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Pervasive paradigms in scientific computing

What commonalities exist among resource-intensive computations
in simulation and data analysis?

» multidimensional datasets (observations, discretizations)

» higher-order relations between datasets, i.e. equations, maps,
graphs, hypergraphs

» sparsity and symmetry in structure of relations

> relations lead to solution directly or by acting as an evolutionary
(iterative) criterion

» algebraic descriptions of datasets and relations
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Pervasive paradigms in scientific computing

What type of abstractions are desirable in high performance
computing?

» data abstractions should reflect native dimensionality and
structure

» global functional abstractions should efficiently orchestrate
communication and synchronization

» abstractions should enable development of provably efficient
algorithms
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Introduction to tensor computations
Symmetry-preserving tensor algorithms
Communication-avoiding parallel algorithms

A massively-parallel tensor framework
Applications to electronic structure calculations

Conclusion
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Low-rank matrix factorizations

A,'J' = Z U,'k ij — Ci = Z U,'k ijbj
k j,k

low rank linear operator
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Low-rank tensor factorizations (TT)
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Tensor contractions in electronic structure methods

Amplitude equation snippet from coupled cluster doubles model

0= abl_] + Z Tablka_j + Z Tabkl Vklmn 7_an +.

k,[;m,n

Tensor hypercontraction representation?

aby Z ¢al¢1/zlm¢jmwbm

I,m

aHohenstein, Parrish, Sherrill, Martinez, JCP, 2012
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Structured tensor computations

Challenges for matrix/tensor algebraic abstractions

v

data and relation sparsity — tensor sparsity

v

low-order representations of data — tensor decompositions

v

implicitly defined relations — implicit tensor representations

v

data and relation equivalences — tensor symmetries
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Exploiting symmetry in tensors

Tensor symmetry (e.g. Aj = Ajj) reduces memory and cost

» for order d tensor, d! less memory
» dot product Zi,j AUBU =2 Zi<j A,JBU + Zi A;iBii
» matrix-vector multiplication!
TR WICEYS <ZAU>
» rank-2 vector outer product1

Cj = aibj + ajb; = (ai + aj)(b,- + bj) — ajbj — ajb;

> squaring a symmetric matrix (or AB + BA)?

Ci=> AwAy=> (Ai+Ag+ Aj) -
k k

1

v

for order w contraction, w! fewer multiplications

15., Demmel; Technical Report, ETH Zurich, 2015.
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Symmetry preserving algorithms

By exploiting symmetry, we can reduce the number of
multiplications at the cost of more additions?
» partially symmetric contractions
» symmetry preserving algorithm can be nested over each index group
» reduction in multiplications implies reduction in nested calls
» cost reductions: 1.3 for CCSD, 2.1 for CCSDT
» algorithms generalize to most antisymmetric tensor contractions
» for Hermitian tensors, multiplication cost 3X more than addition
» BLAS routines: hemm and her2k as well as LAPACK routines like
hetrd (tridiagonal reduction) may be done with 25% fewer operations
» achieves (2/3)n® bilinear rank for squaring a nonsymmetric
matrix, assuming elementwise commutativity

» allows blocking of symmetric contractions into smaller
(anti)symmetric contractions

25., Demmel; Technical Report, ETH Zurich, 2015.
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Beyond computation cost

Algorithms should be not only work-efficient but
communication-efficient

» data movement and synchronization cost more energy than flops

» two types of data movement: vertical (intranode memory—cache)
and horizontal (internode network transfers)

» parallel algorithm design involves tradeoffs between computation,
communication, and synchronization

» lower bounds and parameterized algorithms provide optimal
solutions within a well-defined tuning space
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Cost model for parallel algorithms

Given a schedule that specifies all work and communication tasks
on p processors, we consider the following costs, accumulated
along chains of tasks (as in « — 3, BSP, and LogGP models),

» F — computation cost
» () — vertical communication cost
» W — horizontal communication cost

» S — synchronization cost

3-processor schedule
O -computation

&-message

128 Mg .7

D~..some

D o
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Communication lower bounds: previous work

>

>

Multiplication of n x n matrices
. . . 2
horizontal communication lower bound® Wyu = Q (’2’—/3>
p

memory-dependent horizontal communication lower bound*

_ n
Wiam = ©2 (pm>
with M = cn?/p memory, can hope to obtain W = O(n?/,/cp)
communication
standard parallel libraries (ScaLAPACK, Elemental) optimal only
forc=1

3Aggarwa|, Chandra, Snir, TCS, 1990
Irony, Toledo, Tiskin, JPDC, 2004
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Communication-efficient matrix multiplication

Communication-optimal algorithms for matrix multiplication have
been studied extensively®

. . . 6
They continue to be attractive on modern architectures
2.5D MM on BG/P (n=65,536) Matrix multiplication strong scaling on Mira (BG/Q)
100 J I 200 T T T
. 2.5D SUMMA ——— 2.5D MM n=65,536 —%— '
2D SUMMA 2D MM n=65,536 i i
x i ScalLAPACK PDGEMM —&— 2.5D MM n=16,384 —53— !
§ 8o i e 2D MM n=16,384 -
- S O S —— m——— 1 150 ; 4
s .
£ 8
£
§ B0 [ 4 %
£ 2
S Kl
$ B
=] -
2 51
¢
E
. ‘ ‘ . ‘ ‘ ‘
256 512 1024 2048 256 512 1024 2048 4096

#nodes #nodes

SBerntsen, Par. Comp., 1989; Agarwal, Chandra, Snir, TCS, 1990; Agarwal, Balle, Gustavson, Joshi, Palkar,
IBM, 1995; McColl, Tiskin, Algorithmica, 1999; ...

65., Bhatele, Demmel, SC, 2011
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Synchronization cost lower bounds

Unlike matrix multiplication, many algorithms in numerical linear
algebra have polynomial depth

. . 3
» synchronization cost bounds’ Sym = © <W>

» algorithms for Cholesky, LU, QR, SVD have additional
dependencies

» lowering computation and communication costs, requires
additional synchronization

7Ba|lard, Demmel, Holtz, Schwartz, SIAM JMAA, 2011
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Tradeoffs in the diamond DAG

For the n x n diamond DAG, there is a tradeoff between
computation and synchronization costs® F - S = Q(n?)

Dependency chain P Monochrome dependency intervals Multicolored dependency intervals

We generalize such tradeoffs to consider horizontal communication
and arbitrary (polynomial or exponential) interval expansion®

8Papadimitriou, Ullman, SIAM JC, 1987
S., Carson, Knight, Demmel, SPAA 2014 (extended version, JPDC 2016)
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Tradeoffs involving synchronization

We apply tradeoff lower bounds to dense linear algebra algorithms,
represented via dependency hypergraphs.?

For triangular solve with an n x n matrix
Frrsv - Strsv = Q (n?)
For Cholesky of an n x n matrix
Fenol - SéhoL = £ (n?) WeroL - SchoL = Q (n?)
Proof employs classical Loomis-Whitney inequality.

For any R C N x N x N, three projections of R onto N x N have
total size at least |R|?/3

aS., Carson, Knight, Demmel, SPAA 2014 (extended version, JPDC 2016)
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Communication-efficient LU factorization

For any c € [1, p*/3], use cn?/p memory per processor and obtain

Wiy = O(n?//cp), Stu = O(Vep)

LU with tournament pivoting on BG/P (n=65,536)
100 T

T
ideal scaling -~~~
25D LU

2D
80 - Scal APACK PDGETRF —&—

Percentage of machine peak
IS
&
T
°
/ c
i

256 512 1024 2048
#nodes

» LU with pairwise pivoting!® extended to tournament pivoting

» first implementation of a communication-optimal LU algorithm

10rigkin, FGCS, 2007
11S., Demmel, Euro-Par, 2011
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Communication-efficient QR factorization

v

v

v

v

Wqr = O(n?/./cp), Sqr = O(,/cp) using Givens rotations'?

Householder form can be reconstructed quickly from TSQR'3

optimal QR communication and synchronization (modulo log
factors) costs can be obtained with Householder representation®

Householder aggregation yields performance improvements

Teraflops

QR weak scaling on Hopper (15K-by-15K to 131K-by-131K)

20 -

T T T
Two-Level CAQR-HR
Two-Level Householder
QR-HR
Elemental QR
ScaLAPACK QR
Scatter-Apply CAQR

I I I

288 576 1152 2304 4608 9216

#cores

12Tiskin, FGCS, 2007

13Ba|lard, Demmel, Grigori, Jacquelin, Nguyen, Diep, S., IPDPS, 2014

145., UCB, 2014
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Communication-efficient eigenvalue computation

For the dense symmetric matrix eigenvalue problem
» Wse = O(n?/,/cp), Sqr = O(+/cplog? p) *°

» optimal horizontal communication can be obtained with
left-looking algorithm and aggregation, however, requires more
vertical communication

» successive band reduction can be used to minimize both
communication costs

155., UCB, 2014. S., Hoefler, Demmel, in preparation
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Synchronization tradeoffs in stencils

Our lower bound analysis extends also to sparse iterative
methods. 10

For computing s applications of a (2m + 1)9-point stencil
Fsi - Sgt =Q (m2d : sdﬂ) Wy - S_gt_l =Q (md : sd>
proof requires generalization of Loomis-Whitney inequality to order

d set and order d — 1 projections

» time-blocking lowers synchronization and vertical communication
costs, but raises horizontal communication

» we suggest alternative approach that minimizes vertical and
horizontal communication, but not synchronization

165., Carson, Knight, Demmel, SPAA 2014 (extended version, JPDC 2016)
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Beyond the Loomis-Whitney inequalities

Loomis-Whitney inequalities are not sufficient for all computations

> symmetry preserving tensor contraction algorithms have arbitrary
order projections from order d set

» bilinear algorithms!” provide a more general framework
> a bilinear algorithm is defined by matrices F(A), F(B) F(C),

c=FOFATL) o (FBITh)

where o is the Hadamard (pointwise) product

T T

X X X X XX X X X X X X X X X
X X X X X X X XX X X X X X X

X X X X X X XX XX X X

Cl=|x X X X X X X al|o X X x b
X X X X X X X X X

X X XX X X X X X X X X

X X X X X X X XX X XX X X XXX

» communication lower bounds can be formulated in terms of rank!®

7 Pan, Springer, 1984

S., Hoefler, Demmel, in preparation
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Communication cost of symmetry preserving algorithms

For contraction of order s + v tensor with order v + t tensor
» T is the nonsymmetric contraction algorithm
» WV is the best previously known algorithm

> & is the symmetry preserving algorithm

Asymptotic communication lower bounds based on bilinear
expansion? (H—cache size, p—#tprocessors, n—dimension):

sltlv]FrlfvlFollQul| Q | Wr]| Wy | We
2 2 n° 2 2 n n n
111104 n n3 T n n 5 | piE | pe
3 n n 3 3 n n
2110 n 5 3 n n n 25 | w2
4 n n 4 4 n’ n’ n®
21210 n T 22 n n p1/2 p1/2 pl/2
3 3 n n n n? n’ n’
1111 n n 6 H1/2 Hi/2 2273 | 23 | P73
4 n n" n® n" 2 n
2111 n > 22 Hi/2 Hi/3 n n 0373
6 n° n° n® n° n” n? n?
21212\ F || me | me | #r | 25 | w5

?S., Hoefler, Demmel, ETHZ, 2014
Edgar Solomonik Algorithms as Multilinear Tensor Equations 30/40



» lower bounds for multiplication of a sparse and a dense matrix
» lower bounds for nested bilinear algorithms

» broader parameterizations of algorithmic representations needed
for QR and SVD lower bounds



Tensor algebra as a programming abstraction

Cyclops Tensor Framework!®
» contraction/summation/functions of tensors
» distributed symmetric-packed/sparse storage via cyclic layout
» parallelization via MPI+OpenMP(+CUDA)

195., Hammond, Demmel, UCB, 2011. S., Matthews, Hammond, Demmel, IPDPS, 2013
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Tensor algebra as a programming abstraction

Cyclops Tensor Framework
» contraction/summation/functions of tensors
» distributed symmetric-packed/sparse storage via cyclic layout
» parallelization via MPI4+OpenMP(+CUDA)

Jacobi iteration example code snippet

void Jacobi(Matrix<> A, Vector<> b, int n){
Matrix<> R(A);
R["ii"] = 0.0;
Vector<> x(n), d(n), r(n);
Function<> inv([](double & d){ return 1./d; });
d["i"]1 = inv(AL["ii"]1); // set d to inverse of diagonal of A
do {
x["i"] = d["i"1*(b["i"]-R["ij"1*x["j"1);
rC"i"1 = bL"i"1-AL["ij"1*x["j"1; // compute residual
} while (r.norm2() > 1.E-6); // check for convergence
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Tensor algebra as a programming abstraction

Cyclops Tensor Framework
» contraction/summation/functions of tensors
» distributed symmetric-packed/sparse storage via cyclic layout
» parallelization via MPI4+OpenMP(+CUDA)

Mgller-Plesset perturbation theory (MP3) code snippet

Z["abij"] += Fab["af"1*T["fbij"1;
Z["abij"] -= Fij["ni"1*T["abnj"1;
Z["abij"] += @.5xVabcd["abef"]*T["efij"1;
Z["abij"] += @.5%Vijkl["mnij"1*T["abmn"1;
Z["abij"]1 -= Vaibj[”amei”1xT["ebmj"1;

Edgar Solomonik Algorithms as Multilinear Tensor Equations 32/40



Betweenness centrality

Betweenness centrality code snippet, for k of n nodes

void btwn_central (Matrix<int> A, Matrix<path> P, int n, int k)
Monoid<path> mon(...,
[I1(path a, path b){
if (a.w<b.w) return a;
else if (b.w<a.w) return b;
else return path(a.w, a.m+b.m);

o)

Matrix<path> Q(n,k,mon); // shortest path matrix
Q["ij"] = P[llij"];

Function<int,path> append([]l(int w, path p){
return path(w+p.w, p.m);

I HIDH

for (int i=0; i<n; i++)
QL"ij"]1 = append(A["ik"1,Q["kj"1);
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Performance of CTF for dense computations

CTF is highly tuned for massively-parallel machines
» virtualized multidimensional processor grids
» topology-aware mapping and collective communication
» performance-model-driven decomposition done at runtime
» optimized redistribution kernels for tensor transposition

BG/Q matrix multiplication

2048 T T
CTF —+—
1024 Scalapack

Teraflop/s
]
o

i i i i i
4096 8192 16384 32768 65536 131072 262144
#cores
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Performance of CTF for sparse computations

All-pairs

seconds

seconds/iteration

MP3 leveraging sparse-dense tensor contractions?

Weak scaling of MP3 (m=40, n=160 on 24 cores)

Strong scaling of MP3 with m=40, n=160

44 F T T T 3 16 T T T T
dense —+— § dense —+—
40 [ 16% sparse --0@-- 14 16% sparse ==-@-- |
36 [ 8%sparse —-m-- 8% sparse -
g [ 4%sparse ¢ 12 4% sparse - %+
2% sparse 5 2% sparse &
28 1% sparse s 10 1% sparse T
T
H
2
S 6
3
4
2
I I I ok L L I ¥ 4
24 48 9 192 384 24 48 % 192 384
#cores #cores
shortest-paths based on path doubling with sparsification
Weak scaling of APSP (n=2K on 24 cores) Strong scaling of APSP with n=2K
140
tegular path doubling —+— i i ' reguiar path doubling —+—
120 sparse path doubling | 24 sparse path doubling 1
100 . 20 ]
80 4 8 6 ]
2
s
60 4 8 12 8
40 4 8 T
20 R 4t 4
| | I 0 I | | i
24 48 % 192 384 24 48 % 192 384 768
#cores #cores
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Post-Hartree-Fock (HF) methods

Accurate models of electronic correlation require approximation of
contributions of excited-state transitions.

v

Mgller-Plesset methods provide perturbative corrections

Coupled-cluster methods (CCSD, CCSDT, CCSDTQ) iteratively
solve (2nd, 3rd 4th order equatlons in the state space

v

> tensor expressions naturally express high-order transitions

v

tensor structure admits symmetries and sparsity
» permutational index antisymmetry due to antisymmetry of
wavefunction
» sparsity due to strength of interactions diminishing with growing
distance in the molecular orbital basis
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CCSD using CTF

Extracted from Aquarius (Devin Matthews' code,
https://github.com/devinamatthews/aquarius)

FMIL"mi"]

+= @.5xWMNEF["mnef"1*T(2)["efin"1;

WMNIJ["mnij"”] += @.5*WMNEF["mnef"”1*T(2)["efij"1;

FAE["ae"]

-= Q.5*WMNEF["mnef"]*T(2)["afmn"];

WAMEI["amei"] -= @.5*WMNEF["mnef”]1*T(2)["afin"];

Z(2)["abij"]
Z(2)["abij"]
Z(2)["abij"]
Z(2)["abij"]
Z(2)["abij"]
Z(2)["abij"]

= WMNEF["ijab"1;

+= FAE["af"1*T(2)["fbij"1;

-= FMI["ni"1*T(2)["abnj"1;

+= 0.5%WABEF["abef”1xT(2)["efij"1;
+= 0.5%WMNIJ["mnij”1*T(2)["abmn"1;
-= WAMEI["amei"]1*T(2)["ebmj"];

Other electronic structure codes using CTF include QChem (via
Libtensor) and VASP

Edgar Solomonik
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https://github.com/devinamatthews/aquarius

Comparison with NWChem

NWChem is the most commonly-used distributed-memory
quantum chemistry method suite

» provides CCSD and CCSDT
» uses Global Arrays a Partitioned Global Address Space (PGAS)

backend for tensor contractions

» derives equations via Tensor Contraction Engine (TCE)

seconds

Strong scaling CCSD on Edison

1024

256

T
NWChem w20
wis -

Edgar Solomonik

i iy
4 8 16 32 64 128 256
#nodes

seconds

1024 b

256

Strong scaling CCSDT on Edison

T T
NWChem w3 -- )& -~

w2 --{=]--
Aquarius-CTF wé ——

w3 —¢— |
w2 ——

i
16 3
#nodes
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Coupled cluster on IBM BlueGene/Q and Cray XC30

Teraflops

Teraflops

Edgar Solomonik

1024
512

128

CCSD up to 55 (50) water molecules with cc-pVDZ

CCSDT up to 10 water molecules with cc-pVDZ?

Weak scaling on BlueGene/Q

Weak scaling on BlueGene/Q
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Algorithms as Multilinear Tensor Equations

1024 2048 4096

39/40



Future work

> symmetry preserving algorithms

» high-performance implementations
» bilinear algorithm complexity — fast matrix multiplication

> sparsity in tensor computations
» handling multiple sparse operands and sparse output
» worst-case lower bounds and efficient algorithms

» tensor algorithms
» most algorithms correspond to multiple dependent tensors operations
» scheduling, blocking, and decomposition of multiple tensor operations
» programming abstractions for tensor factorizations

» application-driven development
» tensor decompositions, sparsity, symmetry all motivated by electronic

structure applications

» many further applications in tensor networks (DMRG), machine
learning, etc.
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Symmetry preserving algorithm vs Strassen’s algorithm

Symmetry preserving alg. vs Strassen’s alg. (s=t=v=0/3)

64 T T, T T
Strassen’s algorithm = ‘
Sym. preserving ©=6 =w==- ]

32 Sym. preserving ©=3

[In®/(s!tivl)] / #multiplications
(speed-up over classical direct evaluation alg.)

10 100 1000 10000 100000 1e+06
n%/s! (matrix dimension)
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Nesting of bilinear algorithms

Given two bilinear algorithms:

M =(FP F®) )
Ao =(F FSD FS)

We can nest them by computing their tensor product

Meh =(FM o FM F® o FP) FO o FO)
rank(A1 ® Ap) =rank(A1) - rank(A2)
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Block-cyclic algorithm for s-step methods

oo o ala °© 0 0 o
s

[0 0 o o [¢# 2 o o7 ©o-dummy computation

[oc 0 0o oo o &%

|=3u=1i0 0 o o e X > o o]u=2 x(3)
s XX

=2 u=lio o %g %[0 o o ou=2 x(2)

1=1 u=1: e ¥ o oJo o o o]u=2 x(1

For s-steps of a (2m + 1)?-point stencil with block-size of H'/9/m,

msn® d msn®
Wik, = O <H1/dp> Skr = O(sn/(pH)) Qx: = O<Hl/dp)

which are good when H = ©(n?/p), so the algorithm is useful
when the cache size is a bit smaller than n?/p
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2.5D LU on MIC

LU factorization strong scaling on Stampede (MIC + Sandy Bridge)

450
! 2.5D hybrid LU n=131,072 —¥—
2D hybrid LU n=131,072 —=— |
40 2.5D pure-cpu LU n=131,072
———————————————— 2.5D hybrid LU n=65,536 —>— -1
350 : 2D hybrid LU n=65,536 —©— _
o 2.5D pure-cpu LU n=65,536 —ll—
8 q :
£ 300
@
[ T i R it I T P T
S
T 250 e oo e T
i)
o e
200 |- oo -oos oo e s s ey
L T oo e
100
16 32 64 128 256
#nodes
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LU factorization strong scaling on Mira (BG/Q), n=65,536
T

100 T T
2D LU, custom mapping —¥— ‘
2D LU, default mapping - o b

80 -

Gigaflop/s/node

#nodes



Symmetric matrix representation

Symmetric matrix Unique part of symmetric matrix

T T
[l
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Blocked distributions of a symmetric matrix

Naive blocked layout

Block-cyclic layout

Edgar Solomonik

P2

P3

P2

1T
|
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Cyclic distribution of a symmetric matrix

Cyclic layout ~ Improved blocked layout
m-P1
ax 0 P2
|
P1 P3
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Credit to John F. Stanton and Jurgen Gauss
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Our CCSD factorization

A,mn mn E : mn _f
Wei = Vei + Ver &,
~ i 1
mn mn i mn e mn _ef
Wi™ = vim+ P ) vie t; + 52 Vef Ti
e ef
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efm
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Stability of symmetry preserving algorithms

Relative error of c=A"b with positive A and alternating b Relative error of squaring a Householder transformation
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Performance breakdown on BG/Q

Performance data for a CCSD iteration with 200 electrons and
1000 orbitals on 4096 nodes of Mira

4 processes per node, 16 threads per process

Total time: 18 mins

v-orbitals, o-electrons

kernel % of time | complexity architectural bounds
DGEMM 45% O(v*o?/p) flops/mem bandwidth
broadcasts 20% O(v*0%/pv/M) | multicast bandwidth
prefix sum 10% O(p) allreduce bandwidth
data packing | 7% O(v?0?/p) integer ops
all-to-all-v 7% O(v?0?/p) bisection bandwidth
tensor folding | 4% O(v?0?/p) memory bandwidth
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Tiskin's path doubling algorithm

Tiskin gives a way to do path-doubling in F = O(n?/p) operations.
We can partition each AX by path size (number of edges)

Al =1a A Q)@ AKQ2) @ ... ® AK(K)

where each Ak(l) contains the shortest paths of up to k > [ edges,
which have exactly / edges. We can see that

Al()) < AT < ... < A"()) = A*()),

in particular A*(/) corresponds to a sparse subset of A’(/).
The algorithm works by picking / € [k/2, k] and computing

(1a APF2 < (1e AR(N) @ A,

which finds all paths of size up to 3k/2 by taking all paths of size
exactly / > k/2 followed by all paths of size up to k.
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