# Scaling Numerical Algorithms and Software via Improved Performance Modeling

Edgar Solomonik

L P. N A @CS@Illinois

Department of Computer Science University of Illinois at Urbana-Champaign

ICL Lunch Talk University of Tennessee, Knoxville

# Laboratory for Parallel Numerical Algorithms

Focus today

- communication avoiding algorithms for dense linear algebra
- Cyclops library for tensor contractions
- inexact autotuning via critical path profiling
- performance modeling via tensor completion
- See http://lpna.cs.illinois.edu for our group's other work
  - quantum simulation
  - linear system solvers for interior point methods
  - optimization and sketching for tensor decompositions/networks
  - parallel sorting



# Beyond computational complexity

Algorithms should minimize communication, not just computation

- communication and synchronization cost more energy than flops
- two types of communication (data movement):



- vertical (intranode memory-cache)
- horizontal (internode network transfers)
- parallel algorithm design involves tradeoffs: computation vs communication vs synchronization
- parameterized algorithms provide optimality and flexibility

## Cost model for parallel algorithms

We use the Bulk Synchronous Parallel (BSP) model (L.G. Valiant 1990)

- execution is subdivided into S supersteps, each associated with a global synchronization (cost  $\alpha$ )
- at the start of each superstep, processors interchange messages, then they perform local computation
- if the maximum amount of data sent or received by any process is  $w_i$  (work done is  $f_i$  and amount of memory traffic is  $q_i$ ) at superstep i then the BSP time is

$$T = \sum_{i=1}^{S} \alpha + w_i \cdot \beta + q_i \cdot \nu + f_i \cdot \gamma = O(S \cdot \alpha + W \cdot \beta + Q \cdot \nu + F \cdot \gamma)$$

where typically  $\alpha \gg \beta \gg \nu \gg \gamma$ 

• we mention vertical communication cost only when it exceeds  $Q=O(F/\sqrt{H}+W)$  where H is cache size

#### Communication complexity of matrix multiplication

Multiplication of  $A \in \mathbb{R}^{m \times k}$  and  $B \in \mathbb{R}^{k \times n}$  can be done in O(1) supersteps with communication cost  $W = O\left(\left(\frac{mnk}{p}\right)^{2/3}\right)$  provided sufficient memory and sufficiently large p

• when m = n = k, 3D blocking gets  $O(p^{1/6})$  improvement over  $2D^1$ 

 $\bullet\,$  when m,n,k are unequal, need appropriate processor  ${\rm grid}^2$ 



<sup>&</sup>lt;sup>1</sup>J. Berntsen, Par. Comp., 1989; A. Aggarwal, A. Chandra, M. Snir, TCS, 1990; R.C. Agarwal, S.M. Balle, F.G. Gustavson, M. Joshi, P. Palkar, IBM, 1995; F.W. McColl, A. Tiskin, Algorithmica, 1999; ...

LPNA

<sup>&</sup>lt;sup>2</sup> J. Demmel, D. Eliahu, A. Fox, S. Kamil, B. Lipshitz, O. Schwartz, O. Spillinger 2013

## 3D algorithms for matrix computations

For Cholesky factorization with p processors, BSP (critical path) costs are

$$F = \Theta(n^3/p), \quad W = \Theta(n^2/\sqrt{cp}), \quad S = \Theta(\sqrt{cp})$$

using c matrix copies (processor grid is 2D for c = 1, 3D for  $c = p^{1/3}$ ).

Achieving similar costs for LU, QR, and the symmetric eigenvalue problem requires algorithmic changes.

| <b>_</b>         | <b>U</b>                        |                                    |
|------------------|---------------------------------|------------------------------------|
| triangular solve | square TRSM $\sqrt{1}$          | rectangular TRSM $\sqrt{2}$        |
| LU with pivoting | pairwise pivoting $\sqrt{3}$    | tournament pivoting $\checkmark^4$ |
| QR factorization | Givens on square $\checkmark^3$ | Householder on rect. $\sqrt{5}$    |
| sym. eig.        | eigenvalues only $\checkmark^5$ | eigenvectors X                     |

 $\checkmark$  means costs attained (synchronization within polylog factors).

- <sup>2</sup>T. Wicky, E.S., T. Hoefler, IPDPS 2017
- <sup>3</sup>A. Tiskin, FGCS 2007
- <sup>4</sup>E.S., J. Demmel, EuroPar 2011
- <sup>5</sup>E.S., G. Ballard, T. Hoefler, J. Demmel, SPAA 2017

LPNA

<sup>&</sup>lt;sup>1</sup>B. Lipshitz, MS thesis 2013

## Characteristics of 3D Algorithms

- recursive formulations possible for many problems
  - Tiskin's algorithms for Cholesky, LU with pairwise pivoting, QR
  - some are complicated, latter two recurse on slanted 2:1 panels
- two-level (logical) blocking
  - yields 3D algorithms for LU, QR and reduces vertical communication
  - also used in full-to-band reduction for symmetric eigensolve
- successive band reduction
  - classically used to reduce vertical comm.<sup>1</sup>
  - $\log p$  reduction stages needed to obtain 3D symmetric eigensolve<sup>2</sup>
- alternative numerical formulations
  - different pivoting (pairwise/tournament) for LU, polar decomposition<sup>3</sup>
  - Cholesky-QR2 and variants<sup>4,5</sup>, triangular inversion (log depth)<sup>6</sup>

<sup>&</sup>lt;sup>1</sup>C.H. Bischof, B. Lang, X. Sun, ACM TOMS'00

<sup>&</sup>lt;sup>2</sup>E.S., G. Ballard, J. Demmel, T. Hoefler, SPAA'17

<sup>&</sup>lt;sup>3</sup> Y. Nakatsukasa, N.J. Higham, SISC'13. H. Ltaief, D. Sukkari, A. Esposito, Y. Nakatsukasa, D. Keyes, ACM TOPC'19.

<sup>&</sup>lt;sup>4</sup>T. Fukaya, R. Kannan, Y. Nakatsukasa, Y. Yamamoto, Y. Yanagisawa, SISC'20

<sup>&</sup>lt;sup>5</sup>E. Hutter, E.S., IPDPS'19

<sup>&</sup>lt;sup>6</sup>T. Wicky, T. Hoefler, E.S., IPDPS'17

#### Tensors

A tensor is a collection of elements

- its dimensions define the size of the collection
- its order is the number of different dimensions
- specifying an index along each tensor mode defines an element of the tensor
- A few examples of tensors are
  - Order 0 tensors are scalars, e.g.,  $s \in \mathbb{R}$
  - Order 1 tensors are vectors, e.g.,  $v \in \mathbb{R}^n$
  - Order 2 tensors are matrices, e.g.,  $A \in \mathbb{R}^{m \times n}$
  - An order 3 tensor with dimensions  $s_1 \times s_2 \times s_3$  is denoted as  $\mathcal{T} \in \mathbb{R}^{s_1 \times s_2 \times s_3}$  with elements  $t_{ijk}$  for  $i \in \{1, \ldots, s_1\}, j \in \{1, \ldots, s_2\}, k \in \{1, \ldots, s_3\}$



A tensor contraction describes a set of products and sums of elements from two tensors

| tensor contraction    | formula                             |
|-----------------------|-------------------------------------|
| inner product         | $w = \sum_{i} u_i v_i$              |
| outer product         | $w_{ij} = u_i v_{ij}$               |
| pointwise product     | $w_i = u_i v_i$                     |
| Hadamard product      | $w_{ij} = u_{ij}v_{ij}$             |
| matrix multiplication | $w_{ij} = \sum_k u_{ik} v_{kj}$     |
| batched matmul.       | $w_{ijl} = \sum_k u_{ikl} v_{kjl}$  |
| tensor times matrix   | $w_{ilk} = \sum_{j} u_{ijk} v_{lj}$ |

Tensor contractions are prevalent in quantum chemistry methods

## Library for Massively-Parallel Tensor Contractions

Cyclops Tensor Framework<sup>1</sup>: sparse/dense generalized tensor algebra

- Cyclops is a C++ library that distributes each tensor over MPI
- Used in chemistry (PySCF, QChem, CC4S)<sup>2</sup>, quantum circuit simulation (by IBM/LLNL)<sup>3</sup>, and graph analysis (betweenness centrality<sup>4</sup>, minimum spanning tree<sup>5</sup>)
- Summations and contractions specified via Einstein notation

E["aixbjy"] += X["aixbjy"] - U["abu"]\*V["iju"]\*W["xyu"]

- Best distributed contraction algorithm selected at runtime via models
- Support for Python (numpy.ndarray backend), OpenMP, and CUDA

<sup>&</sup>lt;sup>1</sup>https://github.com/cyclops-community/ctf

<sup>&</sup>lt;sup>2</sup>E.S., D. Matthews, J. Hammond, J.F. Stanton, J. Demmel, JPDC 2014

<sup>&</sup>lt;sup>3</sup>E. Pednault, J.A. Gunnels, G. Nannicini, L. Horesh, T. Magerlein, E.S., E. Draeger, E. Holland, and R. Wisnieff, 2017

<sup>&</sup>lt;sup>4</sup>E.S., M. Besta, F. Vella, T. Hoefler, SC 2017

<sup>&</sup>lt;sup>5</sup>T. Baer, R. Kanakagiri, E.S., SIAM PP 2022

#### **CP** Tensor Decomposition



• For a tensor  $T \in \mathbb{R}^{n \times n \times n}$ , the CP decomposition<sup>1,2</sup> is defined by matrices A, B, and C such that

$$t_{ijk} = \sum_{r=1}^{R} a_{ir} b_{jr} c_{kr}$$

- low-rank CP decomposition is widely used for compression and multi-way data analysis
- high-rank CP decomposition is useful in quantum simulation, search for fast bilinear algorithms

<sup>&</sup>lt;sup>1</sup>F.L. Hitchcock, Studies in Applied Mathematices 1927

<sup>&</sup>lt;sup>2</sup>T. Kolda and B. Bader, SIAM Review 2009

# Recent and Ongoing Cyclops Developments



• All-at-once contraction for sparse tensor times dense tensor network

- Driven by tensor completion<sup>1</sup> and quasi-robust density fitting<sup>2</sup>
- Generalizes MTTKRP (common kernel for CP), TTMc (for Tucker) and other kernels arising in sparse tensor decomposition and completion
- Working on integration with linear (least-squares) solves
- Select best loop-nest / integrate BLAS based on performance model

<sup>2</sup>D.P. Tew, The Journal of Chemical Physics 2018

LPNA

<sup>&</sup>lt;sup>1</sup>N. Singh, Z. Zhang, X. Wu, N. Zhang, S. Zhang, and E.S., JPDC'22

Autotuning - searching for fastest program variant by benchmarking

- widely used for performance tuning today
- computationally expensive, especially if different variants wanted for different inputs

Performance of parallel programs is hard to predict

- communication bottlenecks dependent on architecture
- idle time and load imbalance arise due to dependencies

But many programs largely consist of easy-to-model subkernels

• parallel QR codes repeatedly execute local MMs of similar sizes

Critter<sup>1</sup> leaverages critical path profiling to efficiently perform approximate autotuning in dense linear algebra

- designed to track critical path communication/synchronization costs
- approximates critical path execution time by predicting subkernel performance
- the more times a subkernel is executed, the more statistical accuracy in overall prediction
- propogates local kernel timings to other processors to reduce cost
- automatically profiles MPI routines and identifies basic BLAS routines

<sup>&</sup>lt;sup>1</sup>E. Hutter, E.S. IPDPS'21

#### Approximate Automatic Tuning for QR





Sep 30th, 2022

15 / 20

- selection of best program variants often guided by performance modeling
  - for autotuning, performance models can guide/accelerate
- in practice, performance models may be
  - semi-analytic or derived from program structure
  - learned from sample of benchmark timings
- for complex programs, input and parameter space is high-dimensional
  - multi-task learning problem
  - runtime data is noisy and partially complete

## Prediction Model and Accuracy

- Given d input/tuning parameters and executions times  $T(p_{i_1}, \ldots, p_{i_d}) \in \mathbb{R}_+$  for  $(i_1, \ldots, i_d) \in \Omega$ , seek concise model T for all other parameters
- For example, seek to model  $m \times k$  by  $k \times n$  matrix multiplication
  - analytically, a simple model may be

$$T_{\mathsf{MM}}(m,n,k) = \gamma \cdot mnk + \beta \cdot (mn + nk + mk) + \alpha$$

with  $\alpha \text{, }\beta \text{, and }\gamma \text{ tuned}$ 

- $\bullet$  Generally, we want the prediction to be accurate in scale, namely we want to minimize error in  $\log(T)$
- We apply CP tensor completion for modeling, e.g.,

$$\min_{\boldsymbol{\mathcal{X}}=\mathsf{CP}(A,B,C)} \sum_{(u,v,w)\in\Omega} (x_{uvw} - \log(T_{\mathsf{MM}}(m_u,n_v,k_w)))^2 + \lambda \cdots$$

• We find the log significantly improves effective prediction accuracy, and is more efficient than using a log loss function

LPNA

## Discretization and Interpolation



## Discretization and Interpolation



# Conclusion and Acknowledgements

- For details on tensor completion modeling, see https: //solomonik.cs.illinois.edu/preprints/HS22.pdf
- NSF awards #1839204 (RAISE-TAQS), #1931258 (CSSI), #1942995 (CAREER), the DOE CSGF program, and the DOE MMICC program
- Stampede2 resources at TACC via XSEDE
- See https://lpna.cs.illinois.edu for all further info



