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Tensor Diagrams

Tensor diagram: a hypergraph representing a
tensor contraction, where tensors are vertices
and hyperedges are indices

Scalar Vector Matrix Order 3
tensor

Examples:
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Tensor Decomposition

Tensor decomposition: represent or approximate a tensor as a contraction
of smaller tensors

Kronecker product canonical polyadic (CP) Tucker

matrix product state
(MPS)

hierarchical Tucker tensor ring projected entangled pair states
(PEPS)

A CP decomposition TTT = [[A,B,C]] is a sum of rank one tensors
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Applications of Tensor Decompositions

Compact representation for operators and solutions to PDEs
quantum simulation (electronic structure, quantum spin models)
plasma physics (Boltzmann equation is a function of position and
momentum, resulting in a 6D discretization)
high-order methods for fluid dynamics (each element represented by
order 3 tensor, ROM results in 3D tensor operators)

Data analytics/mining and compression
high-order principal component analysis
completion of multi-dimensional datasets
neural networks are composed of tensors

Bilinear algorithms via CP decomposition
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Complexity of Tensor Decompositions

The minimum rank tree decomposition of a tensor may be obtained
via n− 1 SVDs.

for Tucker, this is the high-order SVD (HoSVD) algorithm
tensor train and hierarchical Tucker are similar

Finding the optimal low-rank approximation is NP-hard.

finding an optimal rank-1 approximation (special case of any tensor
decomposition) is NP-hard

Determining the minimum CP (border) rank is NP hard.

Contracting a 2D lattice tensor network (PEPS) is #P hard.
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Optimization Algorithms

Alternating least squares (ALS) is commonly used for tensor
decompositions

minimizing error relative to one tensor (factor) in the decomposition
yields a quadratic optimization problem
monotonic linear convergence to local minima

Classical quadratic optimization in all variables (Gauss-Newton)

full Jacobian or Hessian matrices are too expensive to form/factorize
explicitly
iterative linear solvers to JT

f (x)s = ∇f(x) with implicit Jacobian are

competitive with ALS for CP1,2

Subgradient methods / SGD are less popular due to slower progress

1Phan AH, Tichavsky P, Cichocki A. Low complexity damped Gauss-Newton
algorithms for CANDECOMP/PARAFAC. SIMAX, 2013.

2Singh N, Ma L, Yang H, E.S. Comparison of accuracy and scalability of
gauss–Newton and alternating least squares for CANDECOMC/PARAFAC
decomposition. SISC 2021.
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An Effective Distance Metric for CP Decomposition

CP decomposition algorithms usually minimize the Frobenius norm

∥TTT − [[A,B,C]]∥2F = ∥ vec(TTT )− vec([[A,B,C]])∥22

=
∑
i,j,k

(
tijk −

R∑
r=1

airbjrckr
)2

Ardavan Afshar et al [AAAI 2021] minimize Wasserstein distance,
improving robustness for downstream tasks

We consider Mahalanobis distance based on covariance matrices1

∥ vec(TTT )− vec([[A,B,C]])∥2M−1 = vec(r)TM−1 vec(r)

where r = vec(TTT )− vec([[A,B,C]])

and M = AAT ⊗BBT ⊗ CCT

+(I −AA+)⊗ (I −BB+)⊗ (I − CC+)

1Navjot Singh and E.S., Alternating Mahalanobis Distance Minimization for Stable
and Accurate CP Decomposition, SISC 2023
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Alternating Minimization of Mahalanobis Distance
(AMDM)

Optimizing the new metric

min
A,B,C

∥ vec(TTT )− vec([[A,B,C]])∥2M−1

in an alternating manner yields ALS-like updates

A = T(1)(C
+T ⊙B+T )

where M+ denotes the pseudoinverse of matrix M

By comparison, the ALS algorithm computes

A = T(1)(C ⊙B)+T

Both C+T ⊙B+T and (C ⊙B)+T are left inverses of C ⊙B, suitable
for minimizing

min
A

∥(C ⊙B)AT − TT
(1)∥
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Convergence to Exact Decomposition

When seeking an exact decomposition for a rank R ≤ s tensor

ALS achieves a linear convergence rate1

High-order convergence possible by optimizing all variables via
Gauss-Newton,2,3,4 but is costly per iteration relative to ALS

AMDM achieves at least quartic order local convergence per sweep of
alternating updates

error from true solution after solving for one factor scales with product
of errors of other factors

cost per iteration is roughly the same as ALS (dominated by single
matricized tensor times Khatri-Rao product (MTTKRP))

1A. Uschmajew, SIMAX 2012
2P. Paatero, Chemometrics and Intelligent Laboratory Systems 1997.
3A.H. Phan, P. Tichavsky, A. Cichocki, SIMAX 2013.
4N. Singh, L. Ma, H. Yang, E.S., SISC 2021.
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Exact Decomposition Experimental Performance
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AMDM achieves high-order convergence for exact decomposition of
synthetic random low-rank problems
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Properties of Fixed Points of AMDM

When rank(TTT ) > R, consider an AMDM fixed point, A,B,C

X = A+T , Y = B+T , Z = C+T yield a critical point of

f(X,Y, Z) = ⟨TTT , [[X,Y, Z]]⟩
− log(det(XTXY TY ZTZ))

and satisfy tensor-eigenvector-like equations:

A = X+T = T(1)(Z ⊙ Y )

B = Y +T = T(2)(Z ⊙X)

C = Z+T = T(3)(Y ⊙X)

The reconstructed tensor T̃TT = [[A,B,C]] exactly represents the action
of the original tensor on vectors in the span of the factors

T(1) vec(u) = T̃(1) vec(u), ∀u ∈ span(C ⊙B)

T(2) vec(v) = T̃(2) vec(v), ∀v ∈ span(C ⊙A)

T(3) vec(w) = T̃(3) vec(w), ∀w ∈ span(B ⊙A)
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Approximate Decomposition Results with AMDM
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AMDM finds decomposition with lower CP condition number1

Hybrid version gradually transitions from basic AMDM to ALS

1P. Breiding and N. Vannieuwenhoven, SIMAX 2018.
LPNA Optimization for tensor decomposition 13 / 29



Statistical Interpretation of AMDM

Consider a random rank-1 tensor

X = u ◦ v ◦ w,

where u, v, and w are Gaussian random vectors with zero mean and
covariance matrices:

M[u] = AAT ,M[v] = BBT , and M[w] = CCT .

Let T be a sum of R samples of X,

T = N +

R∑
i=1

Xi.

AMDM performs covariance matrix estimation for X, while simultaneously
minimizing Mahalanobis distance derived from the covariance matrix,

M[u⊗ v ⊗ w] = AAT ⊗BBT ⊗ CCT .
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Simultaneous Distance and Metric Optimization

Minimize for each factor in an alternating manner,

vec(T )TM[u⊗ v ⊗ w]+ vec(T ), s.t. det(M[u⊗ v ⊗ w]) = 1

[likelihood of covariance matrix given T ]

vec(T − [[A,B,C]])TM[u⊗ v ⊗ w]+ vec(T − [[A,B,C]])

[fit under metric].

In the first objective, we fix the generalized variance of the distribution,
det(M[x⊗ y ⊗ z]).
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Inexact Optimization for Tensor Decompositions

We now return to approximation in the standard Frobenius norm, and
consider fast inexact algorithms for various decompositions

ALS for tensor decompositions yields highly over-constrained linear
least squares problems with tensor product structure

for CP, the factor A is determined from Khatri-Rao product B ⊙ C

for the HOOI algorithm for Tucker, the equations are given by a
Kronekecer product B ⊗ C with orthogonal B and C

the number of right-hand sizes is often large (for CP each row of A is
independent in a step of ALS) and they are expensive to construct
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Sketching for Alternating Least Squares

Radomized subspace embeddings provide a powerful tool for fast
approximation

for A ∈ Rm×n seek random S ∈ Rk×m such that, ∀x ∈ Rn,

∥STSAx−Ax∥ ≤ ϵ∥Ax∥ w.h.p.

compute SAx̂ ∼= Sb, then if Ax ∼= b, ∥Ax−Ax̂∥ ≤ ϵ∥b∥, w.h.p.
A variety of distributions can be chosen for the random sketch matrices

sampling (each row of S has one nonzero) is effective especially for
sparse A or b, leverage scores provide optimal sampling distribution,
requires k = O(n log(n)/ϵ2)

count sketch (each column of S has one nonzero) avoids need to
know leverage score distribution at increased complexity of applying S
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Sketching Matrices

If A or b have tensor product structure, choosing S to also have matching
structure enables fast computation of SA and Sb, e.g., if

A = B ⊗ C, S = S1 ⊗ S2, SA = (S1B)⊗ (S2C).
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Efficient Sketching for Tucker via HOOI

Leverage score sampling

Since Q = C ⊗B, leverage scores satisfy

l(i−1)n+j(Q) = ∥q(i−1)n+j∥22 = ∥ci∥22∥bj∥22 = li(C)lj(B)

hence we can take products of independent samples of rows of A and
B to obtain the leverage-score based distribution of columns of Q

Since A, B, C are changing, we must sample the tensor (right-hand
side) differently in each optimization step

TensorSketch1 reduces the amount of necessary sampling to 1 round
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1Malik and Becker, NeurIPS 2018.
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Cost comparison for order 3 tensor

ALS + TensorSketch (Malik and Becker, NeurIPS 2018)

Solving for each factor matrix or the core tensor at a time

minA
1
2

∥∥∥(C ⊗B)XT
(1)A

T − TT
(1)

∥∥∥2
F
or

minXXX
1
2 ∥(C ⊗B ⊗A)vec(X)− vec(T )∥2F

Algorithm for Tucker LS subproblem cost Sketch size (k)
HOOI Ω(nnz(TTT )R) /

ALS + TensorSketch Õ(knR+ kR3) O((R2/δ) · (R2 + 1/ϵ))
HOOI + TensorSketch O(knR+ kR4) O((R2/δ) · (R2 + 1/ϵ2))
HOOI + leverage scores O(knR+ kR4) O(R2/(ϵ2δ))
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Experiments: Tensors with Spiked Signal
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TTT = TTT 0 +
∑5

i=1 λiai ◦ bi ◦ ci, each ai, bi, ci has unit 2-norm, λi = 3∥TTT 0∥F

i1.5

Leading low-rank components obey the power-law distribution

Tensor size 200× 200× 200, R = 5

TS-ref: (Malik and Becker, NeurIPS 2018)
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Experiments: CP decomposition
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TTT =
∑Rtrue

i=1 ai ◦ bi ◦ ci, Rtrue/R = 1.2

Tensor size 2000× 2000× 2000, R = 10, sample size 16R2

Lev CP: leverage score sampling for CP-ALS (Larsen and Kolda,
arXiv:2006.16438)

Tucker+CP: Run Tucker HOOI first, then run CP-ALS on the Tucker core

Run Tucker HOOI with 5 sweeps, CP-ALS with 25 sweeps

Recent work (V Bharadwaj et al, Larsen and Kolda, arXiv:2301.12584)
implicitly samples the leverage score distribution for CP exactly

LPNA Optimization for tensor decomposition 22 / 29



Sketching General Tensor Networks

Problem: Given a tensor network input data, x, find
a Gaussian tensor network embedding, S, such that
the embedding is (ϵ, δ)-accurate and

The number of rows of S (sketch size m) is low

Asymptotic cost to compute Sx is minimized

An (oblivious) embedding S ∈ Rm×s is (ϵ, δ)-accurate if1

Pr

[∣∣∣∣∥Sx∥2 − ∥x∥2
∥x∥2

∣∣∣∣ > ϵ

]
≤ δ for any x

1Woodruff, Sketching as a tool for numerical linear algebra, 2014
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Sketching Tensor Network Data

Previous work:

Kronecker product embedding1: inefficient in computational cost

Tree embedding (e.g. MPS)2: efficient for specific data (Kronecker
product, MPS), but efficiency unclear for general tensor network data

Assumptions throughout our analysis:

Classical O(n3) matmul cost

Consider embeddings defined on graphs
with no hyperedges

Each dimension to be sketched

has a size lower bounded by the
sketch size
is only adjacent to one data tensor

1Ahle et al, Oblivious sketching of high-degree polynomial kernels, SODA 2020
2Rakhshan and Rabusseau, Tensorized random projections, AISTATS 2020
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Sufficient condition for (ϵ, δ)-accurate embedding

The embedding G = (V,E,w) is accurate if there exists a linear ordering
of V such that in its induced DAG, the weighted sum of out-going edges
adjacent to each v ∈ V is Ω(m), where m = N log(1/δ)/ϵ2

Proof of accuracy leverages two key prior results1

1 If S is (ϵ, δ)-accurate, so is I ⊗ S ⊗ I

2 If S1, . . . , SN are (O(ϵ/
√
N), δ)-accurate, S1 · · ·SN is (ϵ, δ)-accurate

1Ahle et al, Oblivious sketching of high-degree polynomial kernels, SODA 2020
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Efficient General Sketching
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Tensor network sketch contains

1 Kronecker product
embedding

2 binary tree of small tensor
network gadgets

Each gadget sketches product of
two tensors

chosen to minimize cost
depending on connectivity

may or may not be a tree

Can reduce cost by up to O(
√
m)

relative to binary tree

near-optimal under assumptions
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Applications of Tensor Network Sketching

If input data is Khatri-Rao product or tensor product

new gadgets reduce cost by O(
√
m) relative to Gaussian binary tree

embedding

this allows acceleration of sketching for CP decomposition

tree-like sketch structure also allows intermediate reuse during
optimization (dimension trees)

When data is an MPS (tensor train)

plain tree sketch is efficient (sketch can be binary tree or MPS-like)

shows optimality (subject to our sufficient condition) of prior work1

1Al Daas, Hussam, et al. Randomized algorithms for rounding in the tensor-train
format, SISC 2023.
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Summary and Conclusions

Sketching for Tucker decomposition

Sketching HOOI gives accurate decomposition with enough sketch size

TensorSketch permits 1-pass (streaming) Tucker and CP

High polynomial scaling in rank; for CP addressable by indirect leverage
score sampling1

Gaussian tensor network sketching

achieves linear cost relative to number of input tensors

limited analysis to Gaussian tensors, classical matrix multiplication cost

not considering hyperedges in sketch, e.g., Khatri-Rao product in
TensorSketch

1Bharadwaj, Vivek, et al. Fast exact leverage score sampling from Khatri-Rao
products with applications to tensor decomposition, 2023. arXiv:2301.12584
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