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Tensor Diagrams

Tensor diagram: a hypergraph representing a
tensor network, where tensors are vertices and
hyperedges are indices

Scalar Vector Matrix Order 3
tensor

Examples:
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Tensor Decomposition

Tensor decomposition: represent or approximate a tensor as a contraction
of smaller tensors

Kronecker product canonical polyadic (CP) Tucker

matrix product state
(MPS)

hierarchical Tucker tensor ring projected entangled pair states
(PEPS)

A CP decomposition TTT = [[A,B,C]] is a sum of rank one tensors
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Applications of Tensor Decompositions in Data Science

Approximation in modeling of continuous systems

quantum chemistry / electrnic structure calculations
high-dimensional numerical PDEs

Data analytics/mining and compression

high-order principal component analysis
compression of hyperspectral images, neural networks

Tensor completion

given a set of observed entries Ω ⊂ N× N× N, seek

min
A,B,C

∥(TTT − [[A,B,C]])Ω∥2F + λ(∥A∥2F + ∥B∥2F + ∥C∥2F )

used for recommender systems, image and video recovery
we demonstrate effectiveness for performance modeling1, e.g.,

tijk = runtime of MatVec of dimension ni and block size bj × bk

1Edward Hutter and E.S. ACM/IEEE Supercomputing 2023.
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Efficient Tensor Contractions

Cyclops Tensor Framework1

distributed-memory (MPI) library for tensor contractions
(C++/OpenMP/CUDA with Python interface)

finds most communication-efficient distributed layout for contraction

efficient algorithms for dense tensor redistribution

extended to support sparsity and general semirings

Sparse tensor times tensor network

with sparse tensors, fusion of contractions is important

dynamic programming algorithm to search for optimal loop nest when
contracting a single sparse tensor with dense tensors2

1E.S. et al (2014). Journal of Parallel and Distributed Computing, 74(12).
2Raghavendra Kanakagiri and E.S., SPAA 2024.
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Tensor Decomposition Algorithms

Rank-1 approximation of high-order tensors is NP-hard

Alternating least squares (ALS) is commonly used for tensor
decompositions

For an order 3 tensor XXX , minimize relative to one factor at a time,

min
A

∥XXX − [[A,B,C]]∥F ⇒ (C ⊙B)AT ∼= XT
(1)

monotonic linear convergence to local minima

Classical quadratic optimization in all variables (Gauss-Newton)

Jacobian or Hessian matrices are too expensive to form explicitly
iterative linear solvers to JT

f (x)s = ∇f(x) with implicit Jacobian are

competitive with ALS for CP1,2

1Phan AH, Tichavsky P, Cichocki A. Low complexity damped Gauss-Newton
algorithms for CANDECOMP/PARAFAC. SIMAX, 2013.

2Singh N, Ma L, Yang H, E.S. Comparison of accuracy and scalability of
Gauss–Newton and alternating least squares for CANDECOMC/PARAFAC
decomposition. SIAM Journal on Scientific Computing (SISC), 2021.
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An Effective Distance Metric for CP Decomposition

ALS solves the linear least squares problem

min
A

∥∥∥(C ⊙B)AT − T T
(1)

∥∥∥
F

This leads to updates

A = T(1)(C ⊙B)+T

We propose a method that uses a different left inverse of C ⊙B

A = T(1)(C
+T ⊙B+T )
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An Effective Distance Metric for CP Decomposition

CP decomposition algorithms usually minimize the Frobenius norm

∥TTT − [[A,B,C]]∥2F = ∥ vec(TTT )− vec([[A,B,C]])∥22

=
∑
i,j,k

(
tijk −

R∑
r=1

airbjrckr
)2

The new alternating scheme minimizes Mahalanobis distance based
on running estimates of covariance matrix inverses1

∥ vec(TTT )− vec([[A,B,C]])∥2M+ = vec(r)TM+ vec(r)

where r = vec(TTT )− vec([[A,B,C]])

and M = AAT ⊗BBT ⊗ CCT

Optimizes for most likely decomposition if TTT =
∑

i TTT i where TTT i is
i.i.d. random rank-1 with Gaussian factors and covariance AAT ,...

1Navjot Singh and E.S., Alternating Mahalanobis Distance Minimization for Stable
and Accurate CP Decomposition, SIAM Journal on Scientific Computing (SISC), 2023.
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Convergence to Exact Decomposition
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ALS achieves a linear convergence rate1

High-order convergence possible by optimizing all variables via
Gauss-Newton,2,3,4 but is costly per iteration relative to ALS

AMDM achieves superlinear convergance for small R

AMDM cost per iteration is almost the same as ALS

1A. Uschmajew, SIMAX 2012
2P. Paatero, Chemometrics and Intelligent Laboratory Systems 1997.
3A.H. Phan, P. Tichavsky, A. Cichocki, SIMAX 2013.
4N. Singh, L. Ma, H. Yang, E.S., SISC 2021.
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Experimental Results for Approximate Decomposition
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for approximate decomposition, AMDM achieves good conditioning

hybrid ALS/AMDM achieves low residual
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Inexact Optimization for Tensor Decompositions

We now return to approximation in the standard Frobenius norm, and
consider fast inexact algorithms for various decompositions

ALS for tensor decompositions yields highly over-constrained linear
least squares problems with tensor product structure

for CP, the factor A is determined from Khatri-Rao product B ⊙ C

for the HOOI algorithm for Tucker, the equations are given by a
Kronekecer product B ⊗ C with orthogonal B and C

the number of right-hand sizes is often large (for CP each row of A is
independent in a step of ALS) and they are expensive to construct
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Sketching for Alternating Least Squares

Radomized subspace embeddings provide a powerful tool for fast
approximation

for A ∈ Rm×n seek random S ∈ Rk×m such that, ∀x ∈ Rn,

∥STSAx−Ax∥ ≤ ϵ∥Ax∥ w.h.p.

compute SAx̂ ∼= Sb, then if Ax ∼= b, ∥Ax−Ax̂∥ ≤ ϵ∥b∥, w.h.p.
A variety of distributions can be chosen for the random sketch matrices

sampling (each row of S has one nonzero) is effective especially for
sparse A or b, leverage scores provide optimal sampling distribution,
requires k = O(n log(n)/ϵ2)

count sketch (each column of S has one nonzero) avoids need to
know leverage score distribution at increased complexity of applying S
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Efficient Sketching Matrices

If A or b have tensor product structure, choosing S to also have matching
structure enables fast computation of SA and Sb, e.g., if

A = B ⊗ C, S = S1 ⊗ S2, SA = (S1B)⊗ (S2C).

We have developed efficient sketching algorithms for (sparse) CP and
Tucker1 and general dense tensor networks2

Tensor decompositions with sketching substantially improve efficiency
for large scale tensor decomposition problems3

1
Linjian Ma and E.S. Fast and accurate randomized algorithms for low-rank tensor decompositions, NeurIPS’21

2
Linjian Ma and E.S. Cost-efficient Gaussian tensor network embeddings for tensor-structured inputs, NeurIPS’22

3
Bharadwaj V, Malik OA, Murray R, Buluç A, Demmel J. Distributed-Memory Randomized Algorithms for Sparse Tensor

CP Decomposition, arXiv:2210.05105.
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Further References and Recent Work by LPNA

Cyclops for tensor completion Navjot Singh, et al.

Distributed-memory tensor completion for generalized loss functions in

python using new sparse tensor kernels, JPDC 2022.

AMDM: Navjot Singh and E.S. Alternating Mahalanobis Distance

Minimization for Stable and Accurate CP Decomposition, SISC 2023.

Sketching Tucker: Linjian Ma and ES., Fast and accurate

randomized algorithms for low-rank tensor decompositions, NeurIPS’21.

Sketching general tensor networks: Linjian Ma and E.S.

Cost-efficient Gaussian tensor network embeddings for

tensor-structured inputs, NeurIPS 2022.

CP for perf. modeling: Edward Hutter and E.S. High-dimensional

performance modeling via tensor completion, SC 2023.

Efficient sparse tensor contraction: Raghavendra Kanakagiri and

E.S. Minimum cost loop nests for contraction of a sparse tensor with a

tensor network, SPAA 2024.
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