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Tensors

A tensor is a collection of elements

its dimensions define the size of the collection

its order is the number of different dimensions

specifying an index along each tensor mode
defines an element of the tensor

A few examples of tensors are

Order 0 tensors are scalars, e.g., s ∈ R
Order 1 tensors are vectors, e.g., v ∈ Rn

Order 2 tensors are matrices, e.g., A ∈ Rm×n

An order 3 tensor with dimensions s1 × s2 × s3 is denoted as
TTT ∈ Rs1×s2×s3 with elements tijk for
i ∈ {1, . . . , s1}, j ∈ {1, . . . , s2}, k ∈ {1, . . . , s3}
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Tensor Contractions

A tensor contraction describes a set of products and sums of elements
from two tensors

tensor contraction formula
inner product w =

∑
i uivi

outer product wij = uivij
pointwise product wi = uivi

Hadamard product wij = uijvij
matrix multiplication wij =

∑
k uikvkj

batched mat.-mul. wijl =
∑
k uiklvkjl

tensor times matrix wilk =
∑
j uijkvlj

Tensor contractions are prevalent in quantum chemistry methods
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General Tensor Contractions

Given tensor UUU of order s+ v and VVV of order v + t, a tensor contraction
summing over v modes can be written as

wi1...isj1...jt =
∑

k1...kv

ui1...isk1...kvvk1...kvj1...jt

Other contractions can be mapped to this form after transposition

Unfolding tensors reduces the tensor contraction to matrix multiplication

Combine consecutive indices in appropriate groups of size s, t, and v

If all tensor modes are of dimension n, obtain matrix–matrix product
C = AB where C ∈ Rns×nt

, A ∈ Rns×nv
, and B ∈ Rnv×nt

Assuming classical matrix multiplication, contraction requires ns+t+v

elementwise products and ns+t+v − ns+t additions
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Symmetric Tensor Contractions

A symmetric tensor is defined by e.g.,
tijk = tikj = tkij = tjki = tjik = tkji

Tensors can also have skew-symmetry (also known as antisymmetry,
permutations have +/− signs), partial symmetry (only some modes
are permutable), or group symmetry (blocks are zero if indices satisfy
modular equation)

The simplest example of a symmetric tensor contraction is

y = Ax where A = AT

it is not obvious how to leverage symmetry to reduce cost of this
contraction
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Permutational Symmetry in Tensor Contractions
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New contraction algorithms reduce cost via permutational symmetry1

Symmetry is hard to use in contraction e.g. y = Ax with A symmetric

For contraction of order s+ v and v + t tensors to produce an order s+ t tensor,
previously known approaches reduce cost by s!t!v!

New algorithm reduces number of products by ω! where ω = s+ t+ v, leads to
same reduction in cost for partially-symmetric contractions

C = AB +BA⇒ cij =
∑
k

[(aij + aik + ajk) · (bij + bik + bjk)]− . . .

1
E.S, J. Demmel, Computational Methods in Applied Mathematics 2020
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Communication Cost of Symmetry Preserving Algorithms

Preserving symmetry reduces memory footprint and cost, but can
entail additional data dependencies and communication cost

We have introduced a framework of communication lower bounds for
bilinear algorithms1 and applied it to symmetric tensor contractions2,3

These lower bounds show that asymptotically more communication is
necessitated by both symmetric packed layouts and symmetry
preserving contraction algorithms

However, the overheads are present only for sophisticated tensor
contractions (high-order and with different number of
contracted/uncontracted modes)

1
V. Pan, SIAM Review 1984

2
E.S., J. Demmel, T. Hoefler, SIAM Journal on Scientific Computing 2021

3
C. Ju, Y. Zhang, E.S., arXiv:2107.09834
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Group Symmetry

Abelian group symmetries can be mapped to the cyclic group, which
can be used to define a block-sparse form of the tensors (here
represented using extra modes), e.g.,

waA,bB,iI,jJ =
∑

k,K,l,L

uaA,bB,kK,lLvkK,lL,iI,jJ

where for some group size G, we have symmetries, e.g.,

waA,bB,iI,jJ 6= 0 if A+B − I − J ≡ 0 (mod G)

uaA,bB,kK,lL 6= 0 if A+B +K + L ≡ 0 (mod G)

vkK,lL,iI,jJ 6= 0 if K + L− I − J ≡ 0 (mod G)

We can write each of these tensors using a reduced form and a
Kronecker delta tensor,

waA,bB,iI,jJ = r
(W )
aA,bB,iI,jδ

(W )
ABIJ

where δ
(W )
ABIJ = 1 if A+B − I − J ≡ 0 (mod G) and δ

(W )
ABIJ = 0

otherwise
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Block Contraction Approach to Group Symmetry

Such symmetries are often handled by indirect indexing in nested loops

However, transformations of tensors are also possible to reduce such
contractions to a “direct product”, which has previously been done for
group symmetric tensor contractions in quantum chemistry1,2

1
J.F. Stanton, J. Gauss, J.D. Watts, and R.J. Bartlett, The Journal of Chemical Physics 1991

2
D. Matthews, Molecular Physics 2019
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Group Symmetry in Tensor Contractions

New contraction algorithm, irreducible representation alignment uses new reduced
form to handle group symmetry (momentum conservation, spin, quantum
numbers, etc.) without looping over blocks or sparsity1

wABIJ =
∑
KL

r̄
(U)
ABK δ

(U)
ABKLδ

(V )
KLIJ︸ ︷︷ ︸∑

Q δ
(1)
ABQδ

(2)
IJQδ

(3)
KLQ

r̄
(V )
KIJ =

∑
Q

δ
(1)
ABQδ

(3)
IJQ

∑
K

r
(U)
AKQr

(V )
KIQ︸ ︷︷ ︸

r
(W )
AIQ

1
Y. Gao, P. Helms, G. Chan, and E.S., arXiv:2007.08056

LPNA Tensor Algorithms and Software December 14th, 2021 12 / 25



Automation of Group Symmetric Contractions
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Loop Blocks (1 Proc, NumPy)
Symtensor (1 Proc, BLAS)
Symtensor (1 Proc, CTF)
Loop Blocks (64 Proc, NumPy)
Symtensor (64 Proc, BLAS)
Symtensor (64 Proc, CTF)

Group symmetric tensors represented programmatically by

a dense reduced tensor (containing unique data)
an implicit sparse tensor (Kronecker delta tensor) describing the group
symmetry

At contraction time reduced form are aligned by contraction with
Kronecker delta tensor (Q index is introduced)

Users can write symmetry-oblivious code
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Library for Massively-Parallel Tensor Computations

Cyclops Tensor Framework1: sparse/dense generalized tensor algebra

Cyclops is a C++ library that distributes each tensor over MPI

Used in chemistry (PySCF, QChem, CC4S)2, quantum circuit simulation (by
IBM/LLNL)3, and graph analysis (betweenness centrality4, minimum
spanning tree5)

Summations and contractions specified via Einstein notation

E["aixbjy"] += X["aixbjy"] - U["abu"]*V["iju"]*W["xyu"]

Best distributed contraction algorithm selected at runtime via models

Support for Python (numpy.ndarray backend), OpenMP, and GPU

Simple interface to core ScaLAPACK matrix factorization routines
1https://github.com/cyclops-community/ctf
2

E.S., D. Matthews, J. Hammond, J.F. Stanton, J. Demmel, JPDC 2014
3

E. Pednault, J.A. Gunnels, G. Nannicini, L. Horesh, T. Magerlein, E.S., E. Draeger, E. Holland, and R. Wisnieff, 2017
4

E.S., M. Besta, F. Vella, T. Hoefler, SC 2017
5

T. Baer, R. Kanakagiri, E.S., SIAM PP 2022
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CP Decomposition

For a tensor TTT ∈ Rn×n×n, the CP decomposition1,2 is defined by
matrices U , V , and W such that

tijk =

R∑
r=1

uirvjrwkr

1
F.L. Hitchcock, Studies in Applied Mathematices 1927

2
T. Kolda and B. Bader, SIAM Review 2009
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CP Decomposition for Tensor Hypercontraction

The cost of CCSD can be reduced to O(n5) by density fitting, which
is a truncated Cholesky decomposition of the ERI tensor

(ab|ij) =
∑
p

dabpd
∗
ijp

The tensor hypercontraction method factorizes the density fitting
tensor as

dijp =
∑
r

xirxjrypr

which is a canonical polyadic (CP) decomposition with a repeating
factor matrix X

When this factorization is also applied to the amplitude tensor, CCSD
scaling can be theoretically further reduced to O(n4)
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Tucker Decomposition

The Tucker decomposition1 expresses an order d tensor via a smaller
order d core tensor and d factor matrices

For a tensor TTT ∈ Rn×n×n, the Tucker decomposition is defined by core
tensor ZZZ ∈ RR1×R2×R3 and factor matrices U , V , and W with
orthonormal columns, such that

tijk =

R1∑
p=1

R2∑
q=1

R3∑
r=1

zpqruipvjqwkr

If an exact Tucker decomposition exists, it can be computed via SVD
(HoSVD)
HOOI method optimizes in an alternating manner among (U ,ZZZ),
(V ,ZZZ), (W ,ZZZ)

1
T. Kolda and B. Bader, SIAM Review 2009
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Recent Work on Tensor Decompositions

Our group has a number of recent developments in algorithms and parallel
software for tensor decomposition optimization algorithms

Navjot Singh, Linjian Ma, Hongru Yang, and ES. Comparison of
accuracy and scalability of Gauss-Newton and alternating least
squares for CP decomposition, arXiv:1910.12331 (SISC 2021).

Linjian Ma and ES. Accelerating alternating least squares for tensor
decomposition by pairwise perturbation, arXiv:1811.10573 (NLAA
2022).

Linjian Ma and ES. Efficient parallel CP decomposition with pairwise
perturbation and multi-sweep dimension tree, arXiv:2010.12056
(IPDPS 2021).

Linjian Ma and ES. Fast and accurate randomized algorithms for
low-rank tensor decompositions, arxiv.org:2104.0110 (NeurIPS 2021).
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Tensor Completion

The tensor completion problem seeks to build a model (e.g., CP
decomposition) for a partially-observed tensor

For an order three tensor TTT ∈ Rn×n×n, given a set of observed entries
tijk for (i, j, k) ∈ Ω, we seek to minimize∑

(i,j,k)∈Ω

(tijk −
∑
r

uirvjrwkr)
2

︸ ︷︷ ︸
loss function

+λ2(‖U‖22 + ‖V ‖22 + ‖W ‖22)

Completion objective differs from decomposition of a sparse tensor, as
it excludes unobserved entries

Other loss functions than quadratic loss are often interest for different
tensor data
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Tensor Completion
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Via the Cyclops Python interface, we have implemented parallel (over
MPI) completion with SGD, CCD, ALS (with iterative and direct
solves), and Gauss-Newton, with support for generalized loss1

Tensor times tensor product (TTTP) routine enables CP tensor
completion

rijk =
∑
r

tijkuirvjrwkr

For ALS, explicit parallel direct solves2 are fastest
1

N. Singh, Z. Zhang, X. Wu, N. Zhang, S. Zhang, and E.S., arXiv:1910.02371
2

S. Smith, J. Park, and G. Karypis, SC 2016
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All-at-once Contraction

Contraction of more 3 or more tensors may be performed by
contracting two tensors at a time

This approach is often suboptimal in the presence of sparsity

Customized routines have been developed as a result for various
specific multi-tensor contractions: MTTKRP, SDDMM, TTTP,
TTMc

Further challenges are posed by needing to form and solve linear least
squares problems on the fly, as needed by tensor completion and
quasi-robust density fitting1

We are working toward general all-at-once multi-tensor contraction
routines and on-the-fly linear solvers as part of Cyclops

1
D.P. Tew, The Journal of Chemical Physics 2018
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Automatic Generation of Tensor Optimization Methods

Automatic differentiation (AD) in principle enables automatic
generation of methods such as ALS and DMRG

Both apply Newton’s method on a sequence of subsets of variables

However, existing AD tools such as Jax (used by TensorFlow) are
designed for deep learning and are ineffective for more complex tensor
computations

focus purely on first order optimization via Jacobian-vector products
unable to propagate tensor algebra identities such as
(A⊗B)−1 = A−1 ⊗B−1 to generate efficient code
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Automatic High-Order Optimization for Tensors

AutoHOOT1 provides a tensor-algebra centric AD engine

Designed for einsum expressions and alternating minimization
common in tensor decomposition and tensor network methods

Python-level AD is coupled with optimization of contraction order
and caching of intermediates

Generates code for CPU/GPU/supercomputers using high-level
back-end interface to tensor contractions
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1Linjian Ma, Jiayu Ye, and E.S., arXiv:2005.04540, PACT 2020
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Further References

We have presented innovations to numerical algorithms and software
libraries for tensor contractions, decompositions, and tensor networks

All software libraries and results discussed in this presentation are
available in open source via
https://github.com/cyclops-community/ and
https://github.com/LinjianMa/AutoHOOT

Our research group is developing an ecosystem of algorithms and
software for quantum chemistry calculations and other applications in
quantum simulation

See our group website1 for further details/references

1
http://lpna.cs.illinois.edu
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