SpGEMM adaptively with sparse or
dense output (push or pull)

@ We compare with CombBLAS, which uses semirings and BFS
(unweighted only)

Strong scaling of MFBC for real graphs Strong scaling for R-MAT S=22 graph
256 T T T T
Friendster CTF-MFBC ——¢— 4096 - E=128 CTF-MFBC unweighted —e&— |
Orkut CTF-MFBC E=128 CombBLAS unweighted
LiveJournal CTF-MFBC === E=128 CTF-MFBC weighted = =@=:=
64 Patents CTF-MFBC ------ | 1024 - E-8 CTF-MFBC unweighted —3— |
8 8 E-8 CombBLAS unweighted
K 2 256 |- E=8 CTF-MFBC weighted =3¢ |
B 16 | 4 %]
[L P S o o
e - o
s R E 64
4+ x———l 1
---------------- Fommnmnnl,
_______ Mo 16
1 Il [B 4 Il Il
2 8 32 128 2 8 32 128
#nodes #nodes

Friendster has 66 million vertices and 1.8 billion edges (results on
Blue Waters, Cray XE6)

E. Solomonik, M. Besta, F. Vella, T. Hoefler Communication-Efficient Betweenness Centrality 20/21

Conclusions and Future Work

@ Summary of algorithmic contributions
e Parallel communication-avoiding betweenness centrality algorithm
@ Better sparse matrix multiplication for unbalanced nonzero counts
e Algorithms and implementation general to weighted graphs

@ Future work

e Use of A-stepping or other more work-efficient SSSP algorithms
e Optimizations in conjunction with approximation algorithms

Cyclops Tensor Framework

@ Graphs are one of many applications, other highlights include
e Petascale high-accuracy quantum chemistry
e 56-qubit (largest ever) quantum computing simulation

@ Already provides most functionality proposed in GraphBLAS 1,
plus all of that for tensors (hypergraphs with uniform size nets)

E. Solomonik, M. Besta, F. Vella, T. Hoefler Communication-Efficient Betweenness Centrality 21/21

	Betweenness Centrality
	Problem Definition
	All-Pairs Shortest-Paths
	Brandes' Algorithm
	Parallel Brandes' Algorithm

	Sparse Matrix Multiplication
	Algebraic Shortest Path Computation
	Parallel Sparse Matrix Multiplication

	Algebraic Parallel Programming
	Cyclops Tensor Framework
	Performance Results

	Conclusion

