
Provably efficient algorithms for numerical tensor
algebra

Edgar Solomonik

Department of EECS, Computer Science Division, UC Berkeley

Dissertation Defense

Adviser: James Demmel

Aug 27, 2014

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 1/ 30

Outline

Motivation

search for robust communication-efficient algorithms
deployable under the umbrella of mathematical abstractions

1 Theoretical model of parallel computation

2 Communication lower bound techniques

3 2.5D algorithms for dense linear algebra

4 Krylov subspace computations

5 Symmetric tensor computations

6 Future work

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 2/ 30

Model of the computer architecture

We quantify interprocessor communication and synchronization
costs of a parallelization via a flat network model

γ - cost for a single computation (flop)

β - cost for a transfer of each byte between any pair of
processors

α - cost for a synchronization between any pair of processors

% - cost for a transfer of each byte between local memory and
local cache

We assume % < β and report only memory-bandwidth costs
auxiliary to interprocessor-bandwidth costs.

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 3/ 30

Model of the parallel schedule

We measure the cost of a parallelization along the longest sequence
of dependent computations and data transfers (critical path)

F - critical path payload for computation cost

W - critical path payload for communication (bandwidth) cost

S - critical path payload for synchronization cost

Q - critical path payload for memory bandwidth cost

The total time T is then bounded by

max(F · γ,W · β,S · α,Q · %) ≤ T ≤ F · γ + W · β + S · α + Q · %

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 4/ 30

The problem, the algorithm, and the parallelization

Figure : How do lower bounds facilitate the design of parallel algorithms?

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 5/ 30

Obtaining communication lower bounds for algorithms

We can represent an algorithm as a DAG G = (V ,E) where

the vertices V are the input, intermediate, and output values

the edges E encode the dependencies between pairs of values

What is the least amount of communication W needed to compute
G with p processors?

W is at least the size of the minimum vertex separator of G
where each partition has at least |V |/p vertices.

How do we determine the minimum vertex separator of G ?

find hypergraph structure by merging disjoint sets of edges

derive minimum hyperedge cut bounds for hypergraphs

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 6/ 30

Obtaining communication lower bounds for algorithms

We can represent an algorithm as a DAG G = (V ,E) where

the vertices V are the input, intermediate, and output values

the edges E encode the dependencies between pairs of values

What is the least amount of communication W needed to compute
G with p processors?

W is at least the size of the minimum vertex separator of G
where each partition has at least |V |/p vertices.

How do we determine the minimum vertex separator of G ?

find hypergraph structure by merging disjoint sets of edges

derive minimum hyperedge cut bounds for hypergraphs

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 6/ 30

Obtaining communication lower bounds for algorithms

We can represent an algorithm as a DAG G = (V ,E) where

the vertices V are the input, intermediate, and output values

the edges E encode the dependencies between pairs of values

What is the least amount of communication W needed to compute
G with p processors?

W is at least the size of the minimum vertex separator of G
where each partition has at least |V |/p vertices.

How do we determine the minimum vertex separator of G ?

find hypergraph structure by merging disjoint sets of edges

derive minimum hyperedge cut bounds for hypergraphs

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 6/ 30

Lattice hypergraphs

For any m > r > 0, we define a (m, r)-lattice hypergraph
H = (V ,E) of breadth n,

with |V | =
(n
m

)
vertices vi1...im ∈ V with i1 < · · · < im

with |E | =
(n
r

)
hyperedges ej1...jr ∈ E which connect all vi1...im

for which {j1 . . . jr} ⊂ {i1 . . . im}.

Theorem

The minimum 1
p -balanced hyperedge cut of a (m, r)-lattice

hypergraph H = (V ,E) of breadth n is of size Ω(nr/pr/m).

Proof using generalized Loomis-Whitney inequality

Lemma

For any subset V̄ ⊂ V , let Ē ⊂ E be the hyperedges adjacent to V̄

|Ē | ≥ |V̄ |r/m

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 7/ 30

Lattice hypergraphs

For any m > r > 0, we define a (m, r)-lattice hypergraph
H = (V ,E) of breadth n,

with |V | =
(n
m

)
vertices vi1...im ∈ V with i1 < · · · < im

with |E | =
(n
r

)
hyperedges ej1...jr ∈ E which connect all vi1...im

for which {j1 . . . jr} ⊂ {i1 . . . im}.

Theorem

The minimum 1
p -balanced hyperedge cut of a (m, r)-lattice

hypergraph H = (V ,E) of breadth n is of size Ω(nr/pr/m).

Proof using generalized Loomis-Whitney inequality

Lemma

For any subset V̄ ⊂ V , let Ē ⊂ E be the hyperedges adjacent to V̄

|Ē | ≥ |V̄ |r/m

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 7/ 30

Lattice hypergraphs

For any m > r > 0, we define a (m, r)-lattice hypergraph
H = (V ,E) of breadth n,

with |V | =
(n
m

)
vertices vi1...im ∈ V with i1 < · · · < im

with |E | =
(n
r

)
hyperedges ej1...jr ∈ E which connect all vi1...im

for which {j1 . . . jr} ⊂ {i1 . . . im}.

Theorem

The minimum 1
p -balanced hyperedge cut of a (m, r)-lattice

hypergraph H = (V ,E) of breadth n is of size Ω(nr/pr/m).

Proof using generalized Loomis-Whitney inequality

Lemma

For any subset V̄ ⊂ V , let Ē ⊂ E be the hyperedges adjacent to V̄

|Ē | ≥ |V̄ |r/m

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 7/ 30

Path-expander graph

Definition (order-d-path-expander)

Graph G = (V ,E) is an order-d-path-expander if it has a path
(u1 . . . un) ⊂ V , and the union of all paths between ui and uj for
all j > i is a (d , d − 1)-lattice hypergraph

An example of a order-2-path-expander

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 8/ 30

Path-expander graph

Definition (order-d-path-expander)

Graph G = (V ,E) is an order-d-path-expander if it has a path
(u1 . . . un) ⊂ V , and the union of all paths between ui and uj for
all j > i is a (d , d − 1)-lattice hypergraph

An example of a order-2-path-expander

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 8/ 30

Scheduling tradeoffs of path-expander graphs

Theorem (Path-expander communication lower bound)

Any schedule of an algorithm with an order-d-path-expander
dependency graph about a path of length n incurs tradeoffs
between computation (F), bandwidth (W), and latency (S) costs:

F · Sd−1 = Ω
(

nd
)
, W · Sd−2 = Ω

(
nd−1

)
.

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 9/ 30

Cholesky factorization

The Cholesky factorization of a symmetric positive definite matrix
A of dimension n into a lower-triangular matrix L is

A = L · LT ,

and has dependency graph GCh = (VCh,ECh).

With p ∈ [1, n3/2] processors and a free parameter c ∈ [1, p1/3]
[Tiskin 2002] and [S., Demmel 2011] achieve the costs

computation: FCh = Θ(n3/p)

bandwidth: WCh = Θ(n2/
√

cp)

synchronization: SCh = Θ(
√

cp)

These schedules are optimal since GCh is an order-3-path-expander
about the path corresponding to the diagonal of L.

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 10/ 30

Cholesky factorization

The Cholesky factorization of a symmetric positive definite matrix
A of dimension n into a lower-triangular matrix L is

A = L · LT ,

and has dependency graph GCh = (VCh,ECh).

With p ∈ [1, n3/2] processors and a free parameter c ∈ [1, p1/3]
[Tiskin 2002] and [S., Demmel 2011] achieve the costs

computation: FCh = Θ(n3/p)

bandwidth: WCh = Θ(n2/
√

cp)

synchronization: SCh = Θ(
√

cp)

These schedules are optimal since GCh is an order-3-path-expander
about the path corresponding to the diagonal of L.

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 10/ 30

Cholesky factorization

The Cholesky factorization of a symmetric positive definite matrix
A of dimension n into a lower-triangular matrix L is

A = L · LT ,

and has dependency graph GCh = (VCh,ECh).

With p ∈ [1, n3/2] processors and a free parameter c ∈ [1, p1/3]
[Tiskin 2002] and [S., Demmel 2011] achieve the costs

computation: FCh = Θ(n3/p)

bandwidth: WCh = Θ(n2/
√

cp)

synchronization: SCh = Θ(
√

cp)

These schedules are optimal since GCh is an order-3-path-expander
about the path corresponding to the diagonal of L.

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 10/ 30

Other 2.5D algorithms

We give algorithms that attain the costs

F = O(n3/p) W = O(n2/
√

cp) O(
√

cp)

for the following problems

LU factorization

QR factorization

symmetric eigenvalue problem

all-pairs shortest-paths problem (Floyd-Warshall algorithm)

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 11/ 30

2.5D LU factorization

2.5D LU can be achieved by replicated storage of Schur
complement updates and pairwise pivoting [Tiskin 2002] or
Communication Avoiding (CA) pivoting

 0

 20

 40

 60

 80

 100

NO-pivot 2D

NO-pivot 2.5D

CA-pivot 2D

CA-pivot 2.5D

Ti
m

e
(s

ec
)

LU on 16,384 nodes of BG/P (n=131,072)

2X faster

2X faster

compute
idle

communication

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 12/ 30

2.5D QR factorization

2.5D QR can be achieved by performing Tall-Skinny QR (TSQR)
on each matrix panel, reconstructing the Householder
representation, LU(Q1 − I) = Y · (TY T

1), and aggregating the
trailing matrix update (left-looking)

 0

 5

 10

 15

 20

144 288 576 1152 2304 4608 9216

Te
ra

flo
ps

#cores

QR weak scaling on Hopper (15K-by-15K to 131K-by-131K)

Aggregated 2D CAQR-HR
Aggregated 2D Householder

2D CAQR-HR
Elemental QR

ScaLAPACK QR

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 13/ 30

2.5D Symmetric eigensolver

We can reduce a symmetric matrix to a banded matrix with the
same eigenvalues via a 2.5D algorithm

instead of applying each trailing symmetric update
Ā := A + UV T + VUT , reformulate computation in the
expanded form A + UV T + VUT and delay update in order to
aggregate

one-step band-reduction algorithm achieves 2.5D
interprocessor communication cost, but needs additional
memory-to-cache traffic

We can perform 2.5D SBR (Successive Band Reduction) to reduce
the matrix to a small band in more steps

achieves desired interprocessor and memory-bandwidth costs
Q = W = O(n2 log(p)/

√
c · p)

requires more computation during back transformations to
obtain eigenvectors

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 14/ 30

2.5D Symmetric eigensolver

We can reduce a symmetric matrix to a banded matrix with the
same eigenvalues via a 2.5D algorithm

instead of applying each trailing symmetric update
Ā := A + UV T + VUT , reformulate computation in the
expanded form A + UV T + VUT and delay update in order to
aggregate

one-step band-reduction algorithm achieves 2.5D
interprocessor communication cost, but needs additional
memory-to-cache traffic

We can perform 2.5D SBR (Successive Band Reduction) to reduce
the matrix to a small band in more steps

achieves desired interprocessor and memory-bandwidth costs
Q = W = O(n2 log(p)/

√
c · p)

requires more computation during back transformations to
obtain eigenvectors

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 14/ 30

Krylov subspace methods

We consider the s-step Krylov subspace basis computation

x(l) = A · x(l−1),

for l ∈ {1, . . . , s} where the graph of the sparse matrix A is a
(2m + 1)d -point stencil.

The Krylov subspace dependency graph has d + 1 dimensions, we
say it has d mesh dimensions and 1 time dimension

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 15/ 30

The standard algorithm (1D 2-pt stencil diagram)

Block the d mesh dimensions and perform one matrix vector
multiplication at a time, synchronizing each time

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 16/ 30

The matrix-powers kernel

Avoid synchronization by blocking across matrix-vector multiplies
(in the time dimension)

For a (2m + 1)d -point stencil, s/b invocations of the
matrix-powers kernel compute an s-step Krylov subspace with
communication cost

WPA1 = O
(

(s/b) ·
[
(n/p1/d + b ·m)d − nd/p

])
.

and synchronization cost SPA1 = O(s/b)

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 17/ 30

The matrix-powers kernel

Avoid synchronization by blocking across matrix-vector multiplies
(in the time dimension)

For a (2m + 1)d -point stencil, s/b invocations of the
matrix-powers kernel compute an s-step Krylov subspace with
communication cost

WPA1 = O
(

(s/b) ·
[
(n/p1/d + b ·m)d − nd/p

])
.

and synchronization cost SPA1 = O(s/b)

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 17/ 30

Illustration of import region of the matrix-powers kernel

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 18/ 30

Communication lower bounds for Krylov subspace methods

The dependency graph of an s-step (2m + 1)d -point Krylov
subspace method is an order-(d + 1)-path-expander (with
prefactors polynomial in m).

Theorem

Any parallel execution of an s-step Krylov subspace basis
computation for a (2m + 1)d -point stencil, requires the following
computational, bandwidth, and latency costs

FKr · Sd
Kr = Ω

(
m2d · sd+1

)
, WKr · Sd−1

Kr = Ω
(

md · sd
)
.

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 19/ 30

Communication-efficient parallelization for Krylov methods

Block the global problem in the time dimension and execute each
block in parallel so that working set of data fits into cache

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 20/ 30

Tensor contractions

We now move on to tensor contractions as motivated by electronic
structure applications, e.g. from the Coupled-Cluster Singles and
Doubles (CCSD) method

Z ak
i c̄ =

∑
bj̄

V j̄k
bc̄ · T

ab
i j̄
,

where Z, V, and T are fourth order tensors and T is antisymmetric
in permutation between a and b, but this antisymmetry is ‘broken’
(a appears in Z while b appears in V).

Another contraction from the CCSDTQ method is

Z abcd̄
ijk l̄

=
∑

(a,(b,c))∈χ(a,b,c)

∑
(i ,(j ,k))∈χ(i ,j ,k)

∑
m̄

T ad̄
im̄ · X m̄bc

jkl̄
,

where Z is antisymmetric in (a, b, c) and in (i , j , k), while X is
antisymmetric in (b, c) and (j , k) which are ‘preserved’.

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 21/ 30

Tensor contractions

We now move on to tensor contractions as motivated by electronic
structure applications, e.g. from the Coupled-Cluster Singles and
Doubles (CCSD) method

Z ak
i c̄ =

∑
bj̄

V j̄k
bc̄ · T

ab
i j̄
,

where Z, V, and T are fourth order tensors and T is antisymmetric
in permutation between a and b, but this antisymmetry is ‘broken’
(a appears in Z while b appears in V).

Another contraction from the CCSDTQ method is

Z abcd̄
ijk l̄

=
∑

(a,(b,c))∈χ(a,b,c)

∑
(i ,(j ,k))∈χ(i ,j ,k)

∑
m̄

T ad̄
im̄ · X m̄bc

jkl̄
,

where Z is antisymmetric in (a, b, c) and in (i , j , k), while X is
antisymmetric in (b, c) and (j , k) which are ‘preserved’.

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 21/ 30

Standard algorithm for symmetric tensor contractions

We can express any contraction of fully-symmetric tensors using
index set notation i〈s + t〉 = (i1, . . . , is+t) as

Ci〈s+t〉 =
∑

(j〈s〉,l〈t〉)∈χ(i〈s+t〉)

(∑
k〈v〉

Aj〈s〉k〈v〉 · Bl〈t〉k〈v〉

)

where C is order s + t, A is order s + v , and B is order t + v and
the total number of contraction indices is ω = s + t + v .

The standard method for tensor contractions, algorithm Φ(s,t,v)

exploits preserved symmetries: j〈s〉, l〈t〉, and k〈v〉 to achieve the
cost

TΦ(n, s, t, v) =

(
n

s

)(
n

t

)(
n

v

)
· (ν + µ) + O(nω−1)

where ν is the cost of additions, µ is the cost of multiplications,
and n is the dimension (range of each index).

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 22/ 30

Standard algorithm for symmetric tensor contractions

We can express any contraction of fully-symmetric tensors using
index set notation i〈s + t〉 = (i1, . . . , is+t) as

Ci〈s+t〉 =
∑

(j〈s〉,l〈t〉)∈χ(i〈s+t〉)

(∑
k〈v〉

Aj〈s〉k〈v〉 · Bl〈t〉k〈v〉

)

where C is order s + t, A is order s + v , and B is order t + v and
the total number of contraction indices is ω = s + t + v .

The standard method for tensor contractions, algorithm Φ(s,t,v)

exploits preserved symmetries: j〈s〉, l〈t〉, and k〈v〉 to achieve the
cost

TΦ(n, s, t, v) =

(
n

s

)(
n

t

)(
n

v

)
· (ν + µ) + O(nω−1)

where ν is the cost of additions, µ is the cost of multiplications,
and n is the dimension (range of each index).

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 22/ 30

Parallelization of the standard contraction algorithm

The standard symmetric contraction algorithm Φ(s,t,v) is
dominated by a matrix multiplication of an

(n
s

)
-by-

(n
v

)
matrix with

an
(n
v

)
-by-

(n
t

)
matrix into an

(n
s

)
-by-

(n
t

)
matrix

the main parallelization challenge is to get the tensor data
into the desired matrix layout

Cyclops Tensor Framework (CTF)

a library for distributed memory decomposition, redistribution,
and contraction of tensors

two-level parallelization via MPI+OpenMP

automated topology-aware runtime mapping of tensors via
performance models

supports distributed packed symmetric storage

uses 2.5D matrix multiplication for contractions

provides concise interface for tensor objects and contractions

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 23/ 30

Parallelization of the standard contraction algorithm

The standard symmetric contraction algorithm Φ(s,t,v) is
dominated by a matrix multiplication of an

(n
s

)
-by-

(n
v

)
matrix with

an
(n
v

)
-by-

(n
t

)
matrix into an

(n
s

)
-by-

(n
t

)
matrix

the main parallelization challenge is to get the tensor data
into the desired matrix layout

Cyclops Tensor Framework (CTF)

a library for distributed memory decomposition, redistribution,
and contraction of tensors

two-level parallelization via MPI+OpenMP

automated topology-aware runtime mapping of tensors via
performance models

supports distributed packed symmetric storage

uses 2.5D matrix multiplication for contractions

provides concise interface for tensor objects and contractions

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 23/ 30

Parallelization of the standard contraction algorithm

The standard symmetric contraction algorithm Φ(s,t,v) is
dominated by a matrix multiplication of an

(n
s

)
-by-

(n
v

)
matrix with

an
(n
v

)
-by-

(n
t

)
matrix into an

(n
s

)
-by-

(n
t

)
matrix

the main parallelization challenge is to get the tensor data
into the desired matrix layout

Cyclops Tensor Framework (CTF)

a library for distributed memory decomposition, redistribution,
and contraction of tensors

two-level parallelization via MPI+OpenMP

automated topology-aware runtime mapping of tensors via
performance models

supports distributed packed symmetric storage

uses 2.5D matrix multiplication for contractions

provides concise interface for tensor objects and contractions

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 23/ 30

Parallelization of the standard contraction algorithm

The standard symmetric contraction algorithm Φ(s,t,v) is
dominated by a matrix multiplication of an

(n
s

)
-by-

(n
v

)
matrix with

an
(n
v

)
-by-

(n
t

)
matrix into an

(n
s

)
-by-

(n
t

)
matrix

the main parallelization challenge is to get the tensor data
into the desired matrix layout

Cyclops Tensor Framework (CTF)

a library for distributed memory decomposition, redistribution,
and contraction of tensors

two-level parallelization via MPI+OpenMP

automated topology-aware runtime mapping of tensors via
performance models

supports distributed packed symmetric storage

uses 2.5D matrix multiplication for contractions

provides concise interface for tensor objects and contractions

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 23/ 30

Parallelization of the standard contraction algorithm

The standard symmetric contraction algorithm Φ(s,t,v) is
dominated by a matrix multiplication of an

(n
s

)
-by-

(n
v

)
matrix with

an
(n
v

)
-by-

(n
t

)
matrix into an

(n
s

)
-by-

(n
t

)
matrix

the main parallelization challenge is to get the tensor data
into the desired matrix layout

Cyclops Tensor Framework (CTF)

a library for distributed memory decomposition, redistribution,
and contraction of tensors

two-level parallelization via MPI+OpenMP

automated topology-aware runtime mapping of tensors via
performance models

supports distributed packed symmetric storage

uses 2.5D matrix multiplication for contractions

provides concise interface for tensor objects and contractions

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 23/ 30

Parallelization of the standard contraction algorithm

The standard symmetric contraction algorithm Φ(s,t,v) is
dominated by a matrix multiplication of an

(n
s

)
-by-

(n
v

)
matrix with

an
(n
v

)
-by-

(n
t

)
matrix into an

(n
s

)
-by-

(n
t

)
matrix

the main parallelization challenge is to get the tensor data
into the desired matrix layout

Cyclops Tensor Framework (CTF)

a library for distributed memory decomposition, redistribution,
and contraction of tensors

two-level parallelization via MPI+OpenMP

automated topology-aware runtime mapping of tensors via
performance models

supports distributed packed symmetric storage

uses 2.5D matrix multiplication for contractions

provides concise interface for tensor objects and contractions

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 23/ 30

Coupled Cluster on IBM BlueGene/Q

CCSD up to 55 (50) water molecules with cc-pVDZ
CCSDT up to 10 water molecules with cc-pVDZ

 4

 8

 16

 32

 64

 128

 256

 512

 1024

512 1024 2048 4096 8192 16384 32768

Te
ra

flo
ps

#nodes

Weak scaling on BlueGene/Q

Aquarius-CTF CCSD
Aquarius-CTF CCSDT

 10

 20

 30

 40

 50

 60

512 1024 2048 4096 8192 16384

G
ig

af
lo

ps
/n

od
e

#nodes

Weak scaling on BlueGene/Q

Aquarius-CTF CCSD
Aquarius-CTF CCSDT

 1

 2
 4

 8
 16

 32
 64

 128
 256

 512

32 64 128 256 512 1024 2048 4096

Te
ra

flo
ps

#nodes

Weak scaling on Edison

Aquarius-CTF CCSD
Aquarius-CTF CCSDT

 50

 100

 150

 200

 250

 300

 350

32 64 128 256 512 1024 2048 4096

G
ig

af
lo

ps
/n

od
e

#nodes

Weak scaling on Edison

Aquarius-CTF CCSD
Aquarius-CTF CCSDT

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 24/ 30

Coupled Cluster on IBM BlueGene/Q

CCSD up to 55 (50) water molecules with cc-pVDZ
CCSDT up to 10 water molecules with cc-pVDZ

 4

 8

 16

 32

 64

 128

 256

 512

 1024

512 1024 2048 4096 8192 16384 32768

Te
ra

flo
ps

#nodes

Weak scaling on BlueGene/Q

Aquarius-CTF CCSD
Aquarius-CTF CCSDT

 10

 20

 30

 40

 50

 60

512 1024 2048 4096 8192 16384

G
ig

af
lo

ps
/n

od
e

#nodes

Weak scaling on BlueGene/Q

Aquarius-CTF CCSD
Aquarius-CTF CCSDT

 1

 2
 4

 8
 16

 32
 64

 128
 256

 512

32 64 128 256 512 1024 2048 4096

Te
ra

flo
ps

#nodes

Weak scaling on Edison

Aquarius-CTF CCSD
Aquarius-CTF CCSDT

 50

 100

 150

 200

 250

 300

 350

32 64 128 256 512 1024 2048 4096

G
ig

af
lo

ps
/n

od
e

#nodes

Weak scaling on Edison

Aquarius-CTF CCSD
Aquarius-CTF CCSDT

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 24/ 30

Comparison with NWChem

NWChem is the most commonly-used distributed-memory
quantum chemistry method suite

provides CCSD and CCSDT

uses Global Arrays a Partitioned Global Address Space
(PGAS) backend for tensor contractions

derives equations via Tensor Contraction Engine (TCE)

 4

 16

 64

 256

 1024

1 2 4 8 16 32 64 128 256

se
co

nd
s

#nodes

Strong scaling CCSD on Edison

NWChem w20
w15
w10
w8

Aquarius-CTF w20
w15
w10
w8

 4

 16

 64

 256

 1024

1 2 4 8 16 32 64 128 256

se
co

nd
s

#nodes

Strong scaling CCSDT on Edison

NWChem w3
w2

Aquarius-CTF w4
w3
w2

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 25/ 30

Fast symmetric contraction algorithm

Recall that the standard algorithm Ψ(s,t,v) computes symmetric
tensor contractions using nω

s!t!v! multiplications (where
ω = s + t + v).

We give an algorithm Φ(s,t,v) that requires only nω

ω! multiplications
but more additions. The speed-up depends on the relative cost
of additions ν and multiplications µ. When multiplications are

real floating point multiplications µ = ν

complex floating point multiplications µ = 3ν

matrix-matrix multiplications µ� ν

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

1 2 3 4 5 6

re
du

ct
io

n
fa

ct
or

ω

Reduction in operation count for different entry types

(s+t=ω) entries are matrices
(s+t=ω) entries are complex
(s+t=ω) entries are real

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

1 2 3 4 5 6
ω

Reduction in operation count for different entry types

(s+t+v=ω) entries are matrices
(s+t+v=ω) entries are complex
(s+t+v=ω) entries are real

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 26/ 30

Fast symmetric contraction algorithm

Recall that the standard algorithm Ψ(s,t,v) computes symmetric
tensor contractions using nω

s!t!v! multiplications (where
ω = s + t + v).
We give an algorithm Φ(s,t,v) that requires only nω

ω! multiplications
but more additions.

The speed-up depends on the relative cost
of additions ν and multiplications µ. When multiplications are

real floating point multiplications µ = ν

complex floating point multiplications µ = 3ν

matrix-matrix multiplications µ� ν

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

1 2 3 4 5 6

re
du

ct
io

n
fa

ct
or

ω

Reduction in operation count for different entry types

(s+t=ω) entries are matrices
(s+t=ω) entries are complex
(s+t=ω) entries are real

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

1 2 3 4 5 6
ω

Reduction in operation count for different entry types

(s+t+v=ω) entries are matrices
(s+t+v=ω) entries are complex
(s+t+v=ω) entries are real

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 26/ 30

Fast symmetric contraction algorithm

Recall that the standard algorithm Ψ(s,t,v) computes symmetric
tensor contractions using nω

s!t!v! multiplications (where
ω = s + t + v).
We give an algorithm Φ(s,t,v) that requires only nω

ω! multiplications
but more additions. The speed-up depends on the relative cost
of additions ν and multiplications µ. When multiplications are

real floating point multiplications µ = ν

complex floating point multiplications µ = 3ν

matrix-matrix multiplications µ� ν

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

1 2 3 4 5 6

re
du

ct
io

n
fa

ct
or

ω

Reduction in operation count for different entry types

(s+t=ω) entries are matrices
(s+t=ω) entries are complex
(s+t=ω) entries are real

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

1 2 3 4 5 6
ω

Reduction in operation count for different entry types

(s+t+v=ω) entries are matrices
(s+t+v=ω) entries are complex
(s+t+v=ω) entries are real

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 26/ 30

Fast symmetric algorithm

The algorithm Φ(s,t,v) computes
(n
ω

)
multiplications to leading

order, corresponding to an order ω symmetric tensor

Ẑi〈ω〉 =

(∑
j〈s+v〉∈χ(i〈ω〉)

Aj〈s+v〉

)
·
(∑

l〈t+v〉∈χ(i〈ω〉)

Bl〈t+v〉

)
.

This term includes all needed multiplications to compute C and
some extra ones, which can be cancelled out (usually) with low
order cost.

For example, when s = 1, t = 0, v = 1, the contraction is a
multiplication of a vector by a symmetric matrix. The algorithm
Ψ(s,t,v) ignores the symmetry of the matrix, while Φ(s,t,v) computes

Ẑij = Aij · (bi + bj), Zi =
∑
k

Ẑik ,

A
(1)
i =

∑
k

Aik , Vi = A
(1)
i · bi , ci = Zi − Vi .

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 27/ 30

Fast symmetric algorithm

The algorithm Φ(s,t,v) computes
(n
ω

)
multiplications to leading

order, corresponding to an order ω symmetric tensor

Ẑi〈ω〉 =

(∑
j〈s+v〉∈χ(i〈ω〉)

Aj〈s+v〉

)
·
(∑

l〈t+v〉∈χ(i〈ω〉)

Bl〈t+v〉

)
.

This term includes all needed multiplications to compute C and
some extra ones, which can be cancelled out (usually) with low
order cost.
For example, when s = 1, t = 0, v = 1, the contraction is a
multiplication of a vector by a symmetric matrix. The algorithm
Ψ(s,t,v) ignores the symmetry of the matrix, while Φ(s,t,v) computes

Ẑij = Aij · (bi + bj), Zi =
∑
k

Ẑik ,

A
(1)
i =

∑
k

Aik , Vi = A
(1)
i · bi , ci = Zi − Vi .

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 27/ 30

Analysis of the fast symmetric algorithm

Stability analysis:

theoretical error bound weaker only by factors polynomial in ω
and numerical experiments suggest error difference between
Ψ(s,t,v) and Φ(s,t,v) is insignificant

Communication cost analysis:

Ψ(s,t,v) has communication cost proportional to matrix
multiplication (dependency graph is a (3, 2)-lattice
hypergraph)

WΨ = Θ(nω/p2/3)

Φ(s,t,v) does more communication per multiplication
(sometimes asymptotically) since its dependency graph is a
(ω,max[s + v , t + v , s + t])-lattice hypergraph

WΦ = Θ(nω/pmax(s+v ,t+v ,s+t)/ω)

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 28/ 30

Analysis of the fast symmetric algorithm

Stability analysis:

theoretical error bound weaker only by factors polynomial in ω
and numerical experiments suggest error difference between
Ψ(s,t,v) and Φ(s,t,v) is insignificant

Communication cost analysis:

Ψ(s,t,v) has communication cost proportional to matrix
multiplication (dependency graph is a (3, 2)-lattice
hypergraph)

WΨ = Θ(nω/p2/3)

Φ(s,t,v) does more communication per multiplication
(sometimes asymptotically) since its dependency graph is a
(ω,max[s + v , t + v , s + t])-lattice hypergraph

WΦ = Θ(nω/pmax(s+v ,t+v ,s+t)/ω)

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 28/ 30

Application of the fast symmetric algorithm to CCSD

Let Υ(s,t,v) be the nonsymmetric contraction algorithm. Recall the
CCSD contraction

Z ak
i c̄ =

∑
bj̄

V j̄k
bc̄ · T

ab
i j̄
,

where T is antisymmetric in (a, b) the standard algorithm
Ψ(0,1,1)Υ(2,1,1)(V,T) has cost 2n6 (same as just Υ(2,2,2)(V,T)).
The fast algorithm can be used as

Φ(0,1,1)Υ(2,1,1)(V,T)

with cost n6 (since the 2X reduction in multiplications from
Φ(0,1,1) results in 2X fewer calls to Υ(2,1,1)).

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 29/ 30

Application of the fast symmetric algorithm to CCSDTQ

Recall the CCSDTQ contraction

Z abcd̄
ijk l̄

=
∑

(a,(b,c))∈χ(a,b,c)

∑
(i ,(j ,k))∈χ(i ,j ,k)

∑
m̄

T ad̄
im̄ · X m̄bc

jkl̄
,

where Z is antisymmetric in (a, b, c) and (i , j , k), which can be
computed as

Z = Ψ(2,1,0)Ψ(1,2,0)Υ(1,1,1)(T,X),

with n9/2 operations (4X savings from symmetry) or via

Z = Φ(2,1,0)Φ(1,2,0)Υ(1,1,1)(T,X),

with n9/18 operations (36X savings from symmetry).

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 30/ 30

Future work

Implementations of 2.5D QR, symmetric eigensolver, and
Tiskin’s all-pairs shortest-paths algorithm

Implementation and extensions of communication-efficient
Krylov subspace method parallelization (e.g. Gram matrix
handling and explicit-matrix case)

Sparse adaptation and further optimization of Cyclops Tensor
Framework

Derivation of full coupled-cluster methods using fast
symmetric contractions

High performance implementation of the fast symmetric
contraction algorithm

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 31/ 30

Backup slides

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 32/ 30

Collaborators and acknowledgements

Collaborators:

James Demmel (UC Berkeley)

Grey Ballard (formerly UC Berkeley, now Sandia National
Laboratory)

Nicholas Knight, Erin Carson, James Demmel, Kathy Yelick
(UC Berkeley)

Devin Matthews (UT Austin)

Jeff Hammond (Argonne National Laboratory)

Grants:

Krell DOE Computational Science Graduate Fellowship

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 33/ 30

Ẑi〈ω〉 =

(∑
j〈s+v〉∈χ(i〈ω〉)

Aj〈s+v〉

)
·
(∑

l〈t+v〉∈χ(i〈ω〉)

Bl〈t+v〉

)
Zi〈s+t〉 =

∑
k〈v〉

Ẑi〈s+t〉k〈v〉

Vi〈s+t〉 =
v−1∑
r=0

(
v

r

)
·

v−r∑
p=max(0,v−t−r)

(
v − r

p

)
·

v−p−r∑
q=max(0,v−s−r)

(
v − p − r

q

)
· nv−p−q−r ·

∑
k〈r〉

[∑
j〈s+v−p−r〉∈χ(i〈s+t〉)

(
A

(p)
j〈s+v−p−r〉k〈r〉

)]

·
[∑
l〈t+v−q−r〉∈χ(i〈s+t〉)

(
B

(q)
l〈t+v−q−r〉k〈r〉

)]

Wi〈s+t〉 =

min(s,t)∑
r=1

(∑
(m〈r〉,h〈s+t−2r〉)∈χ(i〈s+t〉)

U
(r)
m〈r〉h〈s+t−2r〉

)
Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 34/ 30

Ci〈s+t〉 =Zi〈s+t〉 − Vi〈s+t〉 −Wi〈s+t〉

where A(0) = A and B(0) = B and

∀p ∈ [1, v], ∀i〈s + v − p〉, A
(p)
i〈s+v−p〉 =

∑
k〈p〉

Ai〈s+v−p〉k〈p〉,

∀q ∈ [1, v], ∀i〈t + v − q〉, B
(q)
i〈t+v−q〉 =

∑
k〈q〉

Bi〈t+v−q〉k〈q〉,

∀r ∈ [1,min(s, t)], ∀i〈s + t − 2r〉,

U
(r)
m〈r〉i〈s+t−2r〉 =

∑
(j〈s−r〉,l〈t−r〉)∈χ(i〈s+t−2r〉)(∑

k〈v〉

Am〈r〉j〈s−r〉k〈v〉 · Bm〈r〉l〈t−r〉k〈v〉

)
.

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 35/ 30

Blocked vs block-cyclic vs cyclic decompositions

Blocked layout Block-cyclic layout Cyclic layout

Red denotes padding / load imbalanceGreen denotes fill (unique values)

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 36/ 30

3D tensor mapping

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 37/ 30

2.5D LU on MIC

 100

 150

 200

 250

 300

 350

 400

 450

16 32 64 128 256

G
ig

af
lo

p/
s/

no
de

#nodes

LU factorization strong scaling on Stampede (MIC + Sandy Bridge)

2.5D hybrid LU n=131,072
2D hybrid LU n=131,072

2.5D pure-cpu LU n=131,072
2.5D hybrid LU n=65,536

2D hybrid LU n=65,536
2.5D pure-cpu LU n=65,536

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 38/ 30

2.5D LU strong scaling

 0

 20

 40

 60

 80

 100

256 512 1024 2048

P
er

ce
nt

ag
e

of
 m

ac
hi

ne
 p

ea
k

#nodes

2.5D LU with on BG/P (n=65,536)

2.5D LU (no-pvt)
2.5D LU (CA-pvt)

2D LU (no-pvt)
2D LU (CA-pvt)

ScaLAPACK PDGETRF

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 39/ 30

Topology-aware mapping on BG/Q

 0

 20

 40

 60

 80

 100

256 512 1024 2048 4096

G
ig

af
lo

p/
s/

no
de

#nodes

LU factorization strong scaling on Mira (BG/Q), n=65,536

2D LU, custom mapping
2D LU, default mapping

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 40/ 30

Benefit of replication on BG/Q

 0

 20

 40

 60

 80

 100

 120

256 512 1024 2048 4096

G
ig

af
lo

p/
s/

no
de

#nodes

LU factorization strong scaling on Mira (BG/Q)

2.5D LU n=131,072
2D LU n=131,072

2.5D LU n= 65,536
2D LU n= 65,536

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 41/ 30

Parallel costs of Gauss-Jordan elimination

The floating point cost of Gauss-Jordan elimination is
F = Θ(n3/p). Our lower bounds may be applied since the
computation has the same structure as Gaussian Elimination, so

F · S2 = Ω(n3), W · S = Ω(n2).

These costs are achieved for W = O(n2/p2/3) by schedules in

Aggarwal, Chandra, and Snir 1990

Tiskin 2007

Solomonik, Buluc, and Demmel 2012

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 42/ 30

Lower synchronization cost via path doubling

We can compute the tropical semiring closure

A∗ = I⊕ A⊕ A2 ⊕ . . .⊕ An = (I⊕ A)n,

directly via repeated squaring (path-doubling)

(I⊕ A)2k = (I⊕ A)k ⊗ (I⊕ A)k

with a total of log(n) matrix-matrix multiplications, with

F = O(n3 log(n)/p)

operations and O(log(n)) synchronizations, which can be less than
the O(p1/2) required by Floyd-Warshall.

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 43/ 30

Tiskin’s path doubling algorithm

Tiskin gives a way to do path-doubling in F = O(n3/p) operations.
We can partition each Ak by path size (number of edges)

Ak = I⊕ Ak(1)⊕ Ak(2)⊕ . . .⊕ Ak(k)

where each Ak(l) contains the shortest paths of up to k ≥ l edges,
which have exactly l edges. We can see that

Al(l) ≤ Al+1(l) ≤ . . . ≤ An(l) = A∗(l),

in particular A∗(l) corresponds to a sparse subset of Al(l).
The algorithm works by picking l ∈ [k/2, k] and computing

(I⊕ A)3k/2 ≤ (I⊕ Ak(l))⊗ Ak ,

which finds all paths of size up to 3k/2 by taking all paths of size
exactly l ≥ k/2 followed by all paths of size up to k .

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 44/ 30

Path-doubling (Tiskin’s algorithm)

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 45/ 30

Path-doubling

Earlier caveat:

(I⊕ A)3k/2 ≤ (I⊕ Ak(l))⊗ Ak ,

does not hold in general. The fundamental property used by the
algorithm is really

A∗(l)⊗ A∗(k) = A∗(l + k).

All shortest paths of up to any length are composible
(factorizable), but not paths up to a limited length. However, the
algorithm is correct because Al ≤ Ak(l) ≤ A∗(k).

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 46/ 30

Cost of Tiskin’s algorithm

Since the decomposition by path size is disjoint, one can pick
Ak(l) for l ∈ [k/2, k] to have size

|Ak(l)| ≥ 2n2/k.

Each round of path doubling becomes cheaper than the previous,
so the cost is dominated by the first matrix multiplication,

F = O(n3/p) W = O(n2/p2/3) S = O(log(n)),

solving the APSP problem with no F · S2 or W · S tradeoff and
optimal flops.

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 47/ 30

More on Tiskin’s APSP algorithms

Tiskin gives a way to lower the synchronization from
S = O(log(n)) to O(log(p)). For nonnegative edge lengths it is
straightforward

compute Ap via path-doubling

pick a small Ap(l) for l ∈ [p/2, p]

replicate Ap(l) and compute Dijkstra’s algorithm for n/p
nodes with each process, obtaining (Ap(l))∗

compute by matrix multiplication

A∗ = (Ap(l))∗ ⊗ Ap

since all shortest paths are composed of a path of size that is
a multiple of l ≤ p, followed by a shortest path of size up to p

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 48/ 30

Numerical test I

We measure the error in computation of A · BT − B · AT where
B = A + ε · B̄ for ε = 10−9 (antisymmetric rank-2K update).

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 49/ 30

Numerical test II

Now we consider the computation of A · BT − B · AT where
B = A · S + ε · B̄ where S is a random symmetric matrix.

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 50/ 30

Numerical test III

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 51/ 30

Numerical test IV

Edgar Solomonik Provably efficient algorithms for numerical tensor algebra 52/ 30

	Theoretical model of parallel computation
	Communication lower bound techniques
	2.5D algorithms for dense linear algebra
	Krylov subspace computations
	Symmetric tensor computations
	Future work

