
Scaling Betweenness Centrality using
Communication-E�cient Sparse Matrix

Multiplication

Edgar Solomonik1,2, Maciej Besta1, Flavio Vella1, and Torsten Hoefler1

1 Department of Computer Science
ETH Zurich

2Department of Computer Science
University of Illinois at Urbana-Champaign

November 2017
E. Solomonik, M. Besta, F. Vella, T. Hoefler Communication-E�cient Betweenness Centrality 1/21

Outline

1 Betweenness Centrality
Problem Definition
All-Pairs Shortest-Paths
Brandes’ Algorithm
Parallel Brandes’ Algorithm

2 Sparse Matrix Multiplication
Algebraic Shortest Path Computation
Parallel Sparse Matrix Multiplication

3 Algebraic Parallel Programming
Cyclops Tensor Framework
Performance Results

4 Conclusion

E. Solomonik, M. Besta, F. Vella, T. Hoefler Communication-E�cient Betweenness Centrality 2/21

Betweenness Centrality Problem Definition

Centrality in Graphs

Betweenness centrality – For each vertex v in G = (V,E), sum the
fractions of shortest paths s ∼ t that pass through v,

λ(v) =
∑
s,t∈V

σv(s, t)/σ(s, t).

σ(s, t) is the number (multiplicity) of shortest paths s ∼ t

σv(s, t) is the number of shortest paths s ∼ t that pass through v

Shortest paths can be unweighted or weighted

Centrality is important in analysis of biology, transport, and social
network graphs

E. Solomonik, M. Besta, F. Vella, T. Hoefler Communication-E�cient Betweenness Centrality 3/21

Betweenness Centrality Problem Definition

Path Multiplicities

Let d(s, t) be the shortest distance between vertex s and vertex t

The multiplicity of shortest paths σ(s, t) is the number of distinct
paths s ∼ t with distance d(s, t)

If v is in some shortest path s ∼ t, then

d(s, t) = d(s, v) + d(v, t)

Consequently, can compute all σv(s, t) and λ(v) given all distances

σv(s, t) =

{
σ(s, v)σ(v, t) : d(s, t) = d(s, v) + d(v, t)

0 : otherwise

E. Solomonik, M. Besta, F. Vella, T. Hoefler Communication-E�cient Betweenness Centrality 4/21

Betweenness Centrality All-Pairs Shortest-Paths

Betweenness Centrality by All-Pairs Shortest-Paths

We can obtain d(s, t) for all s, t by all-pairs shortest-paths (APSP)

Multiplicities (σ and σv for each v) are easy to get given distances

However, the cost of APSP is prohibitive, for n-node graphs:

Q = Θ(n3) work with typical algorithms (e.g. Floyd-Warshall)

D = Θ(log(n)) depth1

M = Θ(n2/p) memory footprint per processor

APSP does not e�ectively exploit graph sparsity

1Tiskin, Alexander. "All-pairs shortest paths computation in the BSP model."
Automata, Languages and Programming (2001): 178-189.
E. Solomonik, M. Besta, F. Vella, T. Hoefler Communication-E�cient Betweenness Centrality 5/21

Betweenness Centrality Brandes’ Algorithm

Brandes’ Algorithm for Betweenness Centrality

Ulrik Brandes proposed a memory-e�cient method1

Compute d(s, ?) and σ(s, ?) for a given source vertex s

Using these calculate partial centrality factors ζ(s, v) so

ζ(s, v) =
∑

t∈V, d(s,v)+d(v,t)=d(s,t)

σ(v, t)/σ(s, t)

Construct the centrality scores from partial centrality factors

λ(v) =
∑
s

σ(s, v)ζ(s, v)

1Brandes, Ulrik. "A faster algorithm for betweenness centrality." Journal of
mathematical sociology 25.2 (2001): 163-177.
E. Solomonik, M. Besta, F. Vella, T. Hoefler Communication-E�cient Betweenness Centrality 6/21

Betweenness Centrality Brandes’ Algorithm

Shortest Path Tree (DAG)

If any multiplicity σ(s, t) > 1, shortest path tree has cross edges, so
we have a directed acyclic graph (DAG) of shortest paths

E. Solomonik, M. Besta, F. Vella, T. Hoefler Communication-E�cient Betweenness Centrality 7/21

Betweenness Centrality Brandes’ Algorithm

Shortest Path Tree Multiplicities

σ(s, v) value displayed for each node v given colored source vertex s

E. Solomonik, M. Besta, F. Vella, T. Hoefler Communication-E�cient Betweenness Centrality 8/21

Betweenness Centrality Brandes’ Algorithm

Partial Centrality Factors in Shortest Path Tree

If π(s, v) are the children of v in shortest path tree from s

ζ(s, v) =
∑

c∈π(s,v)

(
1

σ(s, c)
+ ζ(s, c)

)

E. Solomonik, M. Besta, F. Vella, T. Hoefler Communication-E�cient Betweenness Centrality 9/21

Betweenness Centrality Brandes’ Algorithm

Brandes’ Algorithm Overview

For each source vertex s ∈ V (or a batch of source vertices)

Compute single-source shortest-paths (SSSP) from s

For unweighted graphs, use breadth first search (BFS)

More viable choices for weighted graphs: Dijkstra, Bellman-Ford,
∆-stepping, ...

Perform back-propagation of centrality scores on shortest path
tree from s

Roughly as hard as BFS regardless of whether G is weighted

E. Solomonik, M. Besta, F. Vella, T. Hoefler Communication-E�cient Betweenness Centrality 10/21

Betweenness Centrality Parallel Brandes’ Algorithm

Parallelism in Brandes’ Algorithm

Sources of parallelism in Brandes’ algorithm:

Computation of SSSP and back-propagation

Concurrency and e�ciency like BFS on graphs

Bellman-Ford provides maximal concurrency for weighted graphs at
cost of extra work

Di�erent source vertices can be processed in parallel as a batch

Key additional source of concurrency

Maintaining more distances requires greater memory footprint,
M = Ω(bn/p) for batch size b

E. Solomonik, M. Besta, F. Vella, T. Hoefler Communication-E�cient Betweenness Centrality 11/21

Sparse Matrix Multiplication Algebraic Shortest Path Computation

Algebraic shortest path computations

Tropical (geodetic) semiring

additive operator: a⊕ b = min(a, b), identity: ∞

multiplicative operator: a⊗ b = a+ b, identity: 0

semiring matrix multiplication:

C = A⊗B ⇒ cij = min
k

(aik + bkj)

Bellman-Ford algorithm (SSSP) for n× n adjacency matrix A:

1 initialize v(1) = (0,∞,∞, . . .)

2 compute v(n) via recurrence

v(i+1) = v(i) ⊕ (A⊗ v(i))

E. Solomonik, M. Besta, F. Vella, T. Hoefler Communication-E�cient Betweenness Centrality 12/21

Sparse Matrix Multiplication Algebraic Shortest Path Computation

Algebraic View of Brandes’ Algorithm

Given frontier vector x(i) and tentative distances w(i)

y(i) = A⊗ x(i) and w(i+1) = w(i) ⊕ y(i)

x(i+1) given by entries if w(i+1) that di�er from w(i)

For BFS, tentative distances change only once

For Bellman-Ford, tentative distances can change multiple times

At maximum as many times as the depth of the shortest path DAG

Thus both algorithms require iterative SpMSpV

Having a batch size b > 1 transforms the problem to sparse matrix
multiplication (SpGEMM or SpMSpM)

E. Solomonik, M. Besta, F. Vella, T. Hoefler Communication-E�cient Betweenness Centrality 13/21

Sparse Matrix Multiplication Parallel Sparse Matrix Multiplication

Communication Avoiding Sparse Matrix Multiplication

Let the bandwidth costW be the maximum amount of data
communicated by any processor

We use analogue of 1D/2D/3D rectangular matrix multiplication

The bandwidth cost of matrix multiplication Y = AX is then

W = min
p1p2p3=p

[
nnz(A)

p1p2
+

nnz(X)

p2p3
+

nnz(Y)

p1p3

])
In our context, nnz(A) = |E| = m, while X holds current frontiers
for b starting vertices, so nnz(X) ≤ nb

E. Solomonik, M. Besta, F. Vella, T. Hoefler Communication-E�cient Betweenness Centrality 14/21

Sparse Matrix Multiplication Parallel Sparse Matrix Multiplication

Communication Avoiding Betweenness Centrality

Latency cost is proportional to number of SpMSpM calls

Replication of A for SpMSpMs minimizes bandwidth costW

It then su�ces to communicate frontiers X and reduce results Y

For undirected graphs, for b starting vertices, total nonzeros in X
over all iterations is nb and for Y is O(nb)

Best choice of b with su�cient memory gives

W = O(n
√
m/p2/3)

Memory-constrained communication cost bound given in paper

Perfect theoretical strong scaling in communication cost

from p0 to Θ(p
3/2
0 n2/m) processors

E. Solomonik, M. Besta, F. Vella, T. Hoefler Communication-E�cient Betweenness Centrality 15/21

Algebraic Parallel Programming Cyclops Tensor Framework

Cyclops Tensor Framework (CTF) 1

Distributed-memory symmetric/sparse tensors in C++ or Python

For betweenness centrality, we only use CTF matrices
Matrix <int > A(n, n, AS|SP, World(MPI_COMM_WORLD));
A.read(...); A.write(...); A.slice(...); A.permute(...);

Matrix summation in CTF notation is
B["ij"] += A["ij"];

Matrix multiplication in CTF notation is
Y["ij"] += T["ik"]*X["kj"];

Used-defined elementwise functions can be used with either
Y["ij"] += Function <>([](double x){ return 1/x; })(X["ij"]);
Y["ij"] += Function <int ,double ,double >(...)(A["ik"],X["kj"]);

1E. Solomonik, D. Matthews, J. Hammond, J. Demmel, JPDC 2014
E. Solomonik, M. Besta, F. Vella, T. Hoefler Communication-E�cient Betweenness Centrality 16/21

Algebraic Parallel Programming Cyclops Tensor Framework

CTF Code for Betweenness Centrality

void btwn_central(Matrix <int > A, Matrix <path > P, int n){
Monoid <path > mon(...,

[](path a, path b){
if (a.w<b.w) return a;
else if (b.w<a.w) return b;
else return path(a.w, a.m+b.m);

}, ...);

Matrix <path > Q(n,k,mon); // shortest path matrix
Q["ij"] = P["ij"];

Function <int ,path > append ([](int w, path p){
return path(w+p.w, p.m);

};);

for (int i=0; i<n; i++)
Q["ij"] = append(A["ik"],Q["kj"]);

...
}
E. Solomonik, M. Besta, F. Vella, T. Hoefler Communication-E�cient Betweenness Centrality 17/21

Algebraic Parallel Programming Cyclops Tensor Framework

Symmetry and Sparsity by Cyclicity

A cyclic layout provides

preservation of packed symmetric storage format

load balance for sparse 1D/2D (vertex/edge) graph blocking

obliviousness with respect to graph structure/topology

E. Solomonik, M. Besta, F. Vella, T. Hoefler Communication-E�cient Betweenness Centrality 18/21

Algebraic Parallel Programming Cyclops Tensor Framework

Data Mapping and Autotuning

The CTF workflow is as follows

All operations executed bulk synchronously

For each product, matrices can be redistributed globally

Arbitrary sparsity supported via compressed-sparse-row (CSR)

Modularity permits alternative sparse matrix representations

Performance model used to select best contraction algorithm

Leverages randomized distribution of nonzeros (edges)

Model coe�cients tuned using linear regression

Layout and algorithm choices are made at runtime using model

E. Solomonik, M. Besta, F. Vella, T. Hoefler Communication-E�cient Betweenness Centrality 19/21

Algebraic Parallel Programming Performance Results

CTF Performance for Betweenness Centrality

Implementation uses CTF SpGEMM adaptively with sparse or
dense output (push or pull)
We compare with CombBLAS, which uses semirings and BFS
(unweighted only)

 1

 4

 16

 64

 256

2 8 32 128

M
TE

P
S

/n
od

e

#nodes

Strong scaling of MFBC for real graphs

Friendster CTF-MFBC
Orkut CTF-MFBC

LiveJournal CTF-MFBC
Patents CTF-MFBC

 4

 16

 64

 256

 1024

 4096

2 8 32 128

M
TE

P
S

/n
od

e

#nodes

Strong scaling for R-MAT S=22 graph

E=128 CTF-MFBC unweighted
E=128 CombBLAS unweighted

E=128 CTF-MFBC weighted
E=8 CTF-MFBC unweighted
E=8 CombBLAS unweighted

E=8 CTF-MFBC weighted

Friendster has 66 million vertices and 1.8 billion edges (results on
Blue Waters, Cray XE6)

E. Solomonik, M. Besta, F. Vella, T. Hoefler Communication-E�cient Betweenness Centrality 20/21

Conclusion

Conclusions and Future Work

Summary of algorithmic contributions
Parallel communication-avoiding betweenness centrality algorithm
Better sparse matrix multiplication for unbalanced nonzero counts
Algorithms and implementation general to weighted graphs

Future work
Use of ∆-stepping or other more work-e�cient SSSP algorithms
Optimizations in conjunction with approximation algorithms

Cyclops Tensor Framework
Graphs are one of many applications, other highlights include

Petascale high-accuracy quantum chemistry
56-qubit (largest ever) quantum computing simulation

Already provides most functionality proposed in GraphBLAS 1,
plus all of that for tensors (hypergraphs with uniform size nets)

E. Solomonik, M. Besta, F. Vella, T. Hoefler Communication-E�cient Betweenness Centrality 21/21

	Betweenness Centrality
	Problem Definition
	All-Pairs Shortest-Paths
	Brandes' Algorithm
	Parallel Brandes' Algorithm

	Sparse Matrix Multiplication
	Algebraic Shortest Path Computation
	Parallel Sparse Matrix Multiplication

	Algebraic Parallel Programming
	Cyclops Tensor Framework
	Performance Results

	Conclusion

