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Tensor Diagrams

Tensor diagram: a hypergraph representing a

Scalar Vector Matrix ?;gggf
tensor contraction, where tensors are vertices é)
and hyperedges are indices O ¢ b\
Examples:
oJole

Inner product: Y, a;b; Matrix product : Cix = Y_; Aij B,

i j k

Khatri-Rao product: Tjju = AyBjCu

Kronecker /outer product : Tjj, = a;bjcy,
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Tensor Decomposition

Tensor decomposition: represent or approximate a tensor as a contraction
of smaller tensors

obd QQQ @gv

Kronecker product canonical polyadic (CP) Tucker

soss fom LY BE

matrix product state hierarchical Tucker tensor ring
(MPS)

projected entangled pair states

A CP decomposition T = [A, B,C] is a sum of rank one tensors

/L /

——

——
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Applications of Tensor Decompositions

@ Compact representation for operators and solutions to PDEs
e quantum simulation (electronic structure, quantum spin models)
e plasma physics (Boltzmann equation is a function of position and
momentum, resulting in a 6D discretization)
o high-order methods for fluid dynamics (each element represented by
order 3 tensor, ROM results in 3D tensor operators)
e Data analytics/mining and compression
e high-order principal component analysis
e completion of multi-dimensional datasets
e neural networks are composed of tensors

@ Bilinear algorithms via CP decomposition

Matrix multiplication
tensor

bilinear algorithm

e\ CP decomp.
- Y —
Oo(n®)
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Complexity of Tensor Decompositions

@ The minimum rank tree decomposition of a tensor may be obtained
via n — 1 SVDs.

o for Tucker, this is the high-order SVD (HoSVD) algorithm
o tensor train and hierarchical Tucker are similar

@ Finding the optimal low-rank approximation is NP-hard.

e finding an optimal rank-1 approximation (special case of any tensor
decomposition) is NP-hard

@ Determining the minimum CP (border) rank is NP hard.
e Contracting a 2D lattice tensor network (PEPS) is #P hard.
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Optimization Algorithms

@ Alternating least squares (ALS) is commonly used for tensor
decompositions
e minimizing error relative to one tensor (factor) in the decomposition
yields a quadratic optimization problem
e monotonic linear convergence to local minima
o Classical quadratic optimization in all variables (Gauss-Newton)
o full Jacobian or Hessian matrices are too expensive to form/factorize
explicitly
e iterative linear solvers to JfT(:c)s = V f(x) with implicit Jacobian are
competitive with ALS for CP1:2

@ Subgradient methods / SGD are less popular due to slower progress

'Phan AH, Tichavsky P, Cichocki A. Low complexity damped Gauss-Newton
algorithms for CANDECOMP /PARAFAC. SIMAX, 2013.
2Singh N, Ma L, Yang H, E.S. Comparison of accuracy and scalability of
gauss—Newton and alternating least squares for CANDECOMC/PARAFAC
decomposition. SISC 2021.
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An Effective Distance Metric for CP Decomposition

@ CP decomposition algorithms usually minimize the Frobenius norm

®
-®
©

o Ardavan Afshar et al [AAAI 2021] minimize Wasserstein distance,
improving robustness for downstream tasks

1T — [4, B, C1l[% = || vee(T )—veC([[A B, I3

- § Uk § Ay chk'r‘ <

N

@ We consider Mahalanobis distance based on covariance matrices!

| vee(T) = vee([A, B. CT)3-+ = vec(r)” M~ vee(r)
where 7 = vec(T) — vec([4, B, C])
and M =AA" @ BB @ CCT <
+(I — AAYY® (I - BBY) ® (I — CC)

©-F)

!Navjot Singh and E.S., Alternating Mahalanobis Distance Minimization for Stable
and Accurate CP Decomposition, SISC 2023
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Alternating Minimization of Mahalanobis Distance
(AMDM)

@ Optimizing the new metric

. 2
min, || vec(T) — vec([A, B, C])|| 51 <

-4

in an alternating manner yields ALS-like updates

_ +T +T _ @Y
A =Ty (CHT © B*T) o-{TISF

where M denotes the pseudoinverse of matrix M
@ By comparison, the ALS algorithm computes

A= T(l)(C ® B)+T

e Both C*T ® B*T and (C ® B)*T are left inverses of C ® B, suitable
for minimizing

: T 4T ®
min |(C© B)A" 10| | Zre-- )|
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Convergence to Exact Decomposition

When seeking an exact decomposition for a rank R < s tensor
@ ALS achieves a linear convergence rate!
@ High-order convergence possible by optimizing all variables via
Gauss-Newton,?:3:4 but is costly per iteration relative to ALS

@ AMDM achieves at least quartic order local convergence per sweep of
alternating updates

e error from true solution after solving for one factor scales with product
of errors of other factors

@ cost per iteration is roughly the same as ALS (dominated by single
matricized tensor times Khatri-Rao product (MTTKRP))

LA, Uschmajew, SIMAX 2012
2P. Paatero, Chemometrics and Intelligent Laboratory Systems 1997.
3AH. Phan, P. Tichavsky, A. Cichocki, SIMAX 2013.
*N. Singh, L. Ma, H. Yang, E.S., SISC 2021.
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Exact Decomposition Experimental Performance

Random tensors with exact rank R=20

Collinearity tensors with collinearity = 0.9 and exact rank R=20
10° 4
” %\k\
102 4
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10-10 —A— order 4 AMDM 10-12
—#— order 5 AMDM
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iteration iteration

@ AMDM achieves high-order convergence for exact decomposition of
synthetic random low-rank problems
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Properties of Fixed Points of AMDM
e When rank(7) > R, consider an AMDM fixed point, A, B,C
o X =ATT Y =B*" Z =C*7 yield a critical point of
f(X.Y,2) =(T,[X.Y, Z]) @
- log det -@-Q-O-O-2-2-
~log(det(XTXYTY 27 2)) (TEg]- oo o=

and satisfy tensor-eigenvector-like equations:

A=XTT =T (ZaY) -&-=-@-(TI3F
B=Y*" =T(Z0X) ©=-0={(TIg+
C=2"" =T ©X) o--{(TIt

o The reconstructed tensor T = [A, B, C] exactly represents the action
of the original tensor on vectors in the span of the factors

Tq) vec(u) = T(1y vec(u), Vu € span(C © B)
v)

~ = H )
Ti2) vec(v) = T(z) vec(v), Vv € span(C O A) @ |
T3y vec(w) = T(g) vec(w), VYw € span(B© A) ©
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Approximate Decomposition Results with AMDM

Collinearity tensor with Gaussian noise, eps=0.001 w/ s=100 R=10

fg!]lgnearity tensor with Gaussian noise, eps=0.001 w/ s=100 R=10
0.975 10
0.950 r f—_’«,—-—"'—
7
0.925 £
7 310 —— ALS
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g = —— AMDM
0875 2
© 107
0.850
—— Hybrid
0.825 —— ALS
—v— AMDM N
0.800 10
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iteration iteration

e AMDM finds decomposition with lower CP condition number!

@ Hybrid version gradually transitions from basic AMDM to ALS

'P. Breiding and N. Vannieuwenhoven, SIMAX 2018.
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Statistical Interpretation of AMDM

Consider a random rank-1 tensor
X =wuovouw,

where u, v, and w are Gaussian random vectors with zero mean and
covariance matrices:

M(u] = AAT M[v] = BBT, and M[w] = CCT.
Let T be a sum of R samples of X,
R
T=N+)>_ X
i=1

AMDM performs covariance matrix estimation for X, while simultaneously
minimizing Mahalanobis distance derived from the covariance matrix,

Mu®v®w] = AAT @ BBT @ CCT.
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Simultaneous Distance and Metric Optimization

Minimize for each factor in an alternating manner,

vee(T)"™M[u ® v @ w] T vec(T), s.t. detMu®v@w]) =1
[likelihood of covariance matrix given 7|

vec(T — [A, B,C]) " M[u ® v ® w|* vec(T — [A, B, C])

[fit under metric].

In the first objective, we fix the generalized variance of the distribution,
det(Mlz ® y ® 2]).
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Inexact Optimization for Tensor Decompositions

We now return to approximation in the standard Frobenius norm, and
consider fast inexact algorithms for various decompositions

~<H>=
CP:W Tucker:@z MPS:QQQQ

@ ALS for tensor decompositions yields highly over-constrained linear
least squares problems with tensor product structure

o for CP, the factor A is determined from Khatri-Rao product B ® C

o for the HOOI algorithm for Tucker, the equations are given by a
Kronekecer product B ® C' with orthogonal B and C'

@ the number of right-hand sizes is often large (for CP each row of A is
independent in a step of ALS) and they are expensive to construct
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Sketching for Alternating Least Squares

Radomized subspace embeddings provide a powerful tool for fast
approximation

o for A € R™*" seek random S € RF*™ sych that, Vo € R”,
|1STS Az — Azx|| < e||Az|| w.h.p.

e compute SAZ = Sb, then if Az =2 b, ||[Ax — Az|| < €||b]|, w.h.p.
A variety of distributions can be chosen for the random sketch matrices

e sampling (each row of S has one nonzero) is effective especially for
sparse A or b, leverage scores provide optimal sampling distribution,
requires k = O(nlog(n)/€?)

@ count sketch (each column of S has one nonzero) avoids need to
know leverage score distribution at increased complexity of applying .S
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Sketching Matrices

If A or b have tensor product structure, choosing S to also have matching
structure enables fast computation of SA and Sb, e.g., if

A=B®C,8=25 5,54 =(SB)® (50).
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Efficient Sketching for Tucker via HOOI

Leverage score sampling
@ Since Q = C' ® B, leverage scores satisfy

Lim1yn+5(Q) = la-1yn+5113 = lleill31165113 = L(C)1;(B)
hence we can take products of independent samples of rows of A and
B to obtain the leverage-score based distribution of columns of @

@ Since A, B, C are changing, we must sample the tensor (right-hand
side) differently in each optimization step
TensorSketch® reduces the amount of necessary sampling to 1 round

—@— Countsketch matrix
—@— DFT matrix

"Malik and Becker, NeurlPS 2018.
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Cost comparison for order 3 tensor

ALS + TensorSketch (Malik and Becker, NeurlPS 2018)

@ Solving for each factor matrix or the core tensor at a time

2
o min, 1 H(C®B)XT AT *T(%HF or

€]

miny 1 [|(C ® B ® A)vec(X) — vec(T)||7

Algorithm for Tucker LS subproblem cost | Sketch size (k)

HOOI Q(nnz(T)R) /

ALS + TensorSketch O(knR + kR?) O((R?*/8) - (R% +1/¢))
HOOI + TensorSketch | O(knR + kR?) O((R?/5) - (R? + 1/€%))
HOOI + leverage scores | O(knR + kR?) O(R?/(€%))

LPNA
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Experiments: Tensors with Spiked Signal

0.70 e b
Wiy . V~w _ﬁ—g—e
070 Eé 0es| 5/ i~
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2 2
16R KR
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° T:ToJrZi Xia; o b; o ¢c;, each a;, b;, ¢; has unit 2-norm, \; —3“115
@ Leading low-rank components obey the power-law distribution

@ Tensor size 200 x 200 x 200, R =5

@ TS-ref: (Malik and Becker, NeurlPS 2018)
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Experiments: CP decomposition

r<-<—<—<( 009 90 0m0
ST
P ididle
o »

- CP

=¥ Tucker+CP
—e-. LevCP

—<— Lev Tucker+CP

5 10
Sweeps

T = Z?:tr;e a; o bjoc, Rtrue/R =12
@ Tensor size 2000 x 2000 x 2000, R = 10, sample size 16 R>

@ Lev CP: leverage score sampling for CP-ALS (Larsen and Kolda,
arXiv:2006.16438)

@ Tucker+CP: Run Tucker HOOI first, then run CP-ALS on the Tucker core
@ Run Tucker HOOI with 5 sweeps, CP-ALS with 25 sweeps

@ Recent work (V Bharadwaj et al, Larsen and Kolda, arXiv:2301.12584)
implicitly samples the leverage score distribution for CP exactly
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Sketching General Tensor Networks

Problem: Given a tensor network input data, x, find
a Gaussian tensor network embedding, .S, such that

the embedding is (e, §)-accurate and f:(:)}g)—jdi

@ The number of rows of S (sketch size m) is low Data

Tensor network embedding

@ Asymptotic cost to compute Sz is minimized

An (oblivious) embedding S € R™* is (e, §)-accurate if!

o H |Szl2 = |12l
R

>e] <d foranyx

'Woodruff, Sketching as a tool for numerical linear algebra, 2014

LPNA Optimization for tensor decomposition 23/29



Sketching Tensor Network Data

Previous work:
e Kronecker product embedding®: inefficient in computational cost

o Tree embedding (e.g. MPS)?: efficient for specific data (Kronecker
product, MPS), but efficiency unclear for general tensor network data

Assumptions throughout our analysis:
e Classical O(n3) matmul cost
@ Consider embeddings defined on graphs
with no hyperedges
@ Each dimension to be sketched
e has a size lower bounded by the

sketch size
e is only adjacent to one data tensor

LAhle et al, Oblivious sketching of high-degree polynomial kernels, SODA 2020
2Rakhshan and Rabusseau, Tensorized random projections, AISTATS 2020
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Sufficient condition for (e, d)-accurate embedding

The embedding G = (V, E, w) is accurate if there exists a linear ordering
of V such that in its induced DAG, the weighted sum of out-going edges
adjacent to each v € V is Q(m), where m = N log(1/5)/e?

Proof of accuracy leverages two key prior results?

Q If S'is (¢,0)-accurate, sois I ® S® I
Q If Sy,...,Sy are (O(e/V/'N),6)-accurate, Sy --- Sy is (e, §)-accurate

L Ahle et al, Oblivious sketching of high-degree polynomial kernels, SODA 2020
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Efficient General Sketching

@ Tensor network sketch contains

@ Kronecker product
embedding

@ binary tree of small tensor
network gadgets

Each gadget sketches product of
two tensors

e chosen to minimize cost
depending on connectivity

e may or may not be a tree

Can reduce cost by up to O(y/m)
relative to binary tree

@ near-optimal under assumptions
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Applications of Tensor Network Sketching

@ If input data is Khatri-Rao product or tensor product

o new gadgets reduce cost by O(y/m) relative to Gaussian binary tree
embedding
o this allows acceleration of sketching for CP decomposition

o tree-like sketch structure also allows intermediate reuse during
optimization (dimension trees)
@ When data is an MPS (tensor train)
o plain tree sketch is efficient (sketch can be binary tree or MPS-like)

e shows optimality (subject to our sufficient condition) of prior work!

LAl Daas, Hussam, et al. Randomized algorithms for rounding in the tensor-train
format, SISC 2023.
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Summary and Conclusions

@ Sketching for Tucker decomposition
o Sketching HOOI gives accurate decomposition with enough sketch size
o TensorSketch permits 1-pass (streaming) Tucker and CP

e High polynomial scaling in rank; for CP addressable by indirect leverage
score sampling!

@ Gaussian tensor network sketching
e achieves linear cost relative to number of input tensors

o limited analysis to Gaussian tensors, classical matrix multiplication cost

e not considering hyperedges in sketch, e.g., Khatri-Rao product in
TensorSketch

!Bharadwaj, Vivek, et al. Fast exact leverage score sampling from Khatri-Rao
products with applications to tensor decomposition, 2023. arXiv:2301.12584
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Further References and Recent Work by LPNA

@ AMDM: Navjot Singh and E.S. Alternating Mahalanobis Distance
Minimization for Stable and Accurate CP Decomposition, SISC 2023.

@ Sketching Tucker: Linjian Ma and ES., Fast and accurate
randomized algorithms for low-rank tensor decompositions, NeurlPS'21.

@ Sketching general tensor networks: Linjian Ma and E.S.
Cost-efficient Gaussian tensor network embeddings for
tensor-structured inputs, NeurlPS 2022.

@ CP for perf. modeling: Edward Hutter and E.S. High-dimensional
performance modeling via tensor completion, SC 2023.

o Efficient sparse tensor contraction: Raghavendra Kanakagiri and
E.S. Minimum cost loop nests for contraction of a sparse tensor with a
tensor network, arXiv:2307.05740.

@ Inexact solvers for interior point: Samah Karim and E.S.
Efficient preconditioners for interior point methods via a new

Schur-complement-based strategy, SIMAX 2022.
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