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Motivation

@ search for robust communication-efficient algorithms
deployable under the umbrella of mathematical abstractions

@ Theoretical model of parallel computation
© Communication lower bound techniques
© 2.5D algorithms for dense linear algebra
@ Krylov subspace computations

e Symmetric tensor computations

Q@ Future work
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Model of the computer architecture

We quantify interprocessor communication and synchronization
costs of a parallelization via a flat network model

@ y - cost for a single computation (flop)

@ [3 - cost for a transfer of each byte between any pair of
processors

@ « - cost for a synchronization between any pair of processors

@ o - cost for a transfer of each byte between local memory and
local cache

We assume ¢ < 8 and report only memory-bandwidth costs
auxiliary to interprocessor-bandwidth costs.
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Model of the parallel schedule

We measure the cost of a parallelization along the longest sequence
of dependent computations and data transfers (critical path)

@ F - critical path payload for computation cost
e W - critical path payload for communication (bandwidth) cost
@ S - critical path payload for synchronization cost
@ @ - critical path payload for memory bandwidth cost
The total time T is then bounded by

max(F -y, W-5,5-a,Q-0) < T<F-v+W-+S-a+Q-p
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The problem, the algorithm, and the parallelization

Candidate Algorithm|

| l

Dependency Analysis| | Candidate Schedule |
| Cost lower bound | | Cost upper bound |

| Bounds match |

\Budget exceededl Budget attained |

Bounds do not match

Figure : How do lower bounds facilitate the design of parallel algorithms?
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Obtaining communication lower bounds for algorithms

We can represent an algorithm as a DAG G = (V/, E) where
@ the vertices V are the input, intermediate, and output values

@ the edges E encode the dependencies between pairs of values
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Obtaining communication lower bounds for algorithms

We can represent an algorithm as a DAG G = (V/, E) where
@ the vertices V are the input, intermediate, and output values

@ the edges E encode the dependencies between pairs of values

What is the least amount of communication W needed to compute
G with p processors?

@ W is at least the size of the minimum vertex separator of G
where each partition has at least |V/|/p vertices.
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Obtaining communication lower bounds for algorithms

We can represent an algorithm as a DAG G = (V/, E) where
@ the vertices V are the input, intermediate, and output values

@ the edges E encode the dependencies between pairs of values

What is the least amount of communication W needed to compute
G with p processors?

@ W is at least the size of the minimum vertex separator of G
where each partition has at least |V/|/p vertices.

How do we determine the minimum vertex separator of G7
o find hypergraph structure by merging disjoint sets of edges

@ derive minimum hyperedge cut bounds for hypergraphs
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Lattice hypergraphs

For any m > r > 0, we define a (m, r)-lattice hypergraph
H = (V, E) of breadth n,

e with |V| = (,’7'7) vertices vj, i, € V with if < -+ <
o with |E| = (7) hyperedges e; . j € E which connect all v;,__;,
for which {j1...jr} C{i...im}.
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Lattice hypergraphs

For any m > r > 0, we define a (m, r)-lattice hypergraph
H = (V, E) of breadth n,

e with |V| = (,’7'7) vertices vj, i, € V with if < -+ <

o with |E| = (7) hyperedges e; . j € E which connect all v;,__;,
for which {j1...jr} C{i...im}.

The minimum %-ba/anced hyperedge cut of a (m, r)-lattice
hypergraph H = (V, E) of breadth n is of size Q(n" /p"/™).
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Lattice hypergraphs

For any m > r > 0, we define a (m, r)-lattice hypergraph
H = (V, E) of breadth n,

e with |V| = (,’7'7) vertices vj, i, € V with if < -+ <

o with |E| = (7) hyperedges e; . j € E which connect all v;,__;,
for which {j1...j,} C{i...im}

The minimum %-ba/anced hyperedge cut of a (m, r)-lattice
hypergraph H = (V, E) of breadth n is of size Q(n" /p"/™).

Proof using generalized Loomis-Whitney inequality

For any subset V. C V, let E C E be the hyperedges adjacent to V

|E| > V)™
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Path-expander graph

Definition (order-d-path-expander)

Graph G = (V, E) is an order-d-path-expander if it has a path
(ur...up) C V, and the union of all paths between u; and u; for
all j > iis a (d,d — 1)-lattice hypergraph
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Path-expander graph

Definition (order-d-path-expander)

Graph G = (V, E) is an order-d-path-expander if it has a path
(ur...up) C V, and the union of all paths between u; and u; for
all j > iis a (d,d — 1)-lattice hypergraph

An example of a order-2-path-expander

Dependency path P Computation chain Communication chain
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Scheduling tradeoffs of path-expander graphs

Theorem (Path-expander communication lower bound)

Any schedule of an algorithm with an order-d-path-expander
dependency graph about a path of length n incurs tradeoffs
between computation (F ), bandwidth (W), and latency (S) costs:

F.s91-q (nd) L W.s2-q (ndfl) :
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Cholesky factorization

The Cholesky factorization of a symmetric positive definite matrix
A of dimension n into a lower-triangular matrix L is

A=L L,

and has dependency graph Gcy, = (Ven, Ecn)-
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Cholesky factorization

The Cholesky factorization of a symmetric positive definite matrix
A of dimension n into a lower-triangular matrix L is

A=L L,
and has dependency graph Gcy, = (Ven, Ecn)-

With p € [1, n3/?] processors and a free parameter ¢ € [1, p'/3]
[Tiskin 2002] and [S., Demmel 2011] achieve the costs

e computation: Fcy, = ©(n3/p)
e bandwidth: Wcy, = ©(n?/,/cp)
@ synchronization: Scp = ©(,/cp)
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Cholesky factorization

The Cholesky factorization of a symmetric positive definite matrix
A of dimension n into a lower-triangular matrix L is

A=L L,
and has dependency graph Gcy, = (Ven, Ecn)-

With p € [1, n3/?] processors and a free parameter ¢ € [1, p'/3]
[Tiskin 2002] and [S., Demmel 2011] achieve the costs

e computation: Fcy, = ©(n3/p)
e bandwidth: Wcy, = ©(n?/,/cp)
@ synchronization: Scp = ©(,/cp)

These schedules are optimal since Gcy, is an order-3-path-expander
about the path corresponding to the diagonal of L.
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Other 2.5D algorithms

We give algorithms that attain the costs

F=0(n*/p) W=0(?/cp) O(p)

for the following problems
o LU factorization
@ QR factorization
@ symmetric eigenvalue problem

o all-pairs shortest-paths problem (Floyd-Warshall algorithm)
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2.5D LU factorization

2.5D LU can be achieved by replicated storage of Schur
complement updates and pairwise pivoting [Tiskin 2002] or
Communication Avoiding (CA) pivoting

LU on 16,384 nodes of BG/P (n=131,072)
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2.5D QR factorization

2.5D QR can be achieved by performing Tall-Skinny QR (TSQR)
on each matrix panel, reconstructing the Householder
representation, LU(Q; — /) = Y - (TY;{"), and aggregating the
trailing matrix update (left-looking)

QR weak scaling on Hopper (15K-by-15K to 131K-by-131K)

T T T T
o0 F Aggregated 2D CAQR-HR
Aggregated 2D Householder
2D CAQR-HR
15 | Elemental QR /
‘ - ScaLAPACK QR )

Teraflops

144 288 576 1152 2304 4608 9216
#cores
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2.5D Symmetric eigensolver

We can reduce a symmetric matrix to a banded matrix with the
same eigenvalues via a 2.5D algorithm

@ instead of applying each trailing symmetric update
A=A+ UVT + VUT, reformulate computation in the
expanded form A+ UV + VUT and delay update in order to
aggregate

@ one-step band-reduction algorithm achieves 2.5D
interprocessor communication cost, but needs additional
memory-to-cache traffic
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2.5D Symmetric eigensolver

We can reduce a symmetric matrix to a banded matrix with the
same eigenvalues via a 2.5D algorithm
@ instead of applying each trailing symmetric update
A=A+ UVT + VUT, reformulate computation in the
expanded form A+ UV + VUT and delay update in order to
aggregate
@ one-step band-reduction algorithm achieves 2.5D
interprocessor communication cost, but needs additional
memory-to-cache traffic

We can perform 2.5D SBR (Successive Band Reduction) to reduce
the matrix to a small band in more steps

@ achieves desired interprocessor and memory-bandwidth costs
Q = W = O(n*log(p)//C P)

@ requires more computation during back transformations to
obtain eigenvectors
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Krylov subspace methods

We consider the s-step Krylov subspace basis computation
X(I) — A . x(I_l),

for I € {1,...,s} where the graph of the sparse matrix A is a
(2m + 1)?-point stencil.

The Krylov subspace dependency graph has d + 1 dimensions, we
say it has d mesh dimensions and 1 time dimension
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The standard algorithm (1D 2-pt stencil diagram)

Block the d mesh dimensions and perform one matrix vector
multiplication at a time, synchronizing each time

Synchronizations

Ne.

~
.
\_.\
N
ii
AN

(D (2)(3) (4

blocking

ARARAAAAA

Y¥yv¥¥Yyrvvyi

NN
NN
aNaNN
SNENENANAN
SANAN
NN

LN
o
.
.

) ...

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 16/ 30



The matrix-powers kernel

Avoid synchronization by blocking across matrix-vector multiplies

(in the time dimension)
Synchronizations

A
.
.

blocking

x(Dx(2)x(3)x(4) .
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The matrix-powers kernel

Avoid synchronization by blocking across matrix-vector multiplies
(in the time dimension)

Synchronizations

A
.
.

blocking

x(Dx(2)x(3)x(4) .

For a (2m + 1)9-point stencil, s/b invocations of the
matrix-powers kernel compute an s-step Krylov subspace with
communication cost

Woar = O ((s/b) - [(n/p? + b-m)? —n?/p] ).
and synchronization cost Spa; = O(s/b)
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[llustration of import region of the matrix-powers kernel

2D stencil 5-pt stencil (m=1)

Standard algorithm Matrix Powers
(s synchronizations) (1 synchonization)

local mesh

import region volumes
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Communication lower bounds for Krylov subspace methods

The dependency graph of an s-step (2m + 1)9-point Krylov
subspace method is an order-(d + 1)-path-expander (with
prefactors polynomial in m).

Theorem

Any parallel execution of an s-step Krylov subspace basis
computation for a (2m 4 1)9-point stencil, requires the following
computational, bandwidth, and latency costs

Fir - Sfér =Q (m2d . sd+1> , Wk - 5{1;1 =Q (md . sd) .
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Communication-efficient parallelization for Krylov methods

Block the global problem in the time dimension and execute each
block in parallel so that working set of data fits into cache

o - dummy computation i O 0:0 O O O
o o o o o o
RS .
I=4 u=lio o o 0:0 O ¥ u=2 x(4)
1=3 u=sl:o o o o > % S o ofu=2 x(3)
I=2 u=1ic" 5 ¢% § i ¥¥[o o0 o o]u=2 x(2)
=1 u=1 % 2 4 N o oo o o o]u=2 x(1
(processor, step, block) | (1,16,8%) | (2,16,8%) | (1,12,B%) (2,12,B%)
[ @158 | 1568 | @118 (2,11,B3)
[a1aB T 2148 | (1,108) (2,10,B9)
[@1EB) [ (2136) | (1.98Y (2,9,BY)
(1,4,8) 248) | (18f) [ 288) |
(1.3,8) 38) [ @B | @18 |
(1,2,89) 228) | (168 [ (268 |
(1,1} 218) [ sB) [ (258) |
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Tensor contractions

We now move on to tensor contractions as motivated by electronic
structure applications, e.g. from the Coupled-Cluster Singles and
Doubles (CCSD) method

ak _ Jjk Tab
Zig = Z Ve Tij‘ ’
bj

where Z, V, and T are fourth order tensors and T is antisymmetric
in permutation between a and b, but this antisymmetry is ‘broken’
(a appears in Z while b appears in V).
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Tensor contractions

We now move on to tensor contractions as motivated by electronic
structure applications, e.g. from the Coupled-Cluster Singles and
Doubles (CCSD) method

ak __ Jk . Tab
Zig = Z Ve Tij‘ ’
bj

where Z, V, and T are fourth order tensors and T is antisymmetric
in permutation between a and b, but this antisymmetry is ‘broken’
(a appears in Z while b appears in V).

Another contraction from the CCSDTQ method is
abcd ad mbc
Zii = > Yo D TE-XE
(a(b,c))ex(a,b;c) (i,(j,k))ex(ij,k) m

where Z is antisymmetric in (a, b, ¢) and in (i,j, k), while X is
antisymmetric in (b, ¢) and (j, k) which are ‘preserved’.
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Standard algorithm for symmetric tensor contractions

We can express any contraction of fully-symmetric tensors using
index set notation i(s + t) = (i1,...,is+t) as

Citstt) = Z <Z Ajisyk(v) * B/<r>k<v>)
Gls) () ex(i(s+t)) k(v)

where C is order s + t, A is order s + v, and B is order t 4+ v and
the total number of contraction indices is w = s+t + v.
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Standard algorithm for symmetric tensor contractions

We can express any contraction of fully-symmetric tensors using
index set notation i(s + t) = (i1,...,is+t) as

Ci(stt) = Z <Z Ajis)k(v) - B/<f>k<V>)

Ush: () ex(ifs+1)) ~ k(v)

where C is order s + t, A is order s + v, and B is order t 4+ v and
the total number of contraction indices is w = s+t + v.

The standard method for tensor contractions, algorithm ®(s:t:v)
exploits preserved symmetries: j(s), /{t), and k(v) to achieve the

cost
rtnssn=()()() € omae

where v is the cost of additions, p is the cost of multiplications,
and n is the dimension (range of each index).
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Parallelization of the standard contraction algorithm

The standard symmetric contraction algorithm ®(tV) js
dominated by a matrix multiplication of an (”7)-by-(") matrix with
an (C)—by—('t'il matrix into anp(’s’)—by—(';) mat(ri)( ()
@ the main parallelization challenge is to get the tensor data
into the desired matrix layout
Cyclops Tensor Framework (CTF)

@ a library for distributed memory decomposition, redistribution,
and contraction of tensors
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Parallelization of the standard contraction algorithm

The standard symmetric contraction algorithm ®(tV) js
dominated by a matrix multiplication of an (”7)-by-(") matrix with
an (C)—by—(’t’il matrix into anp(g)—by—('g) mat(ri)( ()
@ the main parallelization challenge is to get the tensor data
into the desired matrix layout
Cyclops Tensor Framework (CTF)

@ a library for distributed memory decomposition, redistribution,
and contraction of tensors

two-level parallelization via MPI4+-OpenMP

automated topology-aware runtime mapping of tensors via
performance models

(]

supports distributed packed symmetric storage

uses 2.5D matrix multiplication for contractions

provides concise interface for tensor objects and contractions
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Coupled Cluster on IBM BlueGene/Q

Teraflops

CCSD up to 55 (50) water molecules with cc-pVDZ
CCSDT up to 10 water molecules with cc-pVDZ

Weak scaling on BlueGene/Q

1024
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256 -
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64 [
32+
16]
8
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Aquarius-CTF CCSDT -->¢-- - 4

4
512

Edgar Solomonik
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Coupled Cluster on IBM BlueGene

CCSD up to 55 (50) water molecules with cc-pVDZ
CCSDT up to 10 water molecules with cc-pVDZ

Weak scaling on BlueGene/Q Weak scaling on BlueGene/Q
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Comparison with NWChem

NWChem is the most commonly-used distributed-memory
quantum chemistry method suite

@ provides CCSD and CCSDT

@ uses Global Arrays a Partitioned Global Address Space
(PGAS) backend for tensor contractions

@ derives equations via Tensor Contraction Engine (TCE)

Strong scaling CCSDT on Edison
Strong scaling CCSD on Edison

T T T T T
T T T T T T NWChem w3 -- )¢ -~
emwzo M- . 4
oo e " ] 1024 wa (-
Aquarius-CTF wd ——— 4
256 w3 —%— |
256 w” w2 ——
2 2
'g =3
S 64 | g
3 (72}
16
4 R
4 > 4 s 16 32 64 128 256 1 2 4 8 16 32 64 128 256
#nodes #nodes
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Fast symmetric contraction algorithm

Recall that the standard algorithm W(s:tY) computes symmetric
tensor contractions using ﬁf‘,. multiplications (where
w=s+t+v).
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Fast symmetric contraction algorithm

Recall that the standard algorithm W(s:tY) computes symmetric
tensor contractions using ﬁf‘,. multiplications (where

w=s+t+v).
We give an algorithm ®(5:t:¥) that requires only 'L‘U—UT multiplications

but more additions.
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Fast symmetric contraction algorithm

Recall that the standard algorithm W(s:tY) computes symmetric
tensor contractions using ﬁf‘,. multiplications (where
w=s+t+v).

We give an algorithm ®(5:t:¥) that requires only 'L‘U—UT multiplications
but more additions.  The speed-up depends on the relative cost

of additions v and multiplications . When multiplications are
@ real floating point multiplications u = v
e complex floating point multiplications p = 3v

@ matrix-matrix multiplications p > v

Reduction in operation count for different entry types

Reduction in operation count for different entry types
128 T

128
—— (s+t=0) s‘mries are ‘matrices ' —_— ‘(s+l+v=m) ‘entriss aré matrices '
64 - —=— (s+t=o) entries are complex b 64 - —=— (s+t+v=0) entries are complex
a2 | (s+t=0) entries are real i 32 b (s+t+v=w) entries are real
<}
g 6t 4 16
§ 8 r B 8
é 4k B 4
®
= 2 2
1 19
05 i i i i 05 i i i i
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Fast symmetric algorithm

The algorithm ®(stY) computes () multiplications to leading
order, corresponding to an order w symmetric tensor

Ziwy = ( Z Aj(s+v)> : ( Z Bl<t+v)>-
J{s+vyex(i{w)) I{t+v)yex(i{w))

This term includes all needed multiplications to compute C and
some extra ones, which can be cancelled out (usually) with low
order cost.
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Fast symmetric algorithm

The algorithm ®(stY) computes () multiplications to leading
order, corresponding to an order w symmetric tensor

2i(w> = ( Z Aj(s+v)> : ( Z Bl<t+v)>.
I

J{stviex(i{w)) (t+v)ex(i(w))

This term includes all needed multiplications to compute C and
some extra ones, which can be cancelled out (usually) with low
order cost.

For example, when s = 1,t = 0, v = 1, the contraction is a
multiplication of a vector by a symmetric matrix. The algorithm
W(stv) ignores the symmetry of the matrix, while o(s:tv) computes

A

ZUZAU'(bi+bj)7 Zf:zzik’
k

AV =3 Ak Vi=AD b G =Zi- V.
k
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Analysis of the fast symmetric algorithm

Stability analysis:
@ theoretical error bound weaker only by factors polynomial in w

and numerical experiments suggest error difference between
Wis:tY) and &(6Y) is insignificant

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 28/ 30



Analysis of the fast symmetric algorithm

Stability analysis:

@ theoretical error bound weaker only by factors polynomial in w
and numerical experiments suggest error difference between
Wis:tY) and &(6Y) is insignificant

Communication cost analysis:

o W(stY) has communication cost proportional to matrix
multiplication (dependency graph is a (3, 2)-lattice
hypergraph)

Wy = 0(n*/p*?)

o ®(5tY) does more communication per multiplication

(sometimes asymptotically) since its dependency graph is a
(w, max[s + v, t + v, s + t])-lattice hypergraph

Wy = @(nw/pmax(s+v,t+v,s+t)/w)
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Application of the fast symmetric algorithm to CCSD

Let T(5tY) be the nonsymmetric contraction algorithm. Recall the

CCSD contraction B
ak __ Jjk ab
Ziy = Z Vba ’ Tij‘ )
bj

where T is antisymmetric in (a, b) the standard algorithm
YOLDTRLY(V T) has cost 2n° (same as just T(322)(V, T)).
The fast algorithm can be used as

OLY LY (v T)

with cost n® (since the 2X reduction in multiplications from
®(OL1) results in 2X fewer calls to T(211),
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Application of the fast symmetric algorithm to CCSDTQ

Recall the CCSDTQ contraction

abcd _ ad  ymbc
Zijk7 = Z Z ZTiﬁ’ Xjk7 ’

(a(b,e))ex(a,b,c) (i,(k))ex(iv k) m

where Z is antisymmetric in (a, b, ¢) and (i,j, k), which can be
computed as

e \U(2,1,0)\|;(1,2,0)T(1,1,1)(T’ X),
with n9/2 operations (4X savings from symmetry) or via
Z= ¢(2’1’O)¢(1’2’0)T(l’l’l)(T, X),

with n°/18 operations (36X savings from symmetry).
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Implementations of 2.5D QR, symmetric eigensolver, and
Tiskin's all-pairs shortest-paths algorithm

Implementation and extensions of communication-efficient
Krylov subspace method parallelization (e.g. Gram matrix
handling and explicit-matrix case)

@ Sparse adaptation and further optimization of Cyclops Tensor
Framework

@ Derivation of full coupled-cluster methods using fast
symmetric contractions

High performance implementation of the fast symmetric
contraction algorithm
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Backup slides
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Citsty =Zitsty — Vigsrry — Wisrty
where A©® = A and B(® = B and
VPE[]-,VL Vi(s—l—v—p), /(s+v py — ZA s+v—p)k

Vg e[l,v], Vi(t+v—q), B t+vq ZBH“,
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Blocked vs block-cyclic vs cyclic decomposition

Blocked layout Block-cyclic layout Cyclic layout

O Green denotes fill (unique values) O Red denotes padding / load imbalance
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tensor mappin
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2.5D LU on MIC

LU factorization strong scaling on Stampede (MIC + Sandy Bridge)

Gigaflop/s/node

450
,,,,,,,,,,,,,,,,,,,, o 2.5D hybrid LU n=131,072 —%—
; 2D hybrid LU n=131,072 —5— |

400 ;- 2.5D pure-cpu LU n=131,072

100

2.5D hybrid LU n=65,536 —>¢—
2D hybrid LU n=65,536 —6— |
2.5D pure-cpu LU n=65,536 —lt—

Edgar Solomonik

64 128 256
#nodes
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2.5D LU strong scaling

2.5D LU with on BG/P (n=65,536)

100 T T
' 2.5D LU (no-pvt) —+—
S SRR 2.5D LU (CA-pvt)
3 2D LU (no-pvt) —8&—
80 [ 2D LU (CA-pvt) —»—
ScaLAPACK PDGETRF —&—

Percentage of machine peak

256 512 1024 2048
#nodes
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Topology-aware mapping on BG/Q

LU factorization strong scaling on Mira (BG/Q), n=65,536

100 T T T
2D LU, custom mapping —+— ‘

2D LU, default mapping —#— SRR 1
110l feoe voee e e e boves e o e -

Gigaflop/s/node

#nodes
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Benefit of replication on BG/Q

LU factorization strong scaling on Mira (BG/Q)

120

T T

| 25DLUN=131,072 —8—

2D LU n=131,072 —— 1

100 | 25DLUn= 65536 —+— S i
2D LU n= 65,536 :

Gigaflop/s/node

#nodes
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Parallel costs of Gauss-Jordan elimination

The floating point cost of Gauss-Jordan elimination is
F = ©(n3/p). Our lower bounds may be applied since the
computation has the same structure as Gaussian Elimination, so

F-S?=Q(n*), W-S=Q(n).

These costs are achieved for W = O(n?/p?/3) by schedules in
e Aggarwal, Chandra, and Snir 1990
e Tiskin 2007

@ Solomonik, Buluc, and Demmel 2012
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Lower synchronization cost via path doubling

We can compute the tropical semiring closure
A =1ADA’e...0A"=(I&A)",
directly via repeated squaring (path-doubling)
1o AP =(1a Ak (1e Ak
with a total of log(n) matrix-matrix multiplications, with
F = O(n* log(n)/p)

operations and O(log(n)) synchronizations, which can be less than
the O(p'/?) required by Floyd-Warshall.
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Tiskin's path doubling algorithm

Tiskin gives a way to do path-doubling in F = O(n3/p) operations.
We can partition each A by path size (number of edges)

A =1a A 1)@ AKQ2) @ ... @ AK(K)

where each A¥(/) contains the shortest paths of up to k > / edges,
which have exactly / edges. We can see that

Al() <AL < ... < A"(1) = A*()),

in particular A*(/) corresponds to a sparse subset of A/(/).
The algorithm works by picking | € [k/2, k] and computing

(1a APF2 < (1e AX(]) @ A,

which finds all paths of size up to 3k/2 by taking all paths of size
exactly / > k/2 followed by all paths of size up to k.
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Path-doubling (Tiskin's algorithm)

A B = (I+A)~2 = [+A+A~2  A* = (I+A)~4 = (1+B(2))B
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Path-doubling

Earlier caveat:
(1o A)P3F2 < (1e AX(1)) ® AX,

does not hold in general. The fundamental property used by the
algorithm is really

A*(I) @ A*(k) = A*(I + k).

All shortest paths of up to any length are composible
(factorizable), but not paths up to a limited length. However, the
algorithm is correct because A' < A¥(/) < A*(k).
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Cost of Tiskin's algorithm

Since the decomposition by path size is disjoint, one can pick
AX(I) for I € [k/2, k] to have size

|AK(N| > 2n?/k.

Each round of path doubling becomes cheaper than the previous,
so the cost is dominated by the first matrix multiplication,

F=0(n/p) W=0(n?/p*3) S=0(og(n)),

solving the APSP problem with no F - 52 or W - S tradeoff and
optimal flops.
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More on Tiskin's APSP algorithms

Tiskin gives a way to lower the synchronization from
S = O(log(n)) to O(log(p)). For nonnegative edge lengths it is
straightforward

@ compute AP via path-doubling
e pick a small AP(/) for I € [p/2, p]

e replicate AP(/) and compute Dijkstra’s algorithm for n/p
nodes with each process, obtaining (AP(/))*

@ compute by matrix multiplication
A* = (AP())" © AP

since all shortest paths are composed of a path of size that is
a multiple of / < p, followed by a shortest path of size up to p
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Numerical test |

Error in computation of (A*(A+eps*E)T-(A+eps"E)*AT)

10 T T T
-5
o r T
-8
o F T
g
b -0
g0 fast syrZkid, A+eps B) error []
g —F syrek(A,A+epstE) error
E =k —— fast syrZkiA,eps*E) error
|
T
Lt
o r
-1
o F T
1D7‘8 1 L L 1
o 1 2 E 4 H
10 10 10 10 10 10

# of columns in random matrices & and B
We measure the error in computation of A- B’ —B - AT where
B =A+¢c-B for e =107 (antisymmetric rank-2K update).
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Numerical test Il

-2 Error of ﬂ*(ﬂ”‘5+eps"‘3)T-(ﬂ"‘S+eps*B)*RT relative to eps"‘ﬂ*ET—Eps*E*nT
T T

10
w b .
w b .
<
2
5
10 b
= fast sur2k(A,A*S+eps*B) error
é & syrZk (A, A*S+eps™E) errar
© 10_10 L —— fast surPkif.eps*B) error
2
2
=
& 12
1w B
-14
1w B
" W
10 L L
1 2 3 4
10 10 10 10

# of columns in random matrices A and B

Now we consider the computation of A- BT — B - AT where
B=A-S+c-B where S is a random symmetric matrix.
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umerical test |1l

Relative error of c=A*b using fast symmetric algorithm

E0 . T T
=
=
£ —=— positive random A relative error
g -13 random A relative error
S0 | E
=
£
o
=
@
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g 10 ¢ 3
@
o
o
£
£ -5
10 E
o
=
£
H
=
= -6
ERUIN E
2
@
2
=]
£
T . . .
0 1 2 3 4
10 10 10 10 10
dimension of Aand b
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umerical test IV

Relative error of squaring a Householder transformation

=
S 10 T T T
=
= —=—fast algorithm relative error
w
5 12 standard algorithm relative error
g 10 | E
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S 1
210 | E
z
=
k=
= 14
510 E
£
w
=
8 -5
£ 10 J
=
-1
=
B -6
T 10 1 1 1
o= ] 1 2 3 4
10 10 10 10 10
dimension of A
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