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Cyclops Tensor Framework Aim

Motivation and goals

Cyclops (cyclic operations) Tensor Framework (CTF)

aims to support distributed-memory tensor contractions

takes advantage of two-level parallelism via threading

leverages distributed and local matrix multiplication algorithms

is packaged as a library and uses only MPI, BLAS, and OpenMP

selects best mapping for tensors and contractions via performance
models

decomposes and redistributes tensor data dynamically
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Cyclops Tensor Framework Interface

Distributed-memory context

CTF relies on MPI (Message Passing Interface) for bulk synchronous
multiprocessor parallelism

CTF_World dw(comm)

a set of processors in MPI corresponds to a communicator
(MPI Comm comm)

MPI COMM WORLD is the default communicator containing all
processes

data movement possible between a world and a ‘subworld’ (defined on
a subcommunicator)
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Cyclops Tensor Framework Interface

Tensor definition

A CTF tensor is a multidimensional distributed array, e.g.

T ab
ij

where T is m ×m × n × n antisymmetric in ab and in ij

CTF_Tensor T(4,\{m,m,n,n\},\{AS,NS,AS,NS\},dw)

an ‘AS’ dimension is antisymmetric with the next

symmetric ‘SY’ and symmetric-hollow ‘SH’ are also possible

tensors are allocated in packed form and set to zero when defined

the first dimension of the tensor is mapped linearly onto memory

there are also obvious derived types for CTF Tensor:
CTF Matrix, CTF Vector, CTF Scalar
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Cyclops Tensor Framework Interface

Contract tensors

CTF can express a tensor contraction like

Z ab
ij = Z ab

ij + 2 · P(a, b)
∑
k

F a
k · T kb

ij

where P(a, b) implies antisymmetrization of index pair ab, as

Z["abij"] += 2.0*F["ak"]*T["kbij"]

for loops and summations implicit in syntax

P(a, b) is applied implicitly if Z is antisymmetric in ab

Z,F,T should all be defined on the same world and all processes in
the world must call the contraction bulk synchronously
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Cyclops Tensor Framework Interface

CCSD

Extracted from Aquarius (Devin Matthews’ code)

FMI["mi"] += 0.5*WMNEF["mnef"]*T(2)["efin"];

WMNIJ["mnij"] += 0.5*WMNEF["mnef"]*T(2)["efij"];

FAE["ae"] -= 0.5*WMNEF["mnef"]*T(2)["afmn"];

WAMEI["amei"] -= 0.5*WMNEF["mnef"]*T(2)["afin"];

Z(2)["abij"] = WMNEF["ijab"];

Z(2)["abij"] += FAE["af"]*T(2)["fbij"];

Z(2)["abij"] -= FMI["ni"]*T(2)["abnj"];

Z(2)["abij"] += 0.5*WABEF["abef"]*T(2)["efij"];

Z(2)["abij"] += 0.5*WMNIJ["mnij"]*T(2)["abmn"];

Z(2)["abij"] -= WAMEI["amei"]*T(2)["ebmj"];

7 / 28 Edgar Solomonik Efficient Algorithms for Tensor Contractions 7/ 28



Cyclops Tensor Framework Interface

CCSDT

Extracted from Aquarius (Devin Matthews’ code)

Z(1)["ai"] += 0.25*WMNEF["mnef"]*T(3)["aefimn"];

Z(2)["abij"] += 0.5*WAMEF["bmef"]*T(3)["aefijm"];

Z(2)["abij"] -= 0.5*WMNEJ["mnej"]*T(3)["abeinm"];

Z(2)["abij"] += FME["me"]*T(3)["abeijm"];

Z(3)["abcijk"] = WABEJ["bcek"]*T(2)["aeij"];

Z(3)["abcijk"] -= WAMIJ["bmjk"]*T(2)["acim"];

Z(3)["abcijk"] += FAE["ce"]*T(3)["abeijk"];

Z(3)["abcijk"] -= FMI["mk"]*T(3)["abcijm"];

Z(3)["abcijk"] += 0.5*WABEF["abef"]*T(3)["efcijk"];

Z(3)["abcijk"] += 0.5*WMNIJ["mnij"]*T(3)["abcmnk"];

Z(3)["abcijk"] -= WAMEI["amei"]*T(3)["ebcmjk"];
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Cyclops Tensor Framework Interface

Access and write tensor data

CTF takes away the data pointer

Access arbitrary sparse subsets of the tensor by global index
(coordinate format)

T.write( int ∗ indices , double ∗ data) (can also accumulate)
T.read( int ∗ indices , double ∗ data) (can also accumulate)

Matlab submatrix notation: A[j : k, l : m] (useful for CCSD(T) and
CCSDT(Q))

T. slice ( int ∗ offsets , int ∗ ends) returns the subtensor
T. slice ( int corner off , int corner end) does the same
can also sum subtensors
different subworlds can read different subtensors simultaneously

Extract a subtensor of any permutation of the tensor

given mappings P,Q, does B[i , j ] = A[P[i ],Q[j ]] via permute()
P and Q may access only subsets of A (if B is smaller)
B may be defined on subworlds on the world on which A is defined and
each subworld may specify different P and Q
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Cyclops Tensor Framework Internal Mechanism

Symmetric matrix representation

10 / 28 Edgar Solomonik Efficient Algorithms for Tensor Contractions 10/ 28



Cyclops Tensor Framework Internal Mechanism

Blocked distributions of a symmetric matrix

11 / 28 Edgar Solomonik Efficient Algorithms for Tensor Contractions 11/ 28



Cyclops Tensor Framework Internal Mechanism

Cyclic distribution of a symmetric matrix
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Cyclops Tensor Framework Internal Mechanism

Tensor decomposition and mapping

CTF tensor decomposition

cyclic layout used to preserve packed symmetric structure (hence
Cyclops – cyclic ops)

overdecomposition (virtualization) employed to decouple the
decomposition from the physical processor grid

CTF mapping logic

arrange physical topology into all possible processor grids

dynamically (in parallel) autotune over all topologies and over
mapping strategies

select best mapping based on model-based performance prediction
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Cyclops Tensor Framework Internal Mechanism

Virtualization (local blocking)

Matrix multiply on 2x3 processor grid. Red lines represent virtualized part
of processor grid. Elements assigned to blocks by cyclic phase.

X =

A
B

C
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Cyclops Tensor Framework Internal Mechanism

3D tensor mapping
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Cyclops Tensor Framework Internal Mechanism

Algorithms for tensor redistribution

The following three redistribution kernels are provided by CTF

Sparse (key-value) redistribution

requires all-to-all-v communication and expensive local binning work
well-fit for user-level data entry and generalizable to sparse tensors

Dense mapping-to-mapping (no-explicit-key) redistribution

iterates over local data in global order, packs into send buffers,
performs all-to-all-v
aggressively threaded and employs look-up arrays
well-fit for redistribution between two arbitrary mappings

Block-to-block redistribution

possible to use when the block decomposition does not change but
only the processor grid does
processors send blocks via point-to-point messages
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Cyclops Tensor Framework Performance

Coupled-cluster code on BlueGene/Q (Mira)

CCSD up to 55 water molecules with cc-pVDZ
CCSDT up to 10 water molecules with cc-pVDZ
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Cyclops Tensor Framework Performance

Coupled-cluster code on Cray XC30 (Edison)

CCSD up to 50 water molecules with cc-pVDZ
CCSDT up to 10 water molecules with cc-pVDZ
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Cyclops Tensor Framework Performance

Comparison with NWChem

NWChem is a commonly-used distributed-memory quantum chemistry
method suite

provides CCSD and CCSDT

uses Global Arrays a Partitioned Global Address Space (PGAS) for
tensor data partitioning

derives equations via Tensor Contraction Engine (TCE)
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Cyclops Tensor Framework Ongoing and future work

Ongoing work: arbitrary typed tensors and functions

CTF v1.x is fully templated and instantiated to double and
complex<double>

CTF v2.x will have a light-weight templated layer but be
type-oblivious internally

A tensor contains elements from any set/monoid/group/semiring/ring

Tensor functions with parameters/output of different type will now be
possible

makes mixed-precision operations possible
enables graph algorithms on the (min,+) semiring
more exotic use-cases possible such as tensors of particles
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Cyclops Tensor Framework Ongoing and future work

Future work for CTF

(Aquarius) CCSD(T), CCSDT(Q), CCSDTQ

time-accurate performance models

simultaneous multi-contraction scheduling

sparse tensors and contractions

faster algorithms for symmetric contractions (theory in next part of
this talk)
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Symmetry preserving algorithm Instances in matrix computations

Symmetric-matrix–vector multiplication

Consider symmetric n × n matrix A and vectors b, c

c = A · b is usually computed by forming a nonsymmetric
intermediate matrix W,

Wij = Aij · bj ci =
n∑

j=1

Wij

which requires n2 multiplications and n2 additions

The symmetry preserving algorithm employs a symmetric intermediate
matrix Z,

Zij = Aij · (bi + bj) ci =
n∑

j=1

Zij −
( n∑

j=1

Aij

)
· bi

which requires n2

2 multiplications and 5n2

2 additions
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Symmetry preserving algorithm Instances in matrix computations

Symmetrized rank-two outer product

Consider vectors a,b of dimension n

Symmetric matrix C = a · bT + b · aT is usually computed by forming
a nonsymmetric intermediate matrix W,

Wij = ai · bj Cij = Wij + Wji

which requires n2 multiplications and n2/2 additions

The symmetry preserving algorithm employs a symmetric intermediate
matrix Z,

Zij = (ai + aj) · (bi + bj) Cij = Zij − ai · bi − aj · bj

which requires n2

2 multiplications and 2n2 additions
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Symmetry preserving algorithm Instances in matrix computations

Symmetrized matrix multiplication

Consider symmetric n × n matrices A, B, and C

C = A · B + B · A is usually computed via a nonsymmetric
intermediate order 3 tensor W,

Wijk = Aik · Bkj W̄ij =
∑
k

Wijk Cij = Wij + Wji .

which requires n3 multiplications and n3 additions.

The symmetry preserving algorithm employs a symmetric intermediate
tensor Z using n3/6 multiplications and 7n3/6 additions,

Zijk = (Aij + Aik + Ajk) · (Bij + Bik + Bjk) vi =
n∑

k=1

Aik · Bik

Cij =
n∑

k=1

Zijk−n · Aij · Bij−vi−vj−
( n∑

k=1

Aik

)
· Bij−Aij ·

( n∑
k=1

Bik

)
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Symmetry preserving algorithm General symmetric contractions

Symmetry preserving algorithm generalization

Any fully symmetrized contraction of two fully symmetric tensors with
a total of ω indices can be done with nω/ω! +O(nω−1) multiplications

Extensions to antisymmetric tensors and antisymmetrized
contractions possible, but not for all cases

Extends to all complex/Hermitian cases

Also applicable to contractions of a tensor with itself, in particular A2

for symmetric or antisymmetric matrix A requires n3/6 multiplications

Nonsymmetric A2 (or more generally A · B + B · A for nonsymmetric
matrices A, B) can be done in 2n3/3 operations

Numerical stability confirmed via proof and experiments
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Symmetry preserving algorithm Application to coupled-cluster

Application to CCSD

The CCSD contraction

Z ak̄
i c̄ =

∑
b

∑
j

T ab
ij · V j k̄

bc̄

usually requires 2n6 total operations.
The symmetry-preserving algorithm can be applied over the indices

Za =
∑
b

Tab · Vb

with each multiplication being a contraction over the other four indices
i ,j ,c̄ ,k̄, which is more expensive than the addition operations, yielding n6

operations to leading order.
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Symmetry preserving algorithm Application to coupled-cluster

Application to CCSD(T) and CCSDT(Q)

The CCSD(T) contraction

T abc̄
ij k̄

= P(a, b)P(i , j)
n∑

l̄=1

T ac̄
i l̄

·W l̄b
j k̄

usually requires 2n7 total operations.
The symmetry-preserving algorithm can be applied over the indices

Tab = P(a, b)Ta ·Wb and Tij = P(i , j)Ti · Tj

with each multiplication in the latter being a contraction over the
remaining three indices c̄ ,k̄ , and l̄ , for a total of n7/2 leading order
operations.
For a similar CCSDT(Q) contraction, which usually requires n9/2
operations, the symmetry preserving algorithm achieves n9/36.
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Conclusion

Conclusion

Future work on symmetry-preserving algorithms

Full cost derivations for CC methods

High performance implementation and integration into CTF

References

CTF (latest): E.S., D. Matthews, J.R. Hammond, J.F. Stanton, J.
Demmel, “A massively parallel tensor contraction framework for
coupled-cluster”, JPDC, 2015. computations

symmetry preserving algorithms: E.S., J. Demmel, “Contracting
symmetric tensors using fewer multiplications”, ETH Report, 2015.

communication cost of symmetry preserving algorithms: E.S., J.
Demmel, T. Hoefler, “Communication lower bounds for tensor
contraction algorithms”, ETH Report, 2015.
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