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Recent/ongoing research topics
(*-covered today)

parallel matrix computations

matrix factorizations
eigenvalue problems
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Tensors

A tensor is a collection of elements

its dimensions define the size of the collection

its order is the number of different dimensions

specifying an index along each tensor mode
defines an element of the tensor

A few examples of tensors are

Order 0 tensors are scalars, e.g., s ∈ R
Order 1 tensors are vectors, e.g., v ∈ Rn

Order 2 tensors are matrices, e.g., A ∈ Rm×n

An order 3 tensor with dimensions s1 × s2 × s3 is denoted as
TTT ∈ Rs1×s2×s3 with elements tijk for
i ∈ {1, . . . , s1}, j ∈ {1, . . . , s2}, k ∈ {1, . . . , s3}
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Tensor Contractions

A tensor contraction multiplies elements of two tensors and computes
partial sums to produce a third, in a fashion expressible by pairing up
modes of different tensors, which may be expressed in Einstein summation
notation (einsum)

tensor contraction einsum
inner product w =

∑
i uivi

outer product wij = uivij
pointwise product wi = uivi

Hadamard product wij = uijvij
matrix multiplication wij =

∑
k uikvkj

batched mat.-mul. wijl =
∑

k uiklvkjl
tensor times matrix wilk =

∑
j uijkvlj

LPNA Tensor Algorithms and Software May 28th, 2021 5 / 38



General Tensor Contractions

Given tensor UUU of order s+ v and VVV of order v + t, a tensor contraction
summing over v modes can be written as

wi1...isj1...jt =
∑
k1...kv

ui1...isk1...kvvk1...kvj1...jt

Other contractions can be mapped to this form after transposition

Unfolding the tensors reduces the tensor contraction to matrix
multiplication

Combine consecutive indices in appropriate groups of size s ,t, or v

If all tensor modes are of dimension n, obtain matrix–matrix product
C = AB where C ∈ Rns×nt

, A ∈ Rns×nv
, and B ∈ Rnv×nt

Assuming classical matrix multiplication, contraction requires ns+t+v

elementwise products and ns+t+v − ns+t additions
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Emulation of Quantum Gates and Quantum Circuits

Consider an n-qubit quantum state

|ψ〉 =
∑

i∈{0,1}n
tψi |i1 · · · in〉 with ti ∈ C

Quantum circuits generally consist of 1-qubit and 2-qubit gates

|φ〉 = U (s) |ψ〉 ⇒ tφi1···in =

1∑
js=0

u
(s)
isjs

tψi1···is−1jsis+1···in

|φ〉 = U (s,t) |ψ〉 ⇒ tφi1···in =

1∑
js=0

1∑
jt=0

u
(s)
isitjsjt

tψi1···is−1jsis+1···it−1jtit+1···in

A quantum gate can be emulated as an O(2n)-cost tensor contraction

An n-qubit quantum circuit with depth D and O(nD) gates can be
simulated classically with O(nD2n) cost and O(2n) storage
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Symmetric Tensor Contractions

Recall a symmetric tensor is defined by e.g.,
tijk = tikj = tkij = tjki = tjik = tkji

Tensors can also have skew-symmetry (also known as antisymmetry,
permutations have +/− signs), partial symmetry (only some modes
are permutable), or group symmetry (blocks are zero if indices satisfy
modular equation)

The simplest example of a symmetric tensor contraction is

y = Ax where A = AT

it is not obvious how to leverage symmetry to reduce cost of this
contraction
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Permutational Symmetry in Tensor Contractions
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New contraction algorithms reduce cost via permutational symmetry1

Symmetry is hard to use in contraction e.g. y = Ax with A symmetric

For contraction of order s+ v and v + t tensors to produce an order s+ t tensor,
previously known approaches reduce cost by s!t!v!

New algorithm reduces number of products by ω! where ω = s+ t+ v, leads to
same reduction in cost for partially-symmetric contractions

C = AB +BA⇒ cij =
∑
k

[(aij + aik + ajk) · (bij + bik + bjk)]− . . .

1
E.S, J. Demmel, CMAM 2020
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Group Symmetry

Tensors arising in physical simulations often have group structure that
reflects conservation laws

Abelian group symmetries can be mapped to cyclic group, which can
be used to define a block-sparse form of the tensors (here represented
using extra modes), e.g.,

waA,bB,iI,jJ =
∑

k,K,l,L

uaA,bB,kK,lLvkK,lL,iI,jJ .

where for some group size G, we have symmetries, e.g.,

waA,bB,iI,jJ 6= 0 if A+B − I − J ≡ 0 (mod G),

uaA,bB,kK,lL 6= 0 if A+B +K + L ≡ 0 (mod G),

vkK,lL,iI,jJ 6= 0 if K + L− I − J ≡ 0 (mod G).

We can write each of these tensors using a reduced form and an irrep
map,

waA,bB,iI,jJ = r
(W )
aA,bB,iI,jmABIJ

where mABIJ = 1 if A+B − I − J ≡ 0 (mod G) and mABIJ = 0
otherwise
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Block Contraction Approach to Group Symmetry
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Group Symmetry in Tensor Contractions

New contraction algorithm, irreducible representation alignment uses new reduced

form to handle group symmetry (momentum conservation, spin, quantum

numbers, etc.) without looping over blocks or sparsity1

ŵaA,b,i,jJ,Q = waA,b,Q−A mod G,i,−J−Q mod G,jJ ,

=
∑
L,k,l

ûaA,b,k,lL,Qv̂k,lL,i,jJ,Q.

1
collaboration with Yang Gao, Phillip Helms, and Garnet Chan at Caltech, to appear on arxiv, July 2020
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Automation of Group Symmetric Contractions
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Loop Blocks (1 Proc, NumPy)
Symtensor (1 Proc, BLAS)
Symtensor (1 Proc, CTF)
Loop Blocks (64 Proc, NumPy)
Symtensor (64 Proc, BLAS)
Symtensor (64 Proc, CTF)

Group symmetric tensors represented programmatically by

a dense reduced tensor (containing unique data)
an implicit sparse tensor (irrep map) describing the group symmetry

At contraction time reduced form is transformed so as to align irrep
maps (introduce Q index)

Users can write symmetry-oblivious code
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Library for Massively-Parallel Tensor Computations

Cyclops Tensor Framework1 sparse/dense generalized tensor algebra

Cyclops is a C++ library that distributes each tensor over MPI

Used in chemistry (PySCF, QChem)2, quantum circuit simulation
(IBM/LLNL)3, and graph analysis (betweenness centrality)4

Summations and contractions specified via Einstein notation

E["aixbjy"] += X["aixbjy"] - U["abu"]*V["iju"]*W["xyu"]

Best distributed contraction algorithm selected at runtime via models

Support for Python (numpy.ndarray backend), OpenMP, and GPU

Simple interface to core ScaLAPACK matrix factorization routines

1https://github.com/cyclops-community/ctf
2

E.S., D. Matthews, J. Hammond, J.F. Stanton, J. Demmel, JPDC 2014
3

E. Pednault, J.A. Gunnels, G. Nannicini, L. Horesh, T. Magerlein, E. S., E. Draeger, E. Holland, and R. Wisnieff, 2017
4

E.S., M. Besta, F. Vella, T. Hoefler, SC 2017
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CP Decomposition

For a tensor TTT ∈ Rn×n×n, the CP decomposition1 is defined by
matrices U , V , and W such that

tijk =

R∑
r=1

uirvjrwkr

For an order N tensor, the decomposition generalizes as follows,

ti1...id =

R∑
r=1

d∏
j=1

u
(j)
ijr

Its rank is generally bounded by R ≤ nd−1

1
Kolda and Bader, SIAM Review 2009
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Alternating Least Squares for CP Decomposition

Consider rank R CP decomposition of an s× s× s× s tensor

xijkl ≈
R∑
r=1

uirvjrwkrzlr

ALS updates factor matrices in an alternating manner

min
A(n)

f(A(1), . . . ,A(N)) =
1

2
||XXX − [[A(1), · · · ,A(n), · · · ,A(N)]]||2F ,

Each quadratic subproblem is typically solved via normal equations
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Tensor Contractions in CP ALS

The normal equations are cheap to compute

But forming the right-hand sides (M (n)) requires expensive MTTKRP
(matricized tensor-times Khatri-Rao product)
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Pairwise Perturbation Algorithm
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New algorithm: pairwise perturbation (PP)1 approximates ALS

based on perturbative expansion of ALS update to
approximate MTTKRP

approximation is accurate when ALS updates stagnate

rank R < sN−1 CP decomposition:

ALS sweep cost O(sNR)⇒ O(s2R), up to 33x speed-up Linjian Ma
1

Linjian Ma, E.S. arXiv:1811.10573
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Parallel Pairwise Perturbation Algorithm
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Effective parallelization by decomposing MTTKRP into local MTTKRPs 1

U = MTTKRP(TTT ,V ,W )⇒ Ui =
∑
j,k

MTTKRP(TTT ijk,Vj ,Wk)

processor (i, j, k) owns TTT ijk, Vj , and Wk

pairwise perturbation can be used to approximate local MTTKRPs

multi-sweep dimension-tree (MSDT) amortizes terms across sweeps
1

Linjian Ma, E.S. IPDPS 2021
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Tucker Decomposition

The Tucker decomposition1 expresses an order d tensor via a smaller
order d core tensor and d factor matrices

For a tensor TTT ∈ Rn×n×n, the Tucker decomposition is defined by core
tensor ZZZ ∈ RR1×R2×R3 and factor matrices U , V , and W with
orthonormal columns, such that

tijk =

R1∑
p=1

R2∑
q=1

R3∑
r=1

zpqruipvjqwkr

If an exact Tucker decomposition exists, it can be computed via SVD
(HoSVD)
HOOI method optimizes in an alternating manner among (U ,ZZZ),
(V ,ZZZ), (W ,ZZZ)

1
Kolda and Bader, SIAM Review 2009
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Randomized Methods for Sparse Tensor Decomposition

When seeking a low-rank R = O(1) decomposition for a sparse
tensor, sketching schemes have been shown to be efficient

In this regime, Tucker can be used to construct a CP decomposition

Leverage score sampling on the rank-constrained least squares
problem minX,rank(X)≤R ‖AX −B‖F leads to a state-of-the-art
cost-accuracy trade-off1 to effectively approximate HOOI (ALS)

Algorithm for Tucker LS solve cost Sample size (m)

ALS O(nnz(TTT )RN−1) /

ALS + TensorSketch2 Õ(mRN +msR) O(R2(N−1) · 3N−1/(ε2δ))

ALS + TTMTS2 Õ(msRN−1) O(R2(N−1) · 3N−1/(ε2δ))

ALS + TensorSketch1 Õ(mR2N−2 + sRN−1) O
(
(R(N−1) + 1/ε2) · (3R)(N−1)/δ

)
ALS + leverage scores1 Õ(mR2N−2 + sRN−1) O(R(N−1)/(ε2δ))

1
Linjian Ma and E.S., arXiv:2104.01101

2
O. Malik and S. Becker, 2018 (assuming unconstrained LSQ)
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Tensor Completion

The tensor completion problem seeks to build a model (e.g., CP
decomposition) for a partially-observed tensor

For an order three tensor TTT ∈ Rn×n×n, given a set of observed entries
tijk for (i, j, k) ∈ Ω, we seek to minimize∑

(i,j,k)∈Ω

(tijk −
∑
r

uirvjrwkr)
2

︸ ︷︷ ︸
loss function

+λ2(‖U‖22 + ‖V ‖22 + ‖W ‖22)

Completion objective differs from decomposition of a sparse tensor, as
it excludes unobserved entries

Other loss functions than quadratic loss are often interest for different
tensor data
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Tensor Completion
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Via the Cyclops Python interface, we have implemented parallel (over
MPI) completion with SGD, CCD, ALS (with iterative and direct
solves), and Gauss-Newton, with support for generalized loss1

Tensor times tensor product (TTTP) routine enables CP tensor
completion

rijk =
∑
r

tijkuirvjrwkr

For ALS, explicit parallel direct solves2 are fastest
1

Navjot Singh, Zecheng Zhang, Xiaoxiao Wu, Naijing Zhang, Siyuan Zhang, and Edgar Solomonik arXiv:1910.02371
2

Shaden Smith, Jongsoo Park, and George Karypis, 2016
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Hamiltonians as Tensor Network Operators

Tensor network methods use tensor decompositions to represent
quantum systems
These methods are most natural for lattice spin systems such as the
Heisenberg model and the simpler transverse field Ising model

H =
∑
〈i j〉

JzZiZj +
∑
i

hxXi

where 〈i j〉 denote neighboring sites on a 2D lattice
In the 1D case, 2-qubit operators such as ZiZi+1 can be written as

H = Z ⊗Z ⊗ I ⊗ · · · ⊗ I + I ⊗Z ⊗Z ⊗ I ⊗ · · · ⊗ I + · · ·
In the 1D case, H can be represented as a matrix-product operator
(MPO) with constant bond dimension (rank)

Figure: Tensor diagrams for (a) an MPS, (b) an MPO and (c) a 3× 3 PEPS.
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Density Matrix Renormalization Group (DMRG)

H =Ψ =
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Parallel DMRG with Group Symmetry
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We have recently developed a parallel DMRG code using Cyclops1

compare two approaches to group symmetry

iterate over block-wise contractions
use CTF’s sparse tensor representation

match ITensor efficiency at scale for spin-system, but significantly
lower efficiency for fermionic system with large number of blocks

1R. Levy, B. Clark, E.S. arXiv:2007.05540
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Automatic Generation of Tensor Network Methods

Automatic differentiation (AD) in principle enables automatic
generation of methods such as ALS and DMRG

Both apply Newton’s method on a sequence of subsets of variables

However, existing AD tools such as Jax (used by TensorFlow) are
designed for deep learning and are ineffective for more complex tensor
computations

focus purely on first order optimization via Jacobian-vector products
unable to propagate tensor algebra identities such as
(A⊗B)−1 = A−1 ⊗B−1 to generate efficient code
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AutoHOOT: Automatic High-Order Optimization for
Tensors

AutoHOOT1 provides a tensor-algebra centric AD engine
Designed for einsum expressions and alternating minimization
common in tensor decomposition and tensor network methods
Python-level AD is coupled with optimization of contraction order
and caching of intermediates
Generates code for CPU/GPU/supercomputers using high-level
back-end interface to tensor contractions
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1Linjian Ma, Jiayu Ye, and E.S. arXiv:2005.04540, 2020
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Tensor Network State Evolution

We can evolve a tensor network state by Trotterization of a
Hamiltonian with m local terms

e−iHτ =

m∏
j=1

e−iHjτ +O(τ2)

Dynamics may be simulated by time-evolution |ψt+τ 〉 = e−iHτ |ψt〉
Ground state calculation can be done via imaginary time evolution,
|ψi(t+τ)〉 = e−Hτ |ψit〉, maximizing as follows

e−Eτ = max
‖ψ‖2
〈ψ|e−Hτ |ψ〉

which is equivalent to minimizing E and leads to the same
maximizer/minimizer ψ

If Hj is a local (e.g., one/two-site) operator, so is e−iHjτ
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Quantum Circuit Simulation with Tensor Networks

Evolution of tensor network states can also simulate quantum circuits

In fact, a quantum circuit is a direct description of a tensor network1

Why use HPC to (approximately) simulate quantum circuits?

enable development/testing/tuning of larger quantum circuits
understand approximability of different quantum algorithms
quantify sensitivity of algorithms to noise/error
potentially enable new hybrid quantum-classical algorithms

Tensor network states (e.g., MPS/PEPS) provide robust tools for
approximate simulation

1Markov and Shi SIAM JC 2007
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Quantum Circuit Simulation using PEPS1

Near-term quantum architectures mostly connect qubits in a 2D
fashion

Non-local gates can be applied via the use of swap gates (with
corresponding overhead)

2D tensor networks (projected entangles pair states (PEPS)) provide
a natural way to simulate 2D quantum circuits

Same software/algorithms infrastructure is also effective for
(imaginary) time evolution with many Hamiltonians of interest

Gate application and contraction of PEPS can both have exponential
cost in the size of the circuit, so desire effective approximation

1Yuchen Pang, Tianyi Hao, Annika Dugad, Yiqing Zhou, and E.S., arXiv:2006.15234.
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Approximate Application of Two-Site Operators

Consider application of a two-site operator on neighboring PEPS sites

Simple update (QR-SVD) algorithm:

We provide an efficient distributed implementation of QR-SVD

This operation is an instance of what we’ll refer to as einsumsvd and
QR-SVD is one algorithm/implementation
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Implicit Randomized einsumsvd

The einsumsvd primitive will also enable effective algorithms for
PEPS contraction

An efficient general implementation is to leverage randomized SVD /
orthogonal iteration, which iteratively computes a low-rank SVD by a
matrix–matrix product that can be done implicitly via tensor
contractions

This approach improves complexity for PEPS boundary contraction
method
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Koala

We introduce a new library, Koala1, for high-performance simulation
of quantum circuits and time evolution with PEPS

1https://github.com/cyclops-community/koala
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PEPS Benchmark Performance
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Koala achieves good parallel scalability for approximate gate
application (evolution) and contraction

Approximation can be effective even for adversarially-designed circuits
such as Google’s random quantum circuit model (figure on right)
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PEPS Accuracy for Quantum Simulation
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ITE code achieves improvable accuracy with increased PEPS bond
dimension, but approximation in PEPS contraction is not variational

Variational quantum eigensolver (VQE), which represents a
wavefunction using a parameterized circuit U(θ) and minimizes

〈U(θ)|H |U(θ)〉 ,

also achieves improvable accuracy with higher PEPS bond dimension
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Conclusion

We have presented innovations to numerical algorithms and software
libraries for tensor contractions, decompositions, and tensor networks

Our research group is developing an ecosystem of algorithms and
software for simulation of quantum systems

This work is relevant to both classical methods for quantum
chemistry and physics, as well as quantum computation

See our website1 and github pages for access to high performance
software for tensor methods

1
http://lpna.cs.illinois.edu
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