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Beyond computational complexity

Algorithms should minimize communication, not just computation
communication and synchronization cost more energy than flops

two types of communication (data movement):

vertical (intranode memory–cache)
horizontal (internode network transfers)

parallel algorithm design involves tradeoffs: computation vs
communication vs synchronization
parameterized algorithms provide optimality and flexibility
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Cost model for parallel algorithms

We use the Bulk Synchronous Parallel (BSP) model (L.G. Valiant 1990)
execution is subdivided into S supersteps, each associated with a
global synchronization (cost α)

at the start of each superstep, processors interchange messages, then
they perform local computation
if the maximum amount of data sent or received by any process is wi
(work done is fi and amount of memory traffic is qi) at superstep i
then the BSP time is

T =
S∑
i=1

α+ wi · β + qi · ν + fi · γ = O(S · α+W · β +Q · ν + F · γ)

where typically α� β � ν � γ

we mention vertical communication cost only when it exceeds
Q = O(F/

√
H +W ) where H is cache size
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Communication complexity of matrix multiplication

Multiplication of A ∈ Rm×k and B ∈ Rk×n can be done in O(1)
supersteps with communication cost W = O

((
mnk
p

)2/3) provided
sufficient memory and sufficiently large p

when m = n = k, 3D blocking gets O(p1/6) improvement over 2D1

when m,n, k are unequal, need appropriate processor grid2

1J. Berntsen, Par. Comp., 1989; A. Aggarwal, A. Chandra, M. Snir, TCS, 1990; R.C. Agarwal, S.M. Balle, F.G. Gustavson,
M. Joshi, P. Palkar, IBM, 1995; F.W. McColl, A. Tiskin, Algorithmica, 1999; ...

2J. Demmel, D. Eliahu, A. Fox, S. Kamil, B. Lipshitz, O. Schwartz, O. Spillinger 2013
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Communication complexity of dense matrix kernels

For n× n Cholesky with p processors

F = O(n3/p), W = O(n2/pδ), S = O(pδ)

given memory to store p2δ−1 copies of the matrix for any δ = [1/2, 2/3].

Can achieve similar costs for LU, QR, and the symmetric eigenvalue
problem (modulo logarithmic factors on synchronization), but algorithmic
changes (as opposed to parallel schedules) are necessary.

triangular solve square TRSM X3 rectangular TRSM X4

LU with pivoting pairwise pivoting X5 tournament pivoting X6

QR factorization Givens on square X3 Householder on rect. X7

SVD (sym. eig.) singular values only X8 singular vectors X

3B. Lipshitz, MS thesis 2013
4T. Wicky, E.S., T. Hoefler, IPDPS 2017
5A. Tiskin, FGCS 2007
6E.S., J. Demmel, EuroPar 2011
7E.S., G. Ballard, T. Hoefler, J. Demmel, SPAA 2017
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Tradeoffs between costs based on dependency graphs

Definition ((ε, σ)-path-expander)
Graph G = (V,E) is a (ε, σ)-path-expander if there exists a path
(u1, . . . un) ⊂ V , such that the dependency interval [ui, ui+b]G for each
i, b has size Θ(σ(b)) and a minimum cut of size Ω(ε(b)).

computation-synchronizaton tradeoff in diamond DAG8: F · S = Ω(n2)
extends to triangular solve, matrix factorization, and iterative methods9

8C.H. Papadimitriou, J.D. Ullman, SIAM JC, 1987
9E.S., E. Carson, N. Knight, J. Demmel, JPDC 2017
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Tradeoffs between costs

Definition ((ε, σ)-path-expander)
Graph G = (V,E) is a (ε, σ)-path-expander if there exists a path
(u1, . . . un) ⊂ V , such that the dependency interval [ui, ui+b]G for each
i, b has size Θ(σ(b)) and a minimum cut of size Ω(ε(b)).

Theorem (Path-expander communication lower bound)
Any parallel schedule of an algorithm with a (ε, σ)-path-expander
dependency graph about a path of length n and some b ∈ [1, n] incurs
computation (F ), communication (W ), and synchronization (S) costs:

F = Ω (σ(b) · n/b) , W = Ω (ε(b) · n/b) , S = Ω (n/b) .

Corollary (Computation-sync. and bandwidth-sync. tradeoffs)
If σ(b) = bd and ε(b) = bd−1, the above theorem yields,

F · Sd−1 = Ω(nd), W · Sd−2 = Ω(nd−1).
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New algorithms can circumvent lower bounds

For TRSM, we can achieve a lower synchronization/communication cost
by performing triangular inversion on diagonal blocks

MS thesis work by Tobias Wicky10

decreases synchronization cost by O(p2/3) on p processors with respect
to known algorithms
optimal communication for any number of right-hand sides

10T. Wicky, E.S., T. Hoefler, IPDPS 2017
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QR factorization of tall-and-skinny matrices

Consider the reduced factorization A = QR with A,Q ∈ Rm×n and
R ∈ Rn×n when m� n (in particular m ≥ np)

A is tall-and-skinny, each processor owns a block of rows

Householder-QR requires S = Θ(n) supersteps, W = O(n2) comm.
TSQR11 row-wise divide-and-conquer, W=O(n2 log p), S=O(log p)[

Q1R1
Q2R2

]
=
[

TSQR(A1)
TSQR(A2)

]
,Q12R =

[
R1
R2

]
,Q =

[
Q1

Q2

]
Q12

TSQR-HR12 Householder rep. I−Y T Y , W=O(n2 log p), S=O(log p)
Cholesky-QR213 stable so long as κ(A) ≤ 1/

√
ε, achieves W=O(n2),

S=O(1), Cholesky-QR314 gets same and is unconditionally stable

11J. Demmel, L. Grigori, M. Hoemmen, J. Langou 2012
12G. Ballard, J. Demmel, L. Grigori, M. Jacquelin, H.-D. Nguyen, E.S. 2014
13Y. Yamamoto, Y. Nakatsukasa, Y. Yanagisawa, T. Fukaya 2015
14T. Fukaya, R. Kannan, Y. Nakatsukasa, Y. Yamamoto, Y. Yanagisawa 2018
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QR factorization of square matrices

Square matrix QR algorithms generally use 1D QR for panel factorization
algorithms in ScaLAPACK, Elemental, DPLASMA use 2D layout,
generally achieve W = O(n2/

√
p) cost

Tiskin’s 3D QR algorithm15 achieves W = O(n2/p2/3) communication

however, requires slanted-panel matrix embedding

which is highly inefficient for rectangular (tall-and-skinny) matrices

15A. Tiskin 2007, “Communication-efficient generic pairwise elimination”
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Communication-avoiding rectangular QR

For A ∈ Rm×n existing algorithms are optimal when m = n and m� n

cases with n < m < np underdetermined equations are important

new algorithm16

subdivide p processors into m/n groups of pn/m processors
perform row-recursive QR (TSQR) with tree of height log2(m/n)

compute each tree-node elimination Q12R =
[
R1
R2

]
using Tiskin’s QR

with pn/m or more processors

note: interleaving rows of R1 and R2 gives a slanted panel
obtains ideal communication cost for any m,n, generally

W = O

((mn2

p

)2/3)

16E.S., G. Ballard, J. Demmel, and T. Hoefler, SPAA 2017
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Cholesky-QR2 for rectangular matrices

Cholesky-QR217 with 3D Cholesky gives a practical 3D QR algorithm18

Compute A = Q̂R̂ using Cholesky-QR ATA = R̂T R̂, Q̂ = AR̂−1

Correct approximate factorization by Cholesky-QR QR̄ = Q̂, R = R̄R̂

Simple algorithm to achieve minimize comm. and sync. for any m,n, p
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Tridiagonalization

Reducing the symmetric matrix A ∈ Rn×n to a tridiagonal matrix

T = QTAQ

via a two-sided orthogonal transformation is most costly in diagonalization
(eigenvalue computation, SVD similar)

can be done by successive subcolumn QR factorizations

T = QT
1 · · ·QT

n−2︸ ︷︷ ︸
QT

A Q1 · · ·Qn−2︸ ︷︷ ︸
Q

two-sided updates harder to parallelize than one-sided
each update requires a BSP superstep and reading A from memory
can use n/b QRs on panels of b subcolumns to go to band-width b+ 1
b = 1 gives direct tridiagonalization
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Successive band reduction (SBR)

After reducing to a banded matrix, we need to transform the banded
matrix to a tridiagonal one

fewer nonzeros lead to lower computational cost, F = O(n2b/p)
however, transformations introduce fill/bulges
bulges must be chased down the band19

communication- and synchronization-efficient 1D SBR algorithm
known for small band-width20

19Lang 1993; Bischof, Lang, Sun 2000
20Ballard, Demmel, Knight 2012
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Communication-efficient eigenvalue computation

Previous work (start-of-the-art): two-stage tridiagonalization
implemented in ELPA, can outperform ScaLAPACK21

with n = n/
√
p, 1D SBR gives W = O(n2/

√
p), S = O(√p log2(p))22

New results23: many-stage tridiagonalization

Θ(log(p)) intermediate band-widths to achieve W = O(n2/p2/3)
communication-efficient rectangular QR with processor groups

3D SBR (each QR and matrix multiplication update parallelized)

21Auckenthaler, Bungartz, Huckle, Krämer, Lang, Willems 2011
22Ballard, Demmel, Knight 2012
23E.S., G. Ballard, J. Demmel, T. Hoefler, SPAA 2017
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Symmetric eigensolver results summary

Algorithm W Q S

ScaLAPACK n2/
√
p n3/p n log(p)

ELPA n2/
√
p - n log(p)

two-stage + 1D-SBR n2/
√
p n2 log(n)/√p √

p(log2(p) + log(n))
many-stage n2/p2/3 n2 log(p)/p2/3 p2/3 log2 p

costs are asymptotic (same computational cost F for eigenvalues)
W – horizontal (interprocessor) communication
Q – vertical (memory–cache) communication excluding W + F/

√
H

where H is cache size
S – synchronization cost (number of supersteps)
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Conclusion

Summary of new communication avoiding algorithms
communication-efficient QR factorization algorithm

optimal communication cost for any matrix dimensions
variants that trade-off some accuracy guarantees for performance

communication-efficient symmetric eigensolver algorithm

reduce matrix to successively smaller band-width
uses concurrent executions of 3D matrix multiplication and 3D QR

Practical implications

ELPA demonstrated efficacy of two-stage approach, our work
motivates 3+ stages
partial parallel implementation is competitive but no speed-up

Future work

back-transformations to compute eigenvectors in less computational
complexity than F = O(n3 log(p)/p)
QR with column pivoting / low-rank SVD / sparse factorization
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Communication-efficient matrix multiplication
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Communication-efficient QR factorization

Householder form can be reconstructed quickly from TSQR24

Q = I − Y T Y T ⇒ LU(I −Q)→ (Y ,T Y T )
Householder aggregation yields performance improvements
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24Ballard, Demmel, Grigori, Jacquelin, Nguyen, S., IPDPS, 2014
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Communication-efficient LU factorization

For any c ∈ [1, p1/3], use cn2/p memory per processor and obtain

WLU = O(n2/
√
cp), SLU = O(√cp)
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25Tiskin, FGCS, 2007
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Tradeoffs in the diamond DAG

Computation vs synchronization tradeoff for the n× n diamond DAG,27

F · S = Ω(n2)

We generalize this idea28

additionally consider horizontal communication
allow arbitrary (polynomial or exponential) interval expansion

27Papadimitriou, Ullman, SIAM JC, 1987
28S., Carson, Knight, Demmel, SPAA 2014 (extended version, JPDC 2016)
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Tradeoffs involving synchronization

We apply tradeoff lower bounds to dense linear algebra algorithms,
represented via dependency hypergraphs:29

For triangular solve with an n× n matrix,

FTRSV · STRSV = Ω
(
n2
)

For Cholesky of an n× n matrix,

FCHOL · S2
CHOL = Ω

(
n3
)

WCHOL · SCHOL = Ω
(
n2
)

29S., Carson, Knight, Demmel, SPAA 2014 (extended version, JPDC 2016)
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Communication-efficient LU factorization
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cp), SLU = O(√cp)
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LU with pairwise pivoting30 extended to tournament pivoting31

first implementation of a communication-optimal LU algorithm10

30Tiskin, FGCS, 2007
31S., Demmel, Euro-Par, 2011
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