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Karush-Kuhn-Tucker (KKT) conditions

Quadratic program (QP):

min
x∈Rn

1

2
xTHx+ xT c

s.t. Ax = b, Cx ≥ d

Lagrangian function:

L(x, λ, ν) =
1

2
xTHx+ xT c− λT (Ax− b)− νT (Cx− d)

First-order optimality (KKT) conditions:

∇xL(x, λ, ν) = 0

Ax− b = 0

Cx− d ≥ 0

νT (Cx− d) = 0

ν ≥ 0
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Primal-dual Interior Point Method (IPM)

Solve Perturbed KKT conditions after introducing slack variables s ∈ Rm2

Hx+ c−ATλ− CT ν = 0

Ax− b = 0

Cx− d− s = 0

SV e = σµe

s, ν> 0

where

V = diag(ν1, . . . , νm2), S = diag(s1, . . . , sm2), e = [1, . . . 1]T ∈ Rm2

µ =
sT ν

m2
, σ ∈ [0, 1]
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Interior Point Method (IPM): KKT system

Interior point KKT equations can be written in matrix form as−H AT CT

A 0 0

C 0 D(k)

∆x(k)

∆λ(k)

∆ν(k)

 = −

r
(k)
g

r
(k)
e

r
(k)
a


where D(k) =

(
V (k)

)−1
S(k) is diagonal and changing with iteration k.

Traditional approach is to eliminate ν(k) first, then solve iteratively[
−
(
H + CT

(
D(k)

)−1
C
)

AT

A 0

](
∆x(k)

∆λ(k)

)
= −

(
r
(k)
u

r
(k)
e

)

We instead use a single (for entire IPM execution) factorization of

F =

[
−H AT

A 0

]
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Known Properties of IPM KKT Systems

Iterative methods and preconditioners can be applied to both 2-by-2
and 3-by-3 systems

Such saddle point systems are well-studied1 and arise in numerical
PDE solvers2,3

Preconditioners have often been designed to exploit the block
structure of the systems4,5,6

The 3-by-3 system has better spectral properties, but the reduced
system can nevertheless be preferable computationally7,8

1M. Benzi, G.H. Golub, J. Liesen. Numerical solution of saddle point problems. Acta
Numerica, 2005.

2R. E. Ewing, R. D. Lazarov, P. Lu, P. S. Vassilevski, PCGM 1990.
3C. Greif, D. Schötzau, NLA 2007
4G.H. Golub and C. Greif, SISC 2003.
5C. Keller, N. I.M. Gould, and A. J. Wathen, SIMAX 2000.
6T. Rees, C. Greif, SISC 2007.
7B. Morini, V. Simoncini, M. Tani, NLA 2016.
8B. Morini, V. Simoncini, M. Tani, COA 2017.
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Preconditioning New Reduced KKT System

At each IPM step, given a factorization of F , we iteratively solve a system
with the matrix

K
(k)
F = D(k) −

[
C 0

]
F−1

[
CT

0

]
= D(k) + CH−1(H −AT (AH−1AT )−1A︸ ︷︷ ︸

HA

)H−1CT

For AT = QR, HA = QQTHQQT so

rank(HA) ≤ m1, rank(H −HA) ≤ 2(n−m1)

where n is # of variables and m1 is # equality constraints.

We propose 2 preconditioners for different regimes of # d.o.f. n−m1

Low-d.o.f. High-d.o.f.

rank(HA) ≈ n ≈ 0

rank(H −HA) ≈ 0 ≈ n
preconditioner ML = D(k) MH = D(k) + CH−1CT
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Spectral Properties of Preconditioned Systems

With the low-d.o.f. preconditioner ML = D(k), the preconditioned system
is

M
−1/2
L K

(k)
F M

−1/2
L = I +M

−1/2
L CH−1(H −HA)H−1CTM

−1/2
L

the ill-conditioned part of KF , D(k), is transformed to I

since the second term is rank 2(n−m1), we have 2(n−m1) non-unit
eigenvalues

CG will then converge in 2(n−m1) + 1 iterations

With the high-d.o.f. preconditioner MH = D(k) + CH−1CT

M
−1/2
H K

(k)
F M

−1/2
H = I +M

−1/2
H CH−1HAH

−1CTM
−1/2
H

the ill-conditioned part of KF , D(k), is transformed to I

since the second term is rank m1, we have m1 non-unit eigenvalues

CG will then converge in m1 + 1 iterations
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Comparison to Existing Approaches

Factorize F =

[
−H AT

A 0

]
for k = 1 until IPM
converges

Construct preconditioner
M to be ML or MH

depending on # d.o.f.
n−m1

Factorize M
Iteratively solve
M−1KFx = M−1b, by
applying KF =

D(k) −
[
C 0

]
F−1

[
CT

0

]
in implicit form using
factorization of F

for k = 1 until IPM converges

Form augmented system KD =[
−
(
H + CT

(
D(k)

)−1
C
)

AT

A 0

]
Choose M among preconditioners,
e.g., constraint preconditioner[
D̃(k) AT

A 0

]
or block-diagonal[

D̃(k) −ATW (k)A
γI

]
Factorize M
Iteratively solve
M−1KDx = M−1b
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Limitations

What if H is semidefinite? What if F is singular?

our approach assumed we can factorize F
our high-d.o.f. preconditioner MH = D(k) + CH−1CT assumed H is
nonsingular
regularization can ensure H and F are nonsingular

When H is semidefinite but F is nonsingular

can factorize F with pivoting, but need more complicated high-d.o.f.
preconditioner

When H and F are singular (A is assumed to be full rank)

singularity often comes from zero blocks in H associated with linear
variables in QP
can pivot linear variables and other null space to ’end’ (unfactorized
part of system)

How expensive are factorization and subsequent solves with F?
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CG Convergence Results
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Condition Number Improvement
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Arithmetic Cost Model Comparison
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Summary and Reference

We present a method for solving IPM KKT systems that performs a
factorization of a subsystem that is fixed throughout IPM iterations

The method is a hybrid of direct and iterative, as it requires
factorizing a large sparse matrix

The preconditioned reduced systems we solve are well-conditioned in
theory and numerical results

For more details, see “Efficient Preconditioners for Interior Point
Methods via a New Schur Complementation Strategy”, Samah
Karim, E.S., arXiv:2104.12916
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Background on Tensor Decompositions

Tucker decomposition

TTT ≈ XXX ×1 A×2 B ×3 C

TTT ∈ Rs×s×s, XXX ∈ RR×R×R

A,B,C ∈ Rs×R with orthonormal
columns, R < s

CP decomposition

TTT ≈
R∑

r=1

ar ◦ br ◦ cr

TTT ∈ Rs×s×s,
A = [a1, . . . ,aR] ∈ Rs×R

R < s2

Higher order orthogonal iteration (HOOI)

min
A,XXX

1

2

∥∥∥(C ⊗B)XT
(1)A

T − T T
(1)

∥∥∥2
F

CP-Alternating least squares (CP-ALS)

min
A

1

2

∥∥∥(C �B)AT − T T
(1)

∥∥∥2
F
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Background

Higher order orthogonal iteration (HOOI)

min
A,XXX

1

2

∥∥∥(C ⊗B)XT
(1)A

T − T T
(1)

∥∥∥2
F

Kronecker product C ⊗B ∈ Rs2×R2

Costs Θ(s3R) or Θ(nnz(TTT )R2)

Fast convergence

CP-Alternating least squares (CP-ALS)

min
A

1

2

∥∥∥(C �B)AT − T T
(1)

∥∥∥2
F

Khatri-Rao product C �B ∈ Rs2×R

Costs Θ(s3R) or Θ(nnz(TTT )R)

Slow convergence

Low rank approximation (R� s):

Sketched HOOI for Tucker decomposition (Linjian Ma, and E.S., arxiv 2104.01101)

Overall cost with t HOOI sweeps reduced to O
(
nnz(TTT ) + t

(
sR3 +R6

))
Can also accelerate CPD via performing CP-ALS on the Tucker core tensor
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Sketched HOOI for Tucker decomposition

HOOI: solve and truncate

min
P∈Rs×R2

1

2

∥∥∥(C ⊗B)P T − T T
(1)

∥∥∥2
F

AX(1) ← Best rank-R approximation of P

Sketched HOOI: sketch, solve and truncate

min
P̂∈Rs×R2

1

2

∥∥∥S(C ⊗B)P̂ T − ST T
(1)

∥∥∥2
F

ÂX̂(1) ← Best rank-R approximation of P̂

S ∈ Rm×s2 is the sketching matrix, m < s2 is the sketch size

Sketched rank-constrained linear least squares problem

Goal: find S such that with high probability

1

2

∥∥∥(C ⊗B)X̂T
(1)Â

T − T T
(1)

∥∥∥2
F
≤ (1 +O(ε))

1

2

∥∥∥(C ⊗B)XT
(1)A

T − T T
(1)

∥∥∥2
F
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Sketched HOOI for Tucker decomposition

Let S ∈ Rm×s be a (1/2, δ, ε)-accurate sketching matrix for the LHS C ⊗B.
Then we have with probability at least 1− δ,

1

2

∥∥∥(C ⊗B)X̂T
(1)Â

T − T T
(1)

∥∥∥2
F
≤ (1 +O(ε))

1

2

∥∥∥(C ⊗B)XT
(1)A

T − T T
(1)

∥∥∥2
F
.

Sketching matrices satisfying the (1/2, δ, ε)-accurate property

TensorSketch (R. Pagh, TOCT 2013) with m = O
(
R2/δ · (R2 + 1/ε2)

)
Leverage score sampling with m = O

(
R2/(ε2δ)

)
Sketch size upper bounds are at most O(1/ε) times the upper bounds for
unconstrained linear least squares problem
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Cost comparison for order 3 tensor

ALS + TensorSketch (Malik and Becker, NeurIPS 2018)

Solving for each factor matrix or the core tensor at a time

minA
1
2

∥∥∥(C ⊗B)XT
(1)A

T − T T
(1)

∥∥∥2
F

or

minXXX
1
2 ‖(C ⊗B ⊗A)vec(X)− vec(T )‖2F

Algorithm for Tucker LS subproblem cost Sketch size (m)
HOOI Ω(nnz(TTT )R) /

ALS + TensorSketch Õ(msR+mR3) O(R2/δ · (R2 + 1/ε))
HOOI + TensorSketch O(msR+mR4) O(R2/δ · (R2 + 1/ε2))
HOOI + leverage scores O(msR+mR4) O(R2/(ε2δ))
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Sketched HOOI algorithm

Input: Input order N tensor TTT , Tucker rank R, number of sweeps Imax,
tolerance ε
Output:

{
XXX ,A(1), . . . ,A(N)

}
For n ∈ {2, ..., N} do

A(n) ← Init-RRF(T(n), R, ε) // Initialize with randomized range
finder
Endfor
For i ∈ {1, ..., Imax} do
For n ∈ {1, ..., N} do

Build the sketching matrix S
Y ← ST(n)

Z ← S(n)(A(1) ⊗ · · · ⊗A(n−1) ⊗A(n+1) ⊗ · · · ⊗A(N))
XT

(n),A
(n) ← Solve-truncate(Z,Y , R)

Endfor
Endfor
Return

{
XXX ,A(1), . . . ,A(N)

}
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Experiments: tensors with spiked signal

HOOI Lev-HOOI TS-HOOI TS-ref
Method

0.66

0.67

0.68

0.69

0.70

Fi
tn
es
s

Initialization
random
HOSVD/RRF

(a) 5 sweeps, sample size
16R2

4 16 64
K

0.60

0.62

0.64

0.66

0.68

0.70

Fi
tn
es
s

HOOI
Lev-HOOI
TS-HOOI
TS-ref

(b) 5 sweeps, sample size
KR2

0 2 4 6 8 10
Sweeps

0.62

0.64

0.66

0.68

0.70

Fi
tn
es
s

HOOI
Lev-HOOI
TS-HOOI
TS-ref

(c) sample size 16R2

TTT = TTT 0 +
∑5

i=1 λiai ◦ bi ◦ ci, each ai, bi, ci has unit 2-norm, λi = 3‖T
TT 0‖F
i1.5

Leading low-rank components obey the power-law distribution

Tensor size 200× 200× 200, R = 5

TS-ref: (Malik and Becker, NeurIPS 2018)
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Experiments: CP decomposition

0 5 10
Sweeps

0.0

0.2

0.4

0.6

Fi
tn

es
s

CP
Tucker+CP
Lev CP
Lev Tucker+CP

TTT =
∑Rtrue

i=1 ai ◦ bi ◦ ci, Rtrue/R = 1.2

Tensor size 2000× 2000× 2000, R = 10, sample size 16R2

Lev CP: leverage score sampling for CP-ALS (Larsen and Kolda,
arXiv:2006.16438)

Tucker+CP: Run Tucker HOOI first, then run CP-ALS on the Tucker core

Run Tucker HOOI with 5 sweeps, CP-ALS with 25 sweeps
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New Alternating Update Scheme for CPD

A rank R CP decomposition of an s× s× s tensor XXX ,

XXX = [[A,B,C]], i.e., xijk =

R∑
r=1

airbjrckr

is obtained by ALS via successively minimizing

f(A,B,C) = ‖XXX − [[A,B,C]]‖F

by alternating updates such as

A = TTT (1)(C �B)†T

We propose a different update, which for R ≤ s is

A = TTT (1)(C
†T �B†T )
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Convergence to Exact Decomposition

When seeking an exact decomposition for a rank R ≤ s tensor

ALS achieves a linear convergence rate1

High-order convergence possible via optimizing all variables via
Gauss-Newton,2,3,4 but is costly per iteration relative to ALS

The proposed algorithm achieves at least quartic order local
convergence per sweep of alternating updates

per alternating update, convergence order is α where α is the positive
root of xN−1 −

∑N−2
i=0 xi for order N tensor

cost per iteration is roughly the same as ALS (dominated by single
matricized tensor times Khatri-Rao product (MTTKRP))

1A. Uschmajew, SIMAX 2012
2P. Paatero, Chemometrics and Intelligent Laboratory Systems 1997.
3A.H. Phan, P. Tichavsky, A. Cichocki, SIMAX 2013.
4N. Singh, L. Ma, H. Yang, E.S., SISC 2021.
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Exact Decomposition Error Analysis

The error in one factor scales with the product of the errors in the others.

Lemma

Suppose XXX = [[A(1), . . . ,A(N)]], where each A(i) ∈ Rsi×R is full rank,
each si ≥ R, and Ã(n)D(n) = A(n) + ∆(n) for some set of diagonal
matrices D(n) ∈ RR×R , for n = 2, . . . , N , then for sufficiently εn,

Ã(1) = XXX (1)(Ã
(N)†T � · · · � Ã(N)†T )

satisfies

‖Ã(1)D(1) −A(1)‖F = O(
N∏

n=2

εn),

for some diagonal matrix D(1).
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Exact Decomposition Error Analysis

Error bound follows from substituting true decomposition into update rule

Ã(1) = A(1)

(
(Ã(2)†A(2)) ∗ · · · ∗ (Ã(N)†A(N))

)T

= A(1)

(
(Ã(2)†(Ã(2)D(2) −∆(2))) ∗ · · · ∗ (Ã(N)†(Ã(N)D(N) −∆(N)))

)T

= A(1)

(
(D(2) − Ã(2)†∆(2)) ∗ · · · ∗ (D(N) − Ã(N)†∆(N))

)T

= A(1)

(
D + (−1)N−1Ã(2)†∆(2) ∗ · · · ∗ Ã(N)†∆(N)

)T

where D is diagonal
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Exact Decomposition Experimental Performance
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General Fixed Points of the Update Scheme

When the true CP rank of XXX is greater than R, we may understand the new
update scheme by looking at its fixed points

The factors and pseudoinverses of the factors U (n) = A(n)† satisfy

A(n) = X
(N)

(n)

( N⊙
m=1,m 6=n

U (m)T

)

Premultiplying by U (n), the above conditions imply

I = U (n)X
(N)

(n)

( N⊙
m=1,m 6=n

U (m)T

)
We may rewrite these in terms of the multilinear function associated with the
tensor

fXXX (v(1), . . . ,v(N)) =
∑

i1...iN

xi1...iN

N∏
j=1

v
(j)
ij
,

as a set of orthonormality conditions on the rows of each U (n):

fXXX (u
(1)
i , . . . ,u

(n−1)
i ,u

(n)
j ,u

(n+1)
i , . . . ,u

(N)
i ) = δij
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Approximate CP Decomposition

At each step, the update A = TTT (1)(C
†T �B†T ) minimizes a transformed residual

‖(XXX − [[A,B,C]])(1)(C
†T ⊗B†T )‖F

Original motivation for the method came from collaboration on efficiently
optimizing CP with generalized distance metrics with Ardavan Afshar, Cheng Qian,
and Jimeng Sun1

We may generally view the algorithm as performing alternating Mahalanobis
distance minimization (AMDM)

f(A(1), · · · ,A(N)) =
1

2
‖XXX −YYY‖2M =

1

2
vec
(
XXX −YYY

)T
Mvec

(
XXX −YYY

)
, (1)

where YYY = [[A(1), · · · ,A(N)]].

with the ground metric M chosen at each subsweep as

M =
(
M (N) ⊗ . . .⊗M (1)

)−1

(2)

where M (k) = A(k)A(k)T + (I −A(k)A(k)†) ∀k ∈ {1, . . . , N}

1A. Ardavan, K. Yin, S. Yan, C. Qian, J.C. Ho, H. Park, and J. Sun, AAAI 2021.
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Hybrid Objective Optimization with AMDM

With the ground metric M = I, we would reproduce the standard residual
Frobenius norm

Choose metric with M (n) = U (n) diag((s
(n)
1 )−2,1)U (n)T where

A(n) = U (n) diag(s(n))V (n)T to interpolate between basic AMDM scheme and

ALS

in computing A(n)† for each update, invert R−D singular values s
(n)
1

solve ALS-like reduced system related to remaining D singular values

A generalized ground metric also allows us to extend the scheme to R > s

A(n) = X(n)L
(n)Z(n)−1

, (3)

where L(n) = LN � . . .�Ln+1 �Ln−1 � . . .�L1,

and Z(n) = ZN ∗ . . . ∗Zn+1 ∗Zn−1 ∗ . . . ∗Z1,

where each Lk = M (k)A(k) and Zk = A(k)TM (k)A(k).
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Approximate Decomposition Results with AMDM
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AMDM finds decomposition with lower CP condition number1

Hybrid version gradually transitions from basic AMDM to ALS, achieving good
fitness to underlying model

1P. Breiding and N. Vannieuwenhoven, SIMAX 2018.
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Open Questions about AMDM

Proof of local convergence to stationary points when R is less than
the true rank

Other views of the method in the approximate case (other than
Mahalanobis distance minimization)

critical points of

〈XXX , [[UT ,V T ,W T ]]〉 − tr(log(UUT ⊗ V V T ⊗WW T ))

nested linear least squares solves
1 solve for Y in BY ∼= X(2)

2 unfold Y to third order tensor, then solve for Z in CZ ∼= Y(3)

3 take the partial trace of Z to obtain updated A

Quantifying difference in conditioning of update rule (is A†T �B†T a
more well-conditioned left inverse of A�B than its pseudoinverse?)
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