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Laboratory for Parallel Numerical Algorithms

Focus today

communication avoiding algorithms for dense linear algebra
Cyclops library for tensor contractions
inexact autotuning via critical path profiling
performance modeling via tensor completion

See http://lpna.cs.illinois.edu for our group’s other work

quantum simulation
linear system solvers for interior point methods
optimization and sketching for tensor decompositions/networks
parallel sorting
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Beyond computational complexity

Algorithms should minimize communication, not just computation

communication and synchronization cost more energy than flops

two types of communication (data movement):

vertical (intranode memory–cache)
horizontal (internode network transfers)

parallel algorithm design involves tradeoffs: computation vs
communication vs synchronization

parameterized algorithms provide optimality and flexibility
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Cost model for parallel algorithms

We use the Bulk Synchronous Parallel (BSP) model (L.G. Valiant 1990)

execution is subdivided into S supersteps, each associated with a
global synchronization (cost α)

at the start of each superstep, processors interchange messages, then
they perform local computation

if the maximum amount of data sent or received by any process is wi

(work done is fi and amount of memory traffic is qi) at superstep i
then the BSP time is

T =

S∑
i=1

α+wi · β + qi · ν + fi · γ = O(S · α+W · β +Q · ν + F · γ)

where typically α ≫ β ≫ ν ≫ γ

we mention vertical communication cost only when it exceeds
Q = O(F/

√
H +W ) where H is cache size

LPNA Scalable Algorithms and Performance Models Sep 30th, 2022 4 / 20



Communication complexity of matrix multiplication

Multiplication of A ∈ Rm×k and B ∈ Rk×n can be done in O(1)

supersteps with communication cost W = O
((

mnk
p

)2/3)
provided

sufficient memory and sufficiently large p

when m = n = k, 3D blocking gets O(p1/6) improvement over 2D1

when m,n, k are unequal, need appropriate processor grid2

1
J. Berntsen, Par. Comp., 1989; A. Aggarwal, A. Chandra, M. Snir, TCS, 1990; R.C. Agarwal, S.M. Balle, F.G. Gustavson,

M. Joshi, P. Palkar, IBM, 1995; F.W. McColl, A. Tiskin, Algorithmica, 1999; ...
2
J. Demmel, D. Eliahu, A. Fox, S. Kamil, B. Lipshitz, O. Schwartz, O. Spillinger 2013
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3D algorithms for matrix computations

For Cholesky factorization with p processors, BSP (critical path) costs are

F = Θ(n3/p), W = Θ(n2/
√
cp), S = Θ(

√
cp)

using c matrix copies (processor grid is 2D for c = 1, 3D for c = p1/3).

Achieving similar costs for LU, QR, and the symmetric eigenvalue problem
requires algorithmic changes.
triangular solve square TRSM ✓1 rectangular TRSM ✓2

LU with pivoting pairwise pivoting ✓3 tournament pivoting ✓4

QR factorization Givens on square ✓3 Householder on rect. ✓5

sym. eig. eigenvalues only ✓5 eigenvectors X
✓means costs attained (synchronization within polylog factors).

1
B. Lipshitz, MS thesis 2013

2
T. Wicky, E.S., T. Hoefler, IPDPS 2017

3
A. Tiskin, FGCS 2007

4
E.S., J. Demmel, EuroPar 2011

5
E.S., G. Ballard, T. Hoefler, J. Demmel, SPAA 2017
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Characteristics of 3D Algorithms

recursive formulations possible for many problems

Tiskin’s algorithms for Cholesky, LU with pairwise pivoting, QR
some are complicated, latter two recurse on slanted 2:1 panels

two-level (logical) blocking

yields 3D algorithms for LU, QR and reduces vertical communication
also used in full-to-band reduction for symmetric eigensolve

successive band reduction

classically used to reduce vertical comm.1

log p reduction stages needed to obtain 3D symmetric eigensolve2

alternative numerical formulations

different pivoting (pairwise/tournament) for LU, polar decomposition3

Cholesky-QR2 and variants4,5, triangular inversion (log depth)6

1
C.H. Bischof, B. Lang, X. Sun, ACM TOMS’00

2
E.S., G. Ballard, J. Demmel, T. Hoefler, SPAA’17

3
Y. Nakatsukasa, N.J. Higham, SISC’13. H. Ltaief, D. Sukkari, A. Esposito, Y. Nakatsukasa, D. Keyes, ACM TOPC’19.

4
T. Fukaya, R. Kannan, Y. Nakatsukasa, Y. Yamamoto, Y. Yanagisawa, SISC’20

5
E. Hutter, E.S., IPDPS’19

6
T. Wicky, T. Hoefler, E.S., IPDPS’17
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Tensors

A tensor is a collection of elements

its dimensions define the size of the collection

its order is the number of different dimensions

specifying an index along each tensor mode
defines an element of the tensor

A few examples of tensors are

Order 0 tensors are scalars, e.g., s ∈ R
Order 1 tensors are vectors, e.g., v ∈ Rn

Order 2 tensors are matrices, e.g., A ∈ Rm×n

An order 3 tensor with dimensions s1 × s2 × s3 is denoted as
TTT ∈ Rs1×s2×s3 with elements tijk for
i ∈ {1, . . . , s1}, j ∈ {1, . . . , s2}, k ∈ {1, . . . , s3}
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Tensor Contractions

A tensor contraction describes a set of products and sums of elements
from two tensors

tensor contraction formula
inner product w =

∑
i uivi

outer product wij = uivij
pointwise product wi = uivi
Hadamard product wij = uijvij

matrix multiplication wij =
∑

k uikvkj
batched mat.-mul. wijl =

∑
k uiklvkjl

tensor times matrix wilk =
∑

j uijkvlj

Tensor contractions are prevalent in quantum chemistry methods
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Library for Massively-Parallel Tensor Contractions

Cyclops Tensor Framework1: sparse/dense generalized tensor algebra

Cyclops is a C++ library that distributes each tensor over MPI

Used in chemistry (PySCF, QChem, CC4S)2, quantum circuit simulation (by
IBM/LLNL)3, and graph analysis (betweenness centrality4, minimum
spanning tree5)

Summations and contractions specified via Einstein notation

E["aixbjy"] += X["aixbjy"] - U["abu"]*V["iju"]*W["xyu"]

Best distributed contraction algorithm selected at runtime via models

Support for Python (numpy.ndarray backend), OpenMP, and CUDA

1https://github.com/cyclops-community/ctf
2
E.S., D. Matthews, J. Hammond, J.F. Stanton, J. Demmel, JPDC 2014

3
E. Pednault, J.A. Gunnels, G. Nannicini, L. Horesh, T. Magerlein, E.S., E. Draeger, E. Holland, and R. Wisnieff, 2017

4
E.S., M. Besta, F. Vella, T. Hoefler, SC 2017

5
T. Baer, R. Kanakagiri, E.S., SIAM PP 2022
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CP Tensor Decomposition

For a tensor TTT ∈ Rn×n×n, the CP decomposition1,2 is defined by
matrices A, B, and C such that

tijk =

R∑
r=1

airbjrckr

low-rank CP decomposition is widely used for compression and
multi-way data analysis

high-rank CP decomposition is useful in quantum simulation, search
for fast bilinear algorithms

1
F.L. Hitchcock, Studies in Applied Mathematices 1927

2
T. Kolda and B. Bader, SIAM Review 2009
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Recent and Ongoing Cyclops Developments

All-at-once contraction for sparse tensor times dense tensor network

Driven by tensor completion1 and quasi-robust density fitting2

Generalizes MTTKRP (common kernel for CP), TTMc (for Tucker) and
other kernels arising in sparse tensor decomposition and completion

Working on integration with linear (least-squares) solves

Select best loop-nest / integrate BLAS based on performance model
1
N. Singh, Z. Zhang, X. Wu, N. Zhang, S. Zhang, and E.S., JPDC’22

2
D.P. Tew, The Journal of Chemical Physics 2018
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Accelerating Automatic Tuning

Autotuning – searching for fastest program variant by benchmarking

widely used for performance tuning today

computationally expensive, especially if different variants wanted for
different inputs

Performance of parallel programs is hard to predict

communication bottlenecks dependent on architecture

idle time and load imbalance arise due to dependencies

But many programs largely consist of easy-to-model subkernels

parallel QR codes repeatedly execute local MMs of similar sizes
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Approximate Automatic Tuning

Critter1 leaverages critical path profiling to efficiently perform approximate
autotuning in dense linear algebra

designed to track critical path communication/synchronization costs

approximates critical path execution time by predicting subkernel
performance

the more times a subkernel is executed, the more statistical accuracy
in overall prediction

propogates local kernel timings to other processors to reduce cost

automatically profiles MPI routines and identifies basic BLAS routines

1E. Hutter, E.S. IPDPS’21
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Approximate Automatic Tuning for QR
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Performance Modeling

selection of best program variants often guided by performance
modeling

for autotuning, performance models can guide/accelerate

in practice, performance models may be

semi-analytic or derived from program structure
learned from sample of benchmark timings

for complex programs, input and parameter space is high-dimensional

multi-task learning problem
runtime data is noisy and partially complete
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Prediction Model and Accuracy

Given d input/tuning parameters and executions times
T (pi1 , . . . , pid) ∈ R+ for (i1, . . . , id) ∈ Ω, seek concise model T for all
other parameters

For example, seek to model m× k by k × n matrix multiplication
analytically, a simple model may be

TMM(m,n, k) = γ ·mnk + β · (mn+ nk +mk) + α

with α, β, and γ tuned

Generally, we want the prediction to be accurate in scale, namely we
want to minimize error in log(T )

We apply CP tensor completion for modeling, e.g.,

min
XXX=CP(A,B,C)

∑
(u,v,w)∈Ω

(xuvw − log(TMM(mu, nv, kw)))
2 + λ · · ·

We find the log significantly improves effective prediction accuracy,
and is more efficient than using a log loss function
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Discretization and Interpolation
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Discretization and Interpolation
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Conclusion and Acknowledgements

For details on tensor completion modeling, see https:
//solomonik.cs.illinois.edu/preprints/HS22.pdf

NSF awards #1839204 (RAISE-TAQS), #1931258
(CSSI), #1942995 (CAREER), the DOE CSGF
program, and the DOE MMICC program

Stampede2 resources at TACC via XSEDE

See https://lpna.cs.illinois.edu for all further
info
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