
Communication-avoiding factorization algorithms

Edgar Solomonik

Department of Computer Science, University of Illinois at Urbana-Champaign

Conference on Fast Direct Solvers, Purdue University

November 10, 2018

Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 1/18



Beyond computational complexity

Algorithms should minimize communication, not just computation
communication and synchronization cost more energy than flops

two types of communication (data movement):

vertical (intranode memory–cache)
horizontal (internode network transfers)

parallel algorithm design involves tradeoffs: computation vs
communication vs synchronization
parameterized algorithms provide optimality and flexibility

Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 2/18



Beyond computational complexity

Algorithms should minimize communication, not just computation
communication and synchronization cost more energy than flops
two types of communication (data movement):

vertical (intranode memory–cache)
horizontal (internode network transfers)

parallel algorithm design involves tradeoffs: computation vs
communication vs synchronization
parameterized algorithms provide optimality and flexibility

Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 2/18



Beyond computational complexity

Algorithms should minimize communication, not just computation
communication and synchronization cost more energy than flops
two types of communication (data movement):

vertical (intranode memory–cache)

horizontal (internode network transfers)

parallel algorithm design involves tradeoffs: computation vs
communication vs synchronization
parameterized algorithms provide optimality and flexibility

Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 2/18



Beyond computational complexity

Algorithms should minimize communication, not just computation
communication and synchronization cost more energy than flops
two types of communication (data movement):

vertical (intranode memory–cache)
horizontal (internode network transfers)

parallel algorithm design involves tradeoffs: computation vs
communication vs synchronization
parameterized algorithms provide optimality and flexibility

Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 2/18



Beyond computational complexity

Algorithms should minimize communication, not just computation
communication and synchronization cost more energy than flops
two types of communication (data movement):

vertical (intranode memory–cache)
horizontal (internode network transfers)

parallel algorithm design involves tradeoffs: computation vs
communication vs synchronization

parameterized algorithms provide optimality and flexibility

Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 2/18



Beyond computational complexity

Algorithms should minimize communication, not just computation
communication and synchronization cost more energy than flops
two types of communication (data movement):

vertical (intranode memory–cache)
horizontal (internode network transfers)

parallel algorithm design involves tradeoffs: computation vs
communication vs synchronization
parameterized algorithms provide optimality and flexibility

Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 2/18



Cost model for parallel algorithms

We use the Bulk Synchronous Parallel (BSP) model (L.G. Valiant 1990)
execution is subdivided into S supersteps, each associated with a
global synchronization (cost α)

at the start of each superstep, processors interchange messages, then
they perform local computation
if the maximum amount of data sent or received by any process is wi
(work done is fi and amount of memory traffic is qi) at superstep i
then the BSP time is

T =
S∑
i=1

α+ wi · β + qi · ν + fi · γ = O(S · α+W · β +Q · ν + F · γ)

where typically α� β � ν � γ

we mention vertical communication cost only when it exceeds
Q = O(F/

√
H +W ) where H is cache size

Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 3/18



Cost model for parallel algorithms

We use the Bulk Synchronous Parallel (BSP) model (L.G. Valiant 1990)
execution is subdivided into S supersteps, each associated with a
global synchronization (cost α)
at the start of each superstep, processors interchange messages, then
they perform local computation

if the maximum amount of data sent or received by any process is wi
(work done is fi and amount of memory traffic is qi) at superstep i
then the BSP time is

T =
S∑
i=1

α+ wi · β + qi · ν + fi · γ = O(S · α+W · β +Q · ν + F · γ)

where typically α� β � ν � γ

we mention vertical communication cost only when it exceeds
Q = O(F/

√
H +W ) where H is cache size

Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 3/18



Cost model for parallel algorithms

We use the Bulk Synchronous Parallel (BSP) model (L.G. Valiant 1990)
execution is subdivided into S supersteps, each associated with a
global synchronization (cost α)
at the start of each superstep, processors interchange messages, then
they perform local computation
if the maximum amount of data sent or received by any process is wi
(work done is fi and amount of memory traffic is qi) at superstep i
then the BSP time is

T =
S∑
i=1

α+ wi · β + qi · ν + fi · γ = O(S · α+W · β +Q · ν + F · γ)

where typically α� β � ν � γ

we mention vertical communication cost only when it exceeds
Q = O(F/

√
H +W ) where H is cache size

Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 3/18



Cost model for parallel algorithms

We use the Bulk Synchronous Parallel (BSP) model (L.G. Valiant 1990)
execution is subdivided into S supersteps, each associated with a
global synchronization (cost α)
at the start of each superstep, processors interchange messages, then
they perform local computation
if the maximum amount of data sent or received by any process is wi
(work done is fi and amount of memory traffic is qi) at superstep i
then the BSP time is

T =
S∑
i=1

α+ wi · β + qi · ν + fi · γ = O(S · α+W · β +Q · ν + F · γ)

where typically α� β � ν � γ

we mention vertical communication cost only when it exceeds
Q = O(F/

√
H +W ) where H is cache size

Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 3/18



Communication complexity of matrix multiplication

Multiplication of A ∈ Rm×k and B ∈ Rk×n can be done in O(1)
supersteps with communication cost W = O

((
mnk
p

)2/3) provided
sufficient memory and sufficiently large p

when m = n = k, 3D blocking gets O(p1/6) improvement over 2D1

when m,n, k are unequal, need appropriate processor grid2

1J. Berntsen, Par. Comp., 1989; A. Aggarwal, A. Chandra, M. Snir, TCS, 1990; R.C. Agarwal, S.M. Balle, F.G. Gustavson,
M. Joshi, P. Palkar, IBM, 1995; F.W. McColl, A. Tiskin, Algorithmica, 1999; ...

2J. Demmel, D. Eliahu, A. Fox, S. Kamil, B. Lipshitz, O. Schwartz, O. Spillinger 2013
Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 4/18



Communication complexity of matrix multiplication

Multiplication of A ∈ Rm×k and B ∈ Rk×n can be done in O(1)
supersteps with communication cost W = O

((
mnk
p

)2/3) provided
sufficient memory and sufficiently large p

when m = n = k, 3D blocking gets O(p1/6) improvement over 2D1

when m,n, k are unequal, need appropriate processor grid2

1J. Berntsen, Par. Comp., 1989; A. Aggarwal, A. Chandra, M. Snir, TCS, 1990; R.C. Agarwal, S.M. Balle, F.G. Gustavson,
M. Joshi, P. Palkar, IBM, 1995; F.W. McColl, A. Tiskin, Algorithmica, 1999; ...

2J. Demmel, D. Eliahu, A. Fox, S. Kamil, B. Lipshitz, O. Schwartz, O. Spillinger 2013
Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 4/18



Communication complexity of matrix multiplication

Multiplication of A ∈ Rm×k and B ∈ Rk×n can be done in O(1)
supersteps with communication cost W = O

((
mnk
p

)2/3) provided
sufficient memory and sufficiently large p

when m = n = k, 3D blocking gets O(p1/6) improvement over 2D1

when m,n, k are unequal, need appropriate processor grid2

1J. Berntsen, Par. Comp., 1989; A. Aggarwal, A. Chandra, M. Snir, TCS, 1990; R.C. Agarwal, S.M. Balle, F.G. Gustavson,
M. Joshi, P. Palkar, IBM, 1995; F.W. McColl, A. Tiskin, Algorithmica, 1999; ...

2J. Demmel, D. Eliahu, A. Fox, S. Kamil, B. Lipshitz, O. Schwartz, O. Spillinger 2013
Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 4/18



Communication complexity of dense matrix kernels

For n× n Cholesky with p processors

F = O(n3/p), W = O(n2/pδ), S = O(pδ)

given memory to store p2δ−1 copies of the matrix for any δ = [1/2, 2/3].

Can achieve similar costs for LU, QR, and the symmetric eigenvalue
problem (modulo logarithmic factors on synchronization), but algorithmic
changes (as opposed to parallel schedules) are necessary.

triangular solve square TRSM X3 rectangular TRSM X4

LU with pivoting pairwise pivoting X5 tournament pivoting X6

QR factorization Givens on square X3 Householder on rect. X7

SVD (sym. eig.) singular values only X8 singular vectors X

3B. Lipshitz, MS thesis 2013
4T. Wicky, E.S., T. Hoefler, IPDPS 2017
5A. Tiskin, FGCS 2007
6E.S., J. Demmel, EuroPar 2011
7E.S., G. Ballard, T. Hoefler, J. Demmel, SPAA 2017

Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 5/18



Communication complexity of dense matrix kernels

For n× n Cholesky with p processors

F = O(n3/p), W = O(n2/pδ), S = O(pδ)

given memory to store p2δ−1 copies of the matrix for any δ = [1/2, 2/3].

Can achieve similar costs for LU, QR, and the symmetric eigenvalue
problem (modulo logarithmic factors on synchronization), but algorithmic
changes (as opposed to parallel schedules) are necessary.

triangular solve square TRSM X3 rectangular TRSM X4

LU with pivoting pairwise pivoting X5 tournament pivoting X6

QR factorization Givens on square X3 Householder on rect. X7

SVD (sym. eig.) singular values only X8 singular vectors X
3B. Lipshitz, MS thesis 2013
4T. Wicky, E.S., T. Hoefler, IPDPS 2017
5A. Tiskin, FGCS 2007
6E.S., J. Demmel, EuroPar 2011
7E.S., G. Ballard, T. Hoefler, J. Demmel, SPAA 2017

Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 5/18



Tradeoffs between costs based on dependency graphs

Definition ((ε, σ)-path-expander)
Graph G = (V,E) is a (ε, σ)-path-expander if there exists a path
(u1, . . . un) ⊂ V , such that the dependency interval [ui, ui+b]G for each
i, b has size Θ(σ(b)) and a minimum cut of size Ω(ε(b)).

computation-synchronizaton tradeoff in diamond DAG8: F · S = Ω(n2)
extends to triangular solve, matrix factorization, and iterative methods9

8C.H. Papadimitriou, J.D. Ullman, SIAM JC, 1987
9E.S., E. Carson, N. Knight, J. Demmel, JPDC 2017

Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 6/18



Tradeoffs between costs based on dependency graphs

Definition ((ε, σ)-path-expander)
Graph G = (V,E) is a (ε, σ)-path-expander if there exists a path
(u1, . . . un) ⊂ V , such that the dependency interval [ui, ui+b]G for each
i, b has size Θ(σ(b)) and a minimum cut of size Ω(ε(b)).

computation-synchronizaton tradeoff in diamond DAG8: F · S = Ω(n2)
extends to triangular solve, matrix factorization, and iterative methods9

8C.H. Papadimitriou, J.D. Ullman, SIAM JC, 1987
9E.S., E. Carson, N. Knight, J. Demmel, JPDC 2017

Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 6/18



Tradeoffs between costs

Definition ((ε, σ)-path-expander)
Graph G = (V,E) is a (ε, σ)-path-expander if there exists a path
(u1, . . . un) ⊂ V , such that the dependency interval [ui, ui+b]G for each
i, b has size Θ(σ(b)) and a minimum cut of size Ω(ε(b)).

Theorem (Path-expander communication lower bound)
Any parallel schedule of an algorithm with a (ε, σ)-path-expander
dependency graph about a path of length n and some b ∈ [1, n] incurs
computation (F ), communication (W ), and synchronization (S) costs:

F = Ω (σ(b) · n/b) , W = Ω (ε(b) · n/b) , S = Ω (n/b) .

Corollary (Computation-sync. and bandwidth-sync. tradeoffs)
If σ(b) = bd and ε(b) = bd−1, the above theorem yields,

F · Sd−1 = Ω(nd), W · Sd−2 = Ω(nd−1).

Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 7/18



Tradeoffs between costs

Definition ((ε, σ)-path-expander)
Graph G = (V,E) is a (ε, σ)-path-expander if there exists a path
(u1, . . . un) ⊂ V , such that the dependency interval [ui, ui+b]G for each
i, b has size Θ(σ(b)) and a minimum cut of size Ω(ε(b)).

Theorem (Path-expander communication lower bound)
Any parallel schedule of an algorithm with a (ε, σ)-path-expander
dependency graph about a path of length n and some b ∈ [1, n] incurs
computation (F ), communication (W ), and synchronization (S) costs:

F = Ω (σ(b) · n/b) , W = Ω (ε(b) · n/b) , S = Ω (n/b) .

Corollary (Computation-sync. and bandwidth-sync. tradeoffs)
If σ(b) = bd and ε(b) = bd−1, the above theorem yields,

F · Sd−1 = Ω(nd), W · Sd−2 = Ω(nd−1).
Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 7/18



New algorithms can circumvent lower bounds

For TRSM, we can achieve a lower synchronization/communication cost
by performing triangular inversion on diagonal blocks

MS thesis work by Tobias Wicky10

decreases synchronization cost by O(p2/3) on p processors with respect
to known algorithms
optimal communication for any number of right-hand sides

10T. Wicky, E.S., T. Hoefler, IPDPS 2017
Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 8/18



New algorithms can circumvent lower bounds

For TRSM, we can achieve a lower synchronization/communication cost
by performing triangular inversion on diagonal blocks

MS thesis work by Tobias Wicky10

decreases synchronization cost by O(p2/3) on p processors with respect
to known algorithms

optimal communication for any number of right-hand sides

10T. Wicky, E.S., T. Hoefler, IPDPS 2017
Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 8/18



New algorithms can circumvent lower bounds

For TRSM, we can achieve a lower synchronization/communication cost
by performing triangular inversion on diagonal blocks

MS thesis work by Tobias Wicky10

decreases synchronization cost by O(p2/3) on p processors with respect
to known algorithms
optimal communication for any number of right-hand sides

10T. Wicky, E.S., T. Hoefler, IPDPS 2017
Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 8/18



QR factorization of tall-and-skinny matrices

Consider the reduced factorization A = QR with A,Q ∈ Rm×n and
R ∈ Rn×n when m� n (in particular m ≥ np)

A is tall-and-skinny, each processor owns a block of rows

Householder-QR requires S = Θ(n) supersteps, W = O(n2) comm.
TSQR11 row-wise divide-and-conquer, W=O(n2 log p), S=O(log p)[

Q1R1
Q2R2

]
=
[

TSQR(A1)
TSQR(A2)

]
,Q12R =

[
R1
R2

]
,Q =

[
Q1

Q2

]
Q12

TSQR-HR12 Householder rep. I−Y T Y , W=O(n2 log p), S=O(log p)
Cholesky-QR213 stable so long as κ(A) ≤ 1/

√
ε, achieves W=O(n2),

S=O(1), Cholesky-QR314 gets same and is unconditionally stable

11J. Demmel, L. Grigori, M. Hoemmen, J. Langou 2012
12G. Ballard, J. Demmel, L. Grigori, M. Jacquelin, H.-D. Nguyen, E.S. 2014
13Y. Yamamoto, Y. Nakatsukasa, Y. Yanagisawa, T. Fukaya 2015
14T. Fukaya, R. Kannan, Y. Nakatsukasa, Y. Yamamoto, Y. Yanagisawa 2018

Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 9/18



QR factorization of tall-and-skinny matrices

Consider the reduced factorization A = QR with A,Q ∈ Rm×n and
R ∈ Rn×n when m� n (in particular m ≥ np)

A is tall-and-skinny, each processor owns a block of rows
Householder-QR requires S = Θ(n) supersteps, W = O(n2) comm.

TSQR11 row-wise divide-and-conquer, W=O(n2 log p), S=O(log p)[
Q1R1
Q2R2

]
=
[

TSQR(A1)
TSQR(A2)

]
,Q12R =

[
R1
R2

]
,Q =

[
Q1

Q2

]
Q12

TSQR-HR12 Householder rep. I−Y T Y , W=O(n2 log p), S=O(log p)
Cholesky-QR213 stable so long as κ(A) ≤ 1/

√
ε, achieves W=O(n2),

S=O(1), Cholesky-QR314 gets same and is unconditionally stable

11J. Demmel, L. Grigori, M. Hoemmen, J. Langou 2012
12G. Ballard, J. Demmel, L. Grigori, M. Jacquelin, H.-D. Nguyen, E.S. 2014
13Y. Yamamoto, Y. Nakatsukasa, Y. Yanagisawa, T. Fukaya 2015
14T. Fukaya, R. Kannan, Y. Nakatsukasa, Y. Yamamoto, Y. Yanagisawa 2018

Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 9/18



QR factorization of tall-and-skinny matrices

Consider the reduced factorization A = QR with A,Q ∈ Rm×n and
R ∈ Rn×n when m� n (in particular m ≥ np)

A is tall-and-skinny, each processor owns a block of rows
Householder-QR requires S = Θ(n) supersteps, W = O(n2) comm.
TSQR11 row-wise divide-and-conquer, W=O(n2 log p), S=O(log p)[

Q1R1
Q2R2

]
=
[

TSQR(A1)
TSQR(A2)

]
,Q12R =

[
R1
R2

]
,Q =

[
Q1

Q2

]
Q12

TSQR-HR12 Householder rep. I−Y T Y , W=O(n2 log p), S=O(log p)
Cholesky-QR213 stable so long as κ(A) ≤ 1/

√
ε, achieves W=O(n2),

S=O(1), Cholesky-QR314 gets same and is unconditionally stable

11J. Demmel, L. Grigori, M. Hoemmen, J. Langou 2012
12G. Ballard, J. Demmel, L. Grigori, M. Jacquelin, H.-D. Nguyen, E.S. 2014
13Y. Yamamoto, Y. Nakatsukasa, Y. Yanagisawa, T. Fukaya 2015
14T. Fukaya, R. Kannan, Y. Nakatsukasa, Y. Yamamoto, Y. Yanagisawa 2018

Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 9/18



QR factorization of tall-and-skinny matrices

Consider the reduced factorization A = QR with A,Q ∈ Rm×n and
R ∈ Rn×n when m� n (in particular m ≥ np)

A is tall-and-skinny, each processor owns a block of rows
Householder-QR requires S = Θ(n) supersteps, W = O(n2) comm.
TSQR11 row-wise divide-and-conquer, W=O(n2 log p), S=O(log p)[

Q1R1
Q2R2

]
=
[

TSQR(A1)
TSQR(A2)

]
,Q12R =

[
R1
R2

]
,Q =

[
Q1

Q2

]
Q12

TSQR-HR12 Householder rep. I−Y T Y , W=O(n2 log p), S=O(log p)

Cholesky-QR213 stable so long as κ(A) ≤ 1/
√
ε, achieves W=O(n2),

S=O(1), Cholesky-QR314 gets same and is unconditionally stable

11J. Demmel, L. Grigori, M. Hoemmen, J. Langou 2012
12G. Ballard, J. Demmel, L. Grigori, M. Jacquelin, H.-D. Nguyen, E.S. 2014
13Y. Yamamoto, Y. Nakatsukasa, Y. Yanagisawa, T. Fukaya 2015
14T. Fukaya, R. Kannan, Y. Nakatsukasa, Y. Yamamoto, Y. Yanagisawa 2018

Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 9/18



QR factorization of tall-and-skinny matrices

Consider the reduced factorization A = QR with A,Q ∈ Rm×n and
R ∈ Rn×n when m� n (in particular m ≥ np)

A is tall-and-skinny, each processor owns a block of rows
Householder-QR requires S = Θ(n) supersteps, W = O(n2) comm.
TSQR11 row-wise divide-and-conquer, W=O(n2 log p), S=O(log p)[

Q1R1
Q2R2

]
=
[

TSQR(A1)
TSQR(A2)

]
,Q12R =

[
R1
R2

]
,Q =

[
Q1

Q2

]
Q12

TSQR-HR12 Householder rep. I−Y T Y , W=O(n2 log p), S=O(log p)
Cholesky-QR213 stable so long as κ(A) ≤ 1/

√
ε, achieves W=O(n2),

S=O(1), Cholesky-QR314 gets same and is unconditionally stable

11J. Demmel, L. Grigori, M. Hoemmen, J. Langou 2012
12G. Ballard, J. Demmel, L. Grigori, M. Jacquelin, H.-D. Nguyen, E.S. 2014
13Y. Yamamoto, Y. Nakatsukasa, Y. Yanagisawa, T. Fukaya 2015
14T. Fukaya, R. Kannan, Y. Nakatsukasa, Y. Yamamoto, Y. Yanagisawa 2018

Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 9/18



QR factorization of square matrices

Square matrix QR algorithms generally use 1D QR for panel factorization
algorithms in ScaLAPACK, Elemental, DPLASMA use 2D layout,
generally achieve W = O(n2/

√
p) cost

Tiskin’s 3D QR algorithm15 achieves W = O(n2/p2/3) communication

however, requires slanted-panel matrix embedding

which is highly inefficient for rectangular (tall-and-skinny) matrices

15A. Tiskin 2007, “Communication-efficient generic pairwise elimination”
Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 10/18



QR factorization of square matrices

Square matrix QR algorithms generally use 1D QR for panel factorization
algorithms in ScaLAPACK, Elemental, DPLASMA use 2D layout,
generally achieve W = O(n2/

√
p) cost

Tiskin’s 3D QR algorithm15 achieves W = O(n2/p2/3) communication

however, requires slanted-panel matrix embedding

which is highly inefficient for rectangular (tall-and-skinny) matrices

15A. Tiskin 2007, “Communication-efficient generic pairwise elimination”
Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 10/18



QR factorization of square matrices

Square matrix QR algorithms generally use 1D QR for panel factorization
algorithms in ScaLAPACK, Elemental, DPLASMA use 2D layout,
generally achieve W = O(n2/

√
p) cost

Tiskin’s 3D QR algorithm15 achieves W = O(n2/p2/3) communication

however, requires slanted-panel matrix embedding

which is highly inefficient for rectangular (tall-and-skinny) matrices
15A. Tiskin 2007, “Communication-efficient generic pairwise elimination”

Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 10/18



Communication-avoiding rectangular QR

For A ∈ Rm×n existing algorithms are optimal when m = n and m� n

cases with n < m < np underdetermined equations are important

new algorithm16

subdivide p processors into m/n groups of pn/m processors
perform row-recursive QR (TSQR) with tree of height log2(m/n)

compute each tree-node elimination Q12R =
[
R1
R2

]
using Tiskin’s QR

with pn/m or more processors

note: interleaving rows of R1 and R2 gives a slanted panel
obtains ideal communication cost for any m,n, generally

W = O

((mn2

p

)2/3)

16E.S., G. Ballard, J. Demmel, and T. Hoefler, SPAA 2017
Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 11/18



Communication-avoiding rectangular QR

For A ∈ Rm×n existing algorithms are optimal when m = n and m� n

cases with n < m < np underdetermined equations are important
new algorithm16

subdivide p processors into m/n groups of pn/m processors
perform row-recursive QR (TSQR) with tree of height log2(m/n)

compute each tree-node elimination Q12R =
[
R1
R2

]
using Tiskin’s QR

with pn/m or more processors
note: interleaving rows of R1 and R2 gives a slanted panel
obtains ideal communication cost for any m,n, generally

W = O

((mn2

p

)2/3)

16E.S., G. Ballard, J. Demmel, and T. Hoefler, SPAA 2017
Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 11/18



Communication-avoiding rectangular QR

For A ∈ Rm×n existing algorithms are optimal when m = n and m� n

cases with n < m < np underdetermined equations are important
new algorithm16

subdivide p processors into m/n groups of pn/m processors

perform row-recursive QR (TSQR) with tree of height log2(m/n)

compute each tree-node elimination Q12R =
[
R1
R2

]
using Tiskin’s QR

with pn/m or more processors
note: interleaving rows of R1 and R2 gives a slanted panel
obtains ideal communication cost for any m,n, generally

W = O

((mn2

p

)2/3)

16E.S., G. Ballard, J. Demmel, and T. Hoefler, SPAA 2017
Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 11/18



Communication-avoiding rectangular QR

For A ∈ Rm×n existing algorithms are optimal when m = n and m� n

cases with n < m < np underdetermined equations are important
new algorithm16

subdivide p processors into m/n groups of pn/m processors
perform row-recursive QR (TSQR) with tree of height log2(m/n)

compute each tree-node elimination Q12R =
[
R1
R2

]
using Tiskin’s QR

with pn/m or more processors
note: interleaving rows of R1 and R2 gives a slanted panel
obtains ideal communication cost for any m,n, generally

W = O

((mn2

p

)2/3)

16E.S., G. Ballard, J. Demmel, and T. Hoefler, SPAA 2017
Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 11/18



Communication-avoiding rectangular QR

For A ∈ Rm×n existing algorithms are optimal when m = n and m� n

cases with n < m < np underdetermined equations are important
new algorithm16

subdivide p processors into m/n groups of pn/m processors
perform row-recursive QR (TSQR) with tree of height log2(m/n)

compute each tree-node elimination Q12R =
[
R1
R2

]
using Tiskin’s QR

with pn/m or more processors

note: interleaving rows of R1 and R2 gives a slanted panel
obtains ideal communication cost for any m,n, generally

W = O

((mn2

p

)2/3)

16E.S., G. Ballard, J. Demmel, and T. Hoefler, SPAA 2017
Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 11/18



Communication-avoiding rectangular QR

For A ∈ Rm×n existing algorithms are optimal when m = n and m� n

cases with n < m < np underdetermined equations are important
new algorithm16

subdivide p processors into m/n groups of pn/m processors
perform row-recursive QR (TSQR) with tree of height log2(m/n)

compute each tree-node elimination Q12R =
[
R1
R2

]
using Tiskin’s QR

with pn/m or more processors
note: interleaving rows of R1 and R2 gives a slanted panel

obtains ideal communication cost for any m,n, generally

W = O

((mn2

p

)2/3)

16E.S., G. Ballard, J. Demmel, and T. Hoefler, SPAA 2017
Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 11/18



Communication-avoiding rectangular QR

For A ∈ Rm×n existing algorithms are optimal when m = n and m� n

cases with n < m < np underdetermined equations are important
new algorithm16

subdivide p processors into m/n groups of pn/m processors
perform row-recursive QR (TSQR) with tree of height log2(m/n)

compute each tree-node elimination Q12R =
[
R1
R2

]
using Tiskin’s QR

with pn/m or more processors
note: interleaving rows of R1 and R2 gives a slanted panel
obtains ideal communication cost for any m,n, generally

W = O

((mn2

p

)2/3)

16E.S., G. Ballard, J. Demmel, and T. Hoefler, SPAA 2017
Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 11/18



Cholesky-QR2 for rectangular matrices

Cholesky-QR217 with 3D Cholesky gives a practical 3D QR algorithm18

Compute A = Q̂R̂ using Cholesky-QR ATA = R̂T R̂, Q̂ = AR̂−1

Correct approximate factorization by Cholesky-QR QR̄ = Q̂, R = R̄R̂

Simple algorithm to achieve minimize comm. and sync. for any m,n, p

 0

 20

 40

 60

 80

 100

32 64 128 256 512 1024 2048

G
ig

af
lo

ps
/s

/N
od

e

Nodes of BlueWaters

QR factorization of 4194304 x 2048 matrix

ScaLAPACK

CholeskyQR2

 0

 20

 40

 60

 80

 100

128 256 512 1024
G

ig
af

lo
ps

/s
/N

od
e

Nodes of Stampede2

QR factorization of 524288 x 8192 matrix

CholeskyQR2

ScaLAPACK

Analysis and implementation by PhD student Edward Hutter

17T. Fukaya, Y. Nakatsukasa, Y. Yanagisawa, Y. Yamamoto 2014
18E. Hutter, E.S. 2018

Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 12/18



Tridiagonalization

Reducing the symmetric matrix A ∈ Rn×n to a tridiagonal matrix

T = QTAQ

via a two-sided orthogonal transformation is most costly in diagonalization
(eigenvalue computation, SVD similar)

can be done by successive subcolumn QR factorizations

T = QT
1 · · ·QT

n−2︸ ︷︷ ︸
QT

A Q1 · · ·Qn−2︸ ︷︷ ︸
Q

two-sided updates harder to parallelize than one-sided
each update requires a BSP superstep and reading A from memory
can use n/b QRs on panels of b subcolumns to go to band-width b+ 1
b = 1 gives direct tridiagonalization

Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 13/18



Tridiagonalization

Reducing the symmetric matrix A ∈ Rn×n to a tridiagonal matrix

T = QTAQ

via a two-sided orthogonal transformation is most costly in diagonalization
(eigenvalue computation, SVD similar)

can be done by successive subcolumn QR factorizations

T = QT
1 · · ·QT

n−2︸ ︷︷ ︸
QT

A Q1 · · ·Qn−2︸ ︷︷ ︸
Q

two-sided updates harder to parallelize than one-sided
each update requires a BSP superstep and reading A from memory
can use n/b QRs on panels of b subcolumns to go to band-width b+ 1
b = 1 gives direct tridiagonalization

Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 13/18



Tridiagonalization

Reducing the symmetric matrix A ∈ Rn×n to a tridiagonal matrix

T = QTAQ

via a two-sided orthogonal transformation is most costly in diagonalization
(eigenvalue computation, SVD similar)

can be done by successive subcolumn QR factorizations

T = QT
1 · · ·QT

n−2︸ ︷︷ ︸
QT

A Q1 · · ·Qn−2︸ ︷︷ ︸
Q

two-sided updates harder to parallelize than one-sided

each update requires a BSP superstep and reading A from memory
can use n/b QRs on panels of b subcolumns to go to band-width b+ 1
b = 1 gives direct tridiagonalization

Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 13/18



Tridiagonalization

Reducing the symmetric matrix A ∈ Rn×n to a tridiagonal matrix

T = QTAQ

via a two-sided orthogonal transformation is most costly in diagonalization
(eigenvalue computation, SVD similar)

can be done by successive subcolumn QR factorizations

T = QT
1 · · ·QT

n−2︸ ︷︷ ︸
QT

A Q1 · · ·Qn−2︸ ︷︷ ︸
Q

two-sided updates harder to parallelize than one-sided
each update requires a BSP superstep and reading A from memory

can use n/b QRs on panels of b subcolumns to go to band-width b+ 1
b = 1 gives direct tridiagonalization

Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 13/18



Tridiagonalization

Reducing the symmetric matrix A ∈ Rn×n to a tridiagonal matrix

T = QTAQ

via a two-sided orthogonal transformation is most costly in diagonalization
(eigenvalue computation, SVD similar)

can be done by successive subcolumn QR factorizations

T = QT
1 · · ·QT

n−2︸ ︷︷ ︸
QT

A Q1 · · ·Qn−2︸ ︷︷ ︸
Q

two-sided updates harder to parallelize than one-sided
each update requires a BSP superstep and reading A from memory
can use n/b QRs on panels of b subcolumns to go to band-width b+ 1

b = 1 gives direct tridiagonalization

Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 13/18



Tridiagonalization

Reducing the symmetric matrix A ∈ Rn×n to a tridiagonal matrix

T = QTAQ

via a two-sided orthogonal transformation is most costly in diagonalization
(eigenvalue computation, SVD similar)

can be done by successive subcolumn QR factorizations

T = QT
1 · · ·QT

n−2︸ ︷︷ ︸
QT

A Q1 · · ·Qn−2︸ ︷︷ ︸
Q

two-sided updates harder to parallelize than one-sided
each update requires a BSP superstep and reading A from memory
can use n/b QRs on panels of b subcolumns to go to band-width b+ 1
b = 1 gives direct tridiagonalization

Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 13/18



Successive band reduction (SBR)

After reducing to a banded matrix, we need to transform the banded
matrix to a tridiagonal one

fewer nonzeros lead to lower computational cost, F = O(n2b/p)
however, transformations introduce fill/bulges
bulges must be chased down the band19

communication- and synchronization-efficient 1D SBR algorithm
known for small band-width20

19Lang 1993; Bischof, Lang, Sun 2000
20Ballard, Demmel, Knight 2012

Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 14/18



Successive band reduction (SBR)

After reducing to a banded matrix, we need to transform the banded
matrix to a tridiagonal one

fewer nonzeros lead to lower computational cost, F = O(n2b/p)

however, transformations introduce fill/bulges
bulges must be chased down the band19

communication- and synchronization-efficient 1D SBR algorithm
known for small band-width20

19Lang 1993; Bischof, Lang, Sun 2000
20Ballard, Demmel, Knight 2012

Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 14/18



Successive band reduction (SBR)

After reducing to a banded matrix, we need to transform the banded
matrix to a tridiagonal one

fewer nonzeros lead to lower computational cost, F = O(n2b/p)
however, transformations introduce fill/bulges

bulges must be chased down the band19

communication- and synchronization-efficient 1D SBR algorithm
known for small band-width20

19Lang 1993; Bischof, Lang, Sun 2000
20Ballard, Demmel, Knight 2012

Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 14/18



Successive band reduction (SBR)

After reducing to a banded matrix, we need to transform the banded
matrix to a tridiagonal one

fewer nonzeros lead to lower computational cost, F = O(n2b/p)
however, transformations introduce fill/bulges
bulges must be chased down the band19

communication- and synchronization-efficient 1D SBR algorithm
known for small band-width20

19Lang 1993; Bischof, Lang, Sun 2000
20Ballard, Demmel, Knight 2012

Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 14/18



Successive band reduction (SBR)

After reducing to a banded matrix, we need to transform the banded
matrix to a tridiagonal one

fewer nonzeros lead to lower computational cost, F = O(n2b/p)
however, transformations introduce fill/bulges
bulges must be chased down the band19

communication- and synchronization-efficient 1D SBR algorithm
known for small band-width20

19Lang 1993; Bischof, Lang, Sun 2000
20Ballard, Demmel, Knight 2012

Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 14/18



Communication-efficient eigenvalue computation

Previous work (start-of-the-art): two-stage tridiagonalization
implemented in ELPA, can outperform ScaLAPACK21

with n = n/
√
p, 1D SBR gives W = O(n2/

√
p), S = O(√p log2(p))22

New results23: many-stage tridiagonalization

Θ(log(p)) intermediate band-widths to achieve W = O(n2/p2/3)
communication-efficient rectangular QR with processor groups

3D SBR (each QR and matrix multiplication update parallelized)

21Auckenthaler, Bungartz, Huckle, Krämer, Lang, Willems 2011
22Ballard, Demmel, Knight 2012
23E.S., G. Ballard, J. Demmel, T. Hoefler, SPAA 2017

Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 15/18



Communication-efficient eigenvalue computation

Previous work (start-of-the-art): two-stage tridiagonalization
implemented in ELPA, can outperform ScaLAPACK21

with n = n/
√
p, 1D SBR gives W = O(n2/

√
p), S = O(√p log2(p))22

New results23: many-stage tridiagonalization

Θ(log(p)) intermediate band-widths to achieve W = O(n2/p2/3)
communication-efficient rectangular QR with processor groups

3D SBR (each QR and matrix multiplication update parallelized)

21Auckenthaler, Bungartz, Huckle, Krämer, Lang, Willems 2011
22Ballard, Demmel, Knight 2012
23E.S., G. Ballard, J. Demmel, T. Hoefler, SPAA 2017

Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 15/18



Communication-efficient eigenvalue computation

Previous work (start-of-the-art): two-stage tridiagonalization
implemented in ELPA, can outperform ScaLAPACK21

with n = n/
√
p, 1D SBR gives W = O(n2/

√
p), S = O(√p log2(p))22

New results23: many-stage tridiagonalization

Θ(log(p)) intermediate band-widths to achieve W = O(n2/p2/3)
communication-efficient rectangular QR with processor groups

3D SBR (each QR and matrix multiplication update parallelized)

21Auckenthaler, Bungartz, Huckle, Krämer, Lang, Willems 2011
22Ballard, Demmel, Knight 2012
23E.S., G. Ballard, J. Demmel, T. Hoefler, SPAA 2017

Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 15/18



Communication-efficient eigenvalue computation

Previous work (start-of-the-art): two-stage tridiagonalization
implemented in ELPA, can outperform ScaLAPACK21

with n = n/
√
p, 1D SBR gives W = O(n2/

√
p), S = O(√p log2(p))22

New results23: many-stage tridiagonalization
Θ(log(p)) intermediate band-widths to achieve W = O(n2/p2/3)

communication-efficient rectangular QR with processor groups

3D SBR (each QR and matrix multiplication update parallelized)

21Auckenthaler, Bungartz, Huckle, Krämer, Lang, Willems 2011
22Ballard, Demmel, Knight 2012
23E.S., G. Ballard, J. Demmel, T. Hoefler, SPAA 2017

Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 15/18



Communication-efficient eigenvalue computation

Previous work (start-of-the-art): two-stage tridiagonalization
implemented in ELPA, can outperform ScaLAPACK21

with n = n/
√
p, 1D SBR gives W = O(n2/

√
p), S = O(√p log2(p))22

New results23: many-stage tridiagonalization
Θ(log(p)) intermediate band-widths to achieve W = O(n2/p2/3)
communication-efficient rectangular QR with processor groups

3D SBR (each QR and matrix multiplication update parallelized)

21Auckenthaler, Bungartz, Huckle, Krämer, Lang, Willems 2011
22Ballard, Demmel, Knight 2012
23E.S., G. Ballard, J. Demmel, T. Hoefler, SPAA 2017

Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 15/18



Communication-efficient eigenvalue computation

Previous work (start-of-the-art): two-stage tridiagonalization
implemented in ELPA, can outperform ScaLAPACK21

with n = n/
√
p, 1D SBR gives W = O(n2/

√
p), S = O(√p log2(p))22

New results23: many-stage tridiagonalization
Θ(log(p)) intermediate band-widths to achieve W = O(n2/p2/3)
communication-efficient rectangular QR with processor groups

3D SBR (each QR and matrix multiplication update parallelized)
21Auckenthaler, Bungartz, Huckle, Krämer, Lang, Willems 2011
22Ballard, Demmel, Knight 2012
23E.S., G. Ballard, J. Demmel, T. Hoefler, SPAA 2017

Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 15/18



Symmetric eigensolver results summary

Algorithm W Q S

ScaLAPACK n2/
√
p n3/p n log(p)

ELPA n2/
√
p - n log(p)

two-stage + 1D-SBR n2/
√
p n2 log(n)/√p √

p(log2(p) + log(n))
many-stage n2/p2/3 n2 log(p)/p2/3 p2/3 log2 p

costs are asymptotic (same computational cost F for eigenvalues)
W – horizontal (interprocessor) communication
Q – vertical (memory–cache) communication excluding W + F/

√
H

where H is cache size
S – synchronization cost (number of supersteps)

Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 16/18



Conclusion

Summary of new communication avoiding algorithms
communication-efficient QR factorization algorithm

optimal communication cost for any matrix dimensions
variants that trade-off some accuracy guarantees for performance

communication-efficient symmetric eigensolver algorithm

reduce matrix to successively smaller band-width
uses concurrent executions of 3D matrix multiplication and 3D QR

Practical implications

ELPA demonstrated efficacy of two-stage approach, our work
motivates 3+ stages
partial parallel implementation is competitive but no speed-up

Future work

back-transformations to compute eigenvectors in less computational
complexity than F = O(n3 log(p)/p)
QR with column pivoting / low-rank SVD / sparse factorization

Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 17/18



Conclusion

Summary of new communication avoiding algorithms
communication-efficient QR factorization algorithm

optimal communication cost for any matrix dimensions

variants that trade-off some accuracy guarantees for performance
communication-efficient symmetric eigensolver algorithm

reduce matrix to successively smaller band-width
uses concurrent executions of 3D matrix multiplication and 3D QR

Practical implications

ELPA demonstrated efficacy of two-stage approach, our work
motivates 3+ stages
partial parallel implementation is competitive but no speed-up

Future work

back-transformations to compute eigenvectors in less computational
complexity than F = O(n3 log(p)/p)
QR with column pivoting / low-rank SVD / sparse factorization

Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 17/18



Conclusion

Summary of new communication avoiding algorithms
communication-efficient QR factorization algorithm

optimal communication cost for any matrix dimensions
variants that trade-off some accuracy guarantees for performance

communication-efficient symmetric eigensolver algorithm

reduce matrix to successively smaller band-width
uses concurrent executions of 3D matrix multiplication and 3D QR

Practical implications

ELPA demonstrated efficacy of two-stage approach, our work
motivates 3+ stages
partial parallel implementation is competitive but no speed-up

Future work

back-transformations to compute eigenvectors in less computational
complexity than F = O(n3 log(p)/p)
QR with column pivoting / low-rank SVD / sparse factorization

Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 17/18



Conclusion

Summary of new communication avoiding algorithms
communication-efficient QR factorization algorithm

optimal communication cost for any matrix dimensions
variants that trade-off some accuracy guarantees for performance

communication-efficient symmetric eigensolver algorithm

reduce matrix to successively smaller band-width
uses concurrent executions of 3D matrix multiplication and 3D QR

Practical implications

ELPA demonstrated efficacy of two-stage approach, our work
motivates 3+ stages
partial parallel implementation is competitive but no speed-up

Future work

back-transformations to compute eigenvectors in less computational
complexity than F = O(n3 log(p)/p)
QR with column pivoting / low-rank SVD / sparse factorization

Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 17/18



Conclusion

Summary of new communication avoiding algorithms
communication-efficient QR factorization algorithm

optimal communication cost for any matrix dimensions
variants that trade-off some accuracy guarantees for performance

communication-efficient symmetric eigensolver algorithm
reduce matrix to successively smaller band-width

uses concurrent executions of 3D matrix multiplication and 3D QR
Practical implications

ELPA demonstrated efficacy of two-stage approach, our work
motivates 3+ stages
partial parallel implementation is competitive but no speed-up

Future work

back-transformations to compute eigenvectors in less computational
complexity than F = O(n3 log(p)/p)
QR with column pivoting / low-rank SVD / sparse factorization

Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 17/18



Conclusion

Summary of new communication avoiding algorithms
communication-efficient QR factorization algorithm

optimal communication cost for any matrix dimensions
variants that trade-off some accuracy guarantees for performance

communication-efficient symmetric eigensolver algorithm
reduce matrix to successively smaller band-width
uses concurrent executions of 3D matrix multiplication and 3D QR

Practical implications

ELPA demonstrated efficacy of two-stage approach, our work
motivates 3+ stages
partial parallel implementation is competitive but no speed-up

Future work

back-transformations to compute eigenvectors in less computational
complexity than F = O(n3 log(p)/p)
QR with column pivoting / low-rank SVD / sparse factorization

Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 17/18



Conclusion

Summary of new communication avoiding algorithms
communication-efficient QR factorization algorithm

optimal communication cost for any matrix dimensions
variants that trade-off some accuracy guarantees for performance

communication-efficient symmetric eigensolver algorithm
reduce matrix to successively smaller band-width
uses concurrent executions of 3D matrix multiplication and 3D QR

Practical implications

ELPA demonstrated efficacy of two-stage approach, our work
motivates 3+ stages
partial parallel implementation is competitive but no speed-up

Future work

back-transformations to compute eigenvectors in less computational
complexity than F = O(n3 log(p)/p)
QR with column pivoting / low-rank SVD / sparse factorization

Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 17/18



Conclusion

Summary of new communication avoiding algorithms
communication-efficient QR factorization algorithm

optimal communication cost for any matrix dimensions
variants that trade-off some accuracy guarantees for performance

communication-efficient symmetric eigensolver algorithm
reduce matrix to successively smaller band-width
uses concurrent executions of 3D matrix multiplication and 3D QR

Practical implications
ELPA demonstrated efficacy of two-stage approach, our work
motivates 3+ stages

partial parallel implementation is competitive but no speed-up
Future work

back-transformations to compute eigenvectors in less computational
complexity than F = O(n3 log(p)/p)
QR with column pivoting / low-rank SVD / sparse factorization

Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 17/18



Conclusion

Summary of new communication avoiding algorithms
communication-efficient QR factorization algorithm

optimal communication cost for any matrix dimensions
variants that trade-off some accuracy guarantees for performance

communication-efficient symmetric eigensolver algorithm
reduce matrix to successively smaller band-width
uses concurrent executions of 3D matrix multiplication and 3D QR

Practical implications
ELPA demonstrated efficacy of two-stage approach, our work
motivates 3+ stages
partial parallel implementation is competitive but no speed-up

Future work

back-transformations to compute eigenvectors in less computational
complexity than F = O(n3 log(p)/p)
QR with column pivoting / low-rank SVD / sparse factorization

Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 17/18



Conclusion

Summary of new communication avoiding algorithms
communication-efficient QR factorization algorithm

optimal communication cost for any matrix dimensions
variants that trade-off some accuracy guarantees for performance

communication-efficient symmetric eigensolver algorithm
reduce matrix to successively smaller band-width
uses concurrent executions of 3D matrix multiplication and 3D QR

Practical implications
ELPA demonstrated efficacy of two-stage approach, our work
motivates 3+ stages
partial parallel implementation is competitive but no speed-up

Future work

back-transformations to compute eigenvectors in less computational
complexity than F = O(n3 log(p)/p)
QR with column pivoting / low-rank SVD / sparse factorization

Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 17/18



Conclusion

Summary of new communication avoiding algorithms
communication-efficient QR factorization algorithm

optimal communication cost for any matrix dimensions
variants that trade-off some accuracy guarantees for performance

communication-efficient symmetric eigensolver algorithm
reduce matrix to successively smaller band-width
uses concurrent executions of 3D matrix multiplication and 3D QR

Practical implications
ELPA demonstrated efficacy of two-stage approach, our work
motivates 3+ stages
partial parallel implementation is competitive but no speed-up

Future work
back-transformations to compute eigenvectors in less computational
complexity than F = O(n3 log(p)/p)

QR with column pivoting / low-rank SVD / sparse factorization

Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 17/18



Conclusion

Summary of new communication avoiding algorithms
communication-efficient QR factorization algorithm

optimal communication cost for any matrix dimensions
variants that trade-off some accuracy guarantees for performance

communication-efficient symmetric eigensolver algorithm
reduce matrix to successively smaller band-width
uses concurrent executions of 3D matrix multiplication and 3D QR

Practical implications
ELPA demonstrated efficacy of two-stage approach, our work
motivates 3+ stages
partial parallel implementation is competitive but no speed-up

Future work
back-transformations to compute eigenvectors in less computational
complexity than F = O(n3 log(p)/p)
QR with column pivoting / low-rank SVD / sparse factorization

Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 17/18



Acknowledgements

Collaborators on this work
Edward Hutter (Department of Computer Science, University of Illinois at
Urbana-Champaign)
Grey Ballard (Department of Computer Science, Wake Forest University)
James Demmel (Department of Computer Science and Department of
Mathematics, University of California, Berkeley)
Tobias Wicky (Department of Computer Science, ETH Zurich)
Torsten Hoefler (Department of Computer Science, ETH Zurich)
Erin Carson (Courant Institute of Mathematical Sciences, NYU)
Nicholas Knight (Courant Institute of Mathematical Sciences, NYU)

Computational resources and funding
DOE Computational Science Graduate Fellowship
ETH Zurich Postdoctoral Fellowship
XSEDE/TACC (Stampede2) and NCSA (BlueWaters)

Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 18/18



Backup slides

Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 19/18



Communication-efficient matrix multiplication

 0

 20

 40

 60

 80

 100

256 512 1024 2048

P
er

ce
nt

ag
e 

of
 m

ac
hi

ne
 p

ea
k

#nodes

2.5D MM on BG/P (n=65,536)

2.5D SUMMA
2D SUMMA

ScaLAPACK PDGEMM

 0

 50

 100

 150

 200

256 512 1024 2048 4096

G
ig

af
lo

p/
s/

no
de

#nodes

Matrix multiplication strong scaling on Mira (BG/Q)

2.5D MM n=65,536
2D MM n=65,536

2.5D MM n=16,384
2D MM n=16,384

12X speed-up, 95% reduction in comm. for n = 8K on 16K nodes of BG/P

Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 20/18



Communication-efficient QR factorization

Householder form can be reconstructed quickly from TSQR24

Q = I − Y T Y T ⇒ LU(I −Q)→ (Y ,T Y T )
Householder aggregation yields performance improvements

 0

 5

 10

 15

 20

144 288 576 1152 2304 4608 9216

Te
ra

flo
ps

#cores

QR weak scaling on Cray XE6 (n=15K to n=131K)

Two-Level CAQR-HR
Elemental QR

ScaLAPACK QR

24Ballard, Demmel, Grigori, Jacquelin, Nguyen, S., IPDPS, 2014
Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 21/18



Communication-efficient LU factorization

For any c ∈ [1, p1/3], use cn2/p memory per processor and obtain

WLU = O(n2/
√
cp), SLU = O(√cp)

 0

 20

 40

 60

 80

 100

256 512 1024 2048

P
er

ce
nt

ag
e 

of
 m

ac
hi

ne
 p

ea
k

#nodes

LU with tournament pivoting on BG/P (n=65,536)

ideal scaling
2.5D LU

2D LU
ScaLAPACK PDGETRF

LU with pairwise pivoting25 extended to tournament pivoting26

first implementation of a communication-optimal LU algorithm11

25Tiskin, FGCS, 2007
26S., Demmel, Euro-Par, 2011

Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 22/18



Tradeoffs in the diamond DAG

Computation vs synchronization tradeoff for the n× n diamond DAG,27

F · S = Ω(n2)

We generalize this idea28

additionally consider horizontal communication
allow arbitrary (polynomial or exponential) interval expansion

27Papadimitriou, Ullman, SIAM JC, 1987
28S., Carson, Knight, Demmel, SPAA 2014 (extended version, JPDC 2016)

Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 23/18



Tradeoffs involving synchronization

We apply tradeoff lower bounds to dense linear algebra algorithms,
represented via dependency hypergraphs:29

For triangular solve with an n× n matrix,

FTRSV · STRSV = Ω
(
n2
)

For Cholesky of an n× n matrix,

FCHOL · S2
CHOL = Ω

(
n3
)

WCHOL · SCHOL = Ω
(
n2
)

29S., Carson, Knight, Demmel, SPAA 2014 (extended version, JPDC 2016)
Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 24/18



Communication-efficient LU factorization

For any c ∈ [1, p1/3], use cn2/p memory per processor and obtain

WLU = O(n2/
√
cp), SLU = O(√cp)

 0

 20

 40

 60

 80

 100

256 512 1024 2048

P
er

ce
nt

ag
e 

of
 m

ac
hi

ne
 p

ea
k

#nodes

LU with tournament pivoting on BG/P (n=65,536)

ideal scaling
2.5D LU

2D LU
ScaLAPACK PDGETRF

LU with pairwise pivoting30 extended to tournament pivoting31

first implementation of a communication-optimal LU algorithm10

30Tiskin, FGCS, 2007
31S., Demmel, Euro-Par, 2011

Conference on Fast Direct Solvers, Purdue University Communication-avoiding factorization algorithms 25/18


	Introduction
	Parallel Triangular Solve
	Parallel QR factorization
	Parallel symmetric eigensolver
	Conclusion

