
Provably Efficient Algorithms as Tensor Equations

Edgar Solomonik

Department of Computer Science
ETH Zurich

Cornell University

February 2, 2016

Edgar Solomonik Provably Efficient Tensor Algorithms 1/ 28

Tensors and algebraic structures

We consider the expression of data as indexable collections of elements
and algorithms as applications of algebraic operators.

Definition (Algebraic structure)

A set of elements (type), potentially equipped with operators and identities

Examples: set, monoid, group, semiring, ring

Definition (Tensor)

A collection of elements of a single type, T, with some order k and
dimensions (n1, . . . , nk), with elements Ti1...ik

Examples: scalar, vector, matrix

An algebraic structure defines summation and contraction of tensors.

Edgar Solomonik Provably Efficient Tensor Algorithms 2/ 28

Numerical tensor computations

Classical matrix-based computations over the (+, ·) ring

stencil computations (iterative methods for sparse linear systems)

x(l) := Ax(l−1)

dense matrix factorizations (direct solvers for dense linear systems)

A ≈ LU A ≈ QR A ≈ UDVT

tensor contractions (perturbation theory, solvers for nonlinear systems)∑
f

F a
f T

fb
ij −

∑
n

F n
i T

ab
nj +

1

2

∑
e,f

V ab
ef T

ef
ij +

1

2

∑
m,n

Vmn
ij T ab

mn −
∑
e,m

V am
ei T eb

mj

tensor decompositions (compression)

Ti1...ik ≈
∑
j

W
(1)
i1j
· · ·W (k)

ik j

Ti1...ik ≈
∑

j1...jk−1

W
(1)
i1j1

W
(2)
j1i2j2
· · ·W (k−1)

jk−2ik−1jk−1
W

(k)
jk−1ik

Edgar Solomonik Provably Efficient Tensor Algorithms 3/ 28

Discrete tensor algorithms

Alternative algebraic structures expand potential of tensor computations

graph algorithms via tropical (geodetic) semiring (min,+)

single-source shortest-paths via Bellman-Ford (stencil-like)
all-pairs shortest-paths (APSP) via Floyd-Warshall (LU-like)
APSP via path doubling (matrix-multiplication-like)
betweenness centrality
hypergraphs are representable by tensors

recursion via higher order tensors

prefix sum, scan
FFT or other butterfly networks
bitonic sort

particle methods

direct particle–particle force evaluation
particle–mesh (PM, P3M, SPME, PIC)

Edgar Solomonik Provably Efficient Tensor Algorithms 4/ 28

Cost model for parallel algorithms

Given a schedule that specifies all work and communication tasks on p
processors, we consider the following costs, measured along dependent
sequences of tasks (as in α− β, BSP, and LogGP models).

Definition (F – computation cost)

Number of operations performed

Definition (Q – vertical communication cost)

Amount of data moved between memory and cache

Definition (W – horizontal communication cost)

Amount of data moved between processors

Definition (S – synchronization cost)

Number of distinct messages sent between processors

Edgar Solomonik Provably Efficient Tensor Algorithms 5/ 28

Bilinear algorithms

A bilinear algorithm Λ is defined by three matrices, Λ = (F(A),F(B),F(C))
Given input vectors a and b, it computes vector,

c = F(C)[(F(A)Ta) ◦ (F(B)Tb)]

where ◦ is the Hadamard (pointwise) product

the number of columns in the three matrices is equal and is the
bilinear algorithm rank, denoted rank(Λ)

the number of rows in each matrix corresponds to the number of
inputs (dimensions of a and b) and outputs (dimension of c)

Edgar Solomonik Provably Efficient Tensor Algorithms 6/ 28

Bilinear algorithm expansion

A bilinear algorithm Λ = (F(A),F(B),F(C)) has expansion bound
EΛ : N3 → N, if for all projection matrices P,

Λsub = (F(A)P,F(B)P,F(C)P)

has rank bounded by EΛ,

rank(Λsub) ≤ EΛ

(
rank(F(A)P), rank(F(B)P), rank(F(C)P)

)

Edgar Solomonik Provably Efficient Tensor Algorithms 7/ 28

Communication lower bounds

Consider any algorithm Λ = (F(A),F(B),F(C)) and expansion bound EΛ.
For a cache size H, Λ requires total vertical communication cost,

Q ≥
[

2H
rank(Λ)

Emax
Λ (H)

]
where Emax

Λ (H) := max
c(A)+c(B)+c(C)=3H

EΛ(c(A), c(B), c(C)).

Given p processors, Λ requires horizontal communication cost,

W ≥ min
EΛ

(
c(A)+ r(A)

p
,c(B)+ r(B)

p
,c(B)+ r(C)

p

)
≥ rank(Λ)

p

[
c(A) + c(B) + c(C)

]

where r (A), r (B), and r (C) are the number of rows in F(A), F(B), and F(C),
respectively.

Edgar Solomonik Provably Efficient Tensor Algorithms 8/ 28

Dependency interval expansion

Consider a bilinear algorithm that computes a set of multiplications V with
a partial ordering, we denote a dependency interval between a, b ∈ V as

[a, b] = {a, b} ∪ {c : a < c < b, c ∈ V }

If there exists {v1, . . . , vn} ∈ V with vi < vi+1 and
∣∣[vi+1, vi+k]

∣∣ = Θ(kd)
for all k ∈ N, then

F · Sd−1 = Ω(nd)

where F is the computation cost and S is the synchronization cost

Further, if the algorithm has bilinear expansion E , satisfying

Emax(H) = Ω(H
d

d−1), then

W · Sd−2 = Ω(nd−1)

Edgar Solomonik Provably Efficient Tensor Algorithms 9/ 28

Example: diamond DAG

For the n × n diamond DAG (d = 2),

F · Sd−1 = F · S = Ω((n/b)b2) · Ω(n/b) = Ω(n2)

W · Sd−2 = W = Ω((n/b)b) = Ω(n)

idea of F · S tradeoff goes back to Papadimitriou and Ullman, 1987

Edgar Solomonik Provably Efficient Tensor Algorithms 10/ 28

Tradeoffs involving synchronization

For triangular solve with an n × n matrix

FTRSV · STRSV = Ω
(
n2
)

For Cholesky of an n × n matrix

FCHOL · S2
CHOL = Ω

(
n3
)

WCHOL · SCHOL = Ω
(
n2
)

For computing s applications of a (2m + 1)d -point stencil

FSt · Sd
St = Ω

(
m2d · sd+1

)
WSt · Sd−1

St = Ω
(
md · sd

)

Edgar Solomonik Provably Efficient Tensor Algorithms 11/ 28

Communication-optimal dense matrix algorithms

For any c ∈ [1, p1/3], use cn2/p memory per processor and obtain

WDMF = O(n2/
√
cp), SDMF = O(

√
cp)

 0

 20

 40

 60

 80

 100

256 512 1024 2048

P
er

ce
nt

ag
e

of
 m

ac
hi

ne
 p

ea
k

#nodes

2.5D MM on BG/P (n=65,536)

2.5D SUMMA
2D SUMMA

ScaLAPACK PDGEMM

 0

 20

 40

 60

 80

 100

256 512 1024 2048
P

er
ce

nt
ag

e
of

 m
ac

hi
ne

 p
ea

k
#nodes

LU without pivoting on BG/P (n=65,536)

ideal scaling
2.5D LU

2D LU

LU with pairwise pivoting extended to tournament pivoting

QR with Givens rotations extended to Householder transformations

full-to-banded reduction for symmetric eigenvalue problem

successive band reduction for symmetric eigenvalue problem

Edgar Solomonik Provably Efficient Tensor Algorithms 12/ 28

Parallel algorithms for the symmetric eigenvalue problem

Direct full-to-band reduction with W = O(n2/
√
cp) communication

Successive band reduction with W ,Q = O(n2 log p/
√
cp) communication

Edgar Solomonik Provably Efficient Tensor Algorithms 13/ 28

Communication-efficient stencil computations

Iterative s-step stencil computations

previous work: in-time blocking (matrix powers kernel)

lowers synchronization cost by factor of b
lowers vertical communication cost by up to a factor of b1/d

increases horizontal communication cost by an additive factor of
O(sbd−1), as dictated by the lower bound WSt · Sd−1

St = Ω
(
sd
)

new ‘block-cyclic’ algorithm, in-time blocking executed bulk
synchronously

lowers vertical communication cost by factor of b1/d

maintains minimal horizontal communication cost
increases synchronization cost

alternatives are both optimal in different lower bound regimes

Edgar Solomonik Provably Efficient Tensor Algorithms 14/ 28

Illustration of import region of the matrix-powers kernel

Edgar Solomonik Provably Efficient Tensor Algorithms 15/ 28

Scalable sparse matrix multiplication

Multiplication of a sparse matrix by a dense matrix

key primitive with many applications

iterative solvers
tensor computations (MP3 or coupled cluster with localized orbitals)
graph algorithms (Bellman-Ford, APSP, betweenness centrality)

new algorithms and analysis

communication-efficient 3D partitioning
lower bounds based on worst-case fill structure
extension to tensor contractions and implementation

Edgar Solomonik Provably Efficient Tensor Algorithms 16/ 28

Exploiting symmetry in tensors

Tensor symmetry (e.g. Aij = Aji) permits savings in memory and cost

for order d tensor, d! less memory

matrix-vector multiplication

ci =
∑
j

Aijbj =
∑
j

Aij(bi + bj)−
(∑

j

Aij

)
bi

rank-2 vector outer product

Cij = aibj + ajbi = (ai + aj)(bi + bj)− aibi − ajbj

squaring a symmetric matrix

Cij =
∑
k

AikAkj =
∑
k

(Aik + Akj + Aij)
2 − . . .

for order ω contraction, ω! less multiplications (lower bilinear rank)

Edgar Solomonik Provably Efficient Tensor Algorithms 17/ 28

Symmetry preserving algorithms

By exploiting symmetry, we can reduce the number of multiplications at
the cost of more additions

algorithms generalize to most antisymmetric tensor contractions

for Hermitian tensors, multiplications cost 3X more than additions

BLAS routines: hemm and her2k as well as LAPACK routines like hetrd
(tridiagonal reduction) may be done with 25% fewer operations

achieves (2/3)n3 bilinear rank for squaring a nonsymmetric matrix,
assuming elementwise commutativity

can be nested for partially symmetric contractions

reduction in multiplications implies reduction in nested calls to
contractions
yields significant reductions in overall cost

Edgar Solomonik Provably Efficient Tensor Algorithms 18/ 28

Horizontal communication cost of symmetry preserving
algorithms

For contraction of order s + v tensor with order v + t tensor

Υ is the nonsymmetric contraction algorithm

Ψ is the best previously known algorithm

Φ is the symmetry preserving algorithm

Asymptotic communication lower bounds based on bilinear expansion
(H–cache size, p–#processors, n–dimension):

s t v FΥ FΨ FΦ QΥ,Ψ QΦ WΥ WΨ WΦ

1 1 0 n2 n2 n2

2 n2 n2 n
p1/2

n
p1/2

n
p1/2

2 1 0 n3 n3

2
n3

6 n3 n3 n n2

p2/3
n2

p2/3

2 2 0 n4 n4

4
n4

24 n4 n4 n2

p1/2
n2

p1/2
n2

p1/2

1 1 1 n3 n3 n3

6
n3

H1/2
n3

H1/2
n2

p2/3
n2

p2/3
n2

p2/3

2 1 1 n4 n4

2
n4

24
n4

H1/2
n4

H1/3 n2 n2 n3

p3/4

2 2 2 n6 n6

8
n6

720
n6

H1/2
n6

H1/2
n4

p2/3
n4

p2/3
n4

p2/3

Edgar Solomonik Provably Efficient Tensor Algorithms 19/ 28

Tensor algebra as a programming abstraction

Cyclops Tensor Framework

contraction/summation/functions of tensors

distributed symmetric-packed/sparse storage via cyclic layout

parallelization via MPI+OpenMP(+CUDA)

Edgar Solomonik Provably Efficient Tensor Algorithms 20/ 28

Tensor algebra as a programming abstraction

Cyclops Tensor Framework

contraction/summation/functions of tensors

distributed symmetric-packed/sparse storage via cyclic layout

parallelization via MPI+OpenMP(+CUDA)

Jacobi iteration example code snippet

void Jacobi(Matrix <> A, Vector <> b, int n){
Matrix <> R(A);
R["ii"] = 0.0;
Vector <> x(n), d(n), r(n);
Function <> inv ([](double & d){ return 1./d; });
d["i"] = inv(A["ii"]); // set d to inverse of diagonal of A
do {

x["i"] = d["i"]*(b["i"]-R["ij"]*x["j"]);
r["i"] = b["i"]-A["ij"]*x["j"]; // compute residual

} while (r.norm2() > 1.E-6); // check for convergence
}

Edgar Solomonik Provably Efficient Tensor Algorithms 20/ 28

Tensor algebra as a programming abstraction

Cyclops Tensor Framework

contraction/summation/functions of tensors

distributed symmetric-packed/sparse storage via cyclic layout

parallelization via MPI+OpenMP(+CUDA)

Møller-Plesset perturbation theory (MP3) code snippet

Z["abij"] += Fab["af"]*T["fbij"];
Z["abij"] -= Fij["ni"]*T["abnj"];
Z["abij"] += 0.5*Vabcd["abef"]*T["efij"];
Z["abij"] += 0.5*Vijkl["mnij"]*T["abmn"];
Z["abij"] -= Vaibj["amei"]*T["ebmj"];

Edgar Solomonik Provably Efficient Tensor Algorithms 20/ 28

Betweenness centrality

Betweenness centrality code snippet, for k of n nodes

void btwn_central(Matrix <int > A, Matrix <path > P, int n, int k){
Monoid <path > mon(...,

[](path a, path b){
if (a.w<b.w) return a;
else if (b.w<a.w) return b;
else return path(a.w, a.m+b.m);

}, ...);

Matrix <path > Q(n,k,mon); // shortest path matrix
Q["ij"] = P["ij"];

Function <int ,path > append ([](int w, path p){
return path(w+p.w, p.m);

};);

for (int i=0; i<n; i++)
Q["ij"] = append(A["ik"],Q["kj"]);

...
}

Edgar Solomonik Provably Efficient Tensor Algorithms 21/ 28

Performance of CTF for dense computations

CTF is highly tuned for massively-parallel machines

virtualized multidimensional processor grids

topology-aware mapping and collective communication

performance-model-driven decomposition done at runtime

optimized redistribution kernels for tensor transposition

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

4096 8192 16384 32768 65536 131072 262144

Te
ra

flo
p/

s

#cores

BG/Q matrix multiplication

CTF
Scalapack

Edgar Solomonik Provably Efficient Tensor Algorithms 22/ 28

Performance of CTF for sparse computations

MP3 leveraging sparse-dense tensor contractions

 0
 4
 8

 12
 16
 20
 24
 28
 32
 36
 40
 44

24 48 96 192 384

se
co

nd
s/

ite
ra

tio
n

#cores

Weak scaling of MP3 (m=40, n=160 on 24 cores)

dense
16% sparse
8% sparse
4% sparse
2% sparse
1% sparse

 0

 2

 4

 6

 8

 10

 12

 14

 16

24 48 96 192 384 768

se
co

nd
s/

ite
ra

tio
n

#cores

Strong scaling of MP3 with m=40, n=160

dense
16% sparse
8% sparse
4% sparse
2% sparse
1% sparse

All-pairs shortest-paths based on path doubling with sparsification

 0

 20

 40

 60

 80

 100

 120

 140

24 48 96 192 384

se
co

nd
s

#cores

Weak scaling of APSP (n=2K on 24 cores)

regular path doubling
sparse path doubling

 0

 4

 8

 12

 16

 20

 24

24 48 96 192 384 768

se
co

nd
s

#cores

Strong scaling of APSP with n=2K

regular path doubling
sparse path doubling

Edgar Solomonik Provably Efficient Tensor Algorithms 23/ 28

Application to Coupled Cluster

Coupled cluster methods

approximate solution to manybody time-independent Schrödinger
equation via set of nonlinear equations

use 2r -order tensor to represent r -electron correlation

measure excitation energy of r electrons to r virtual orbitals
each possible set of transitions (intermediate states) becomes a
product of tensors
factorization of this set of multilinear tensor products transforms
equations to bilinear tensor contractions

systematically improvable, CCSD, CCSDT, CCSDTQ (r = 1, 2, 3)

partial antisymmetries in tensors as a consequence of electron
interchangeability

symmetry preserving algorithms can reduce cost of CCSD by about
1.3, CCSDT by about 2.1

Edgar Solomonik Provably Efficient Tensor Algorithms 24/ 28

CCSD using CTF

Extracted from Aquarius (Devin Matthews’ code,
https://github.com/devinamatthews/aquarius)

FMI["mi"] += 0.5*WMNEF["mnef"]*T(2)["efin"];
WMNIJ["mnij"] += 0.5*WMNEF["mnef"]*T(2)["efij"];
FAE["ae"] -= 0.5*WMNEF["mnef"]*T(2)["afmn"];
WAMEI["amei"] -= 0.5*WMNEF["mnef"]*T(2)["afin"];

Z(2)["abij"] = WMNEF["ijab"];
Z(2)["abij"] += FAE["af"]*T(2)["fbij"];
Z(2)["abij"] -= FMI["ni"]*T(2)["abnj"];
Z(2)["abij"] += 0.5*WABEF["abef"]*T(2)["efij"];
Z(2)["abij"] += 0.5*WMNIJ["mnij"]*T(2)["abmn"];
Z(2)["abij"] -= WAMEI["amei"]*T(2)["ebmj"];

Other electronic structure codes using CTF include QChem (via Libtensor)

Edgar Solomonik Provably Efficient Tensor Algorithms 25/ 28

https://github.com/devinamatthews/aquarius

Comparison with NWChem

NWChem is the most commonly-used distributed-memory quantum
chemistry method suite

provides CCSD and CCSDT

uses Global Arrays a Partitioned Global Address Space (PGAS)
backend for tensor contractions

derives equations via Tensor Contraction Engine (TCE)

 4

 16

 64

 256

 1024

1 2 4 8 16 32 64 128 256

se
co

nd
s

#nodes

Strong scaling CCSD on Edison

NWChem w20
w15
w10
w8

Aquarius-CTF w20
w15
w10
w8

 4

 16

 64

 256

 1024

1 2 4 8 16 32 64 128 256

se
co

nd
s

#nodes

Strong scaling CCSDT on Edison

NWChem w3
w2

Aquarius-CTF w4
w3
w2

Edgar Solomonik Provably Efficient Tensor Algorithms 26/ 28

Coupled Cluster on IBM BlueGene/Q

CCSD up to 55 (50) water molecules with cc-pVDZ
CCSDT up to 10 water molecules with cc-pVDZ

 4

 8

 16

 32

 64

 128

 256

 512

 1024

512 1024 2048 4096 8192 16384 32768

Te
ra

flo
ps

#nodes

Weak scaling on BlueGene/Q

Aquarius-CTF CCSD
Aquarius-CTF CCSDT

 10

 20

 30

 40

 50

 60

512 1024 2048 4096 8192 16384

G
ig

af
lo

ps
/n

od
e

#nodes

Weak scaling on BlueGene/Q

Aquarius-CTF CCSD
Aquarius-CTF CCSDT

 1

 2
 4

 8
 16

 32
 64

 128
 256

 512

32 64 128 256 512 1024 2048 4096

Te
ra

flo
ps

#nodes

Weak scaling on Edison

Aquarius-CTF CCSD
Aquarius-CTF CCSDT

 50

 100

 150

 200

 250

 300

 350

32 64 128 256 512 1024 2048 4096

G
ig

af
lo

ps
/n

od
e

#nodes

Weak scaling on Edison

Aquarius-CTF CCSD
Aquarius-CTF CCSDT

Edgar Solomonik Provably Efficient Tensor Algorithms 27/ 28

Future work

further work sparse and symmetric tensor computations
bridging the gap between abstractions and application performance
bilinear algorithm complexity – fast matrix multiplication

tensor decompositions
communication-efficient parallel algorithms and lower bounds
symmetry-preserving tensor decomposition and DMRG algorithms
programming abstractions for dense and sparse tensors

sets of tensor operations
most algorithms correspond to multiple dependent tensors operations
communication cost analysis for sets of contractions
scheduling, blocking, and decomposition of multiple tensor operations
higher-level programming abstractions

application-driven development
tensor decompositions, sparsity, symmetry all motivated by electronic
structure applications
optimization of primitives serves as feedback loop for development of
new electronic structure methods

Edgar Solomonik Provably Efficient Tensor Algorithms 28/ 28

Backup slides

Edgar Solomonik Provably Efficient Tensor Algorithms 29/ 28

Symmetry preserving algorithm vs Strassen’s algorithm

 1

 2

 4

 8

 16

 32

 64

10 100 1000 10000 100000 1e+06

[n
ω
/(s

!t!
v!

)]
/ #

m
ul

tip
lic

at
io

ns
(s

pe
ed

-u
p

ov
er

 c
la

ss
ic

al
 d

ire
ct

 e
va

lu
at

io
n

al
g.

)

ns/s! (matrix dimension)

Symmetry preserving alg. vs Strassen’s alg. (s=t=v=ω/3)

Strassen’s algorithm
Sym. preserving ω=6
Sym. preserving ω=3

Edgar Solomonik Provably Efficient Tensor Algorithms 30/ 28

Nesting of bilinear algorithms

Given two bilinear algorithms:

Λ1 =(F
(A)
1 ,F

(B)
1 ,F

(C)
1)

Λ2 =(F
(A)
2 ,F

(B)
2 ,F

(C)
2)

We can nest them by computing their tensor product

Λ1 ⊗ Λ2 :=(F
(A)
1 ⊗ F

(A)
2 ,F

(B)
1 ⊗ F

(B)
2 ,F

(C)
1 ⊗ F

(C)
2)

rank(Λ1 ⊗ Λ2) = rank(Λ1) · rank(Λ2)

Edgar Solomonik Provably Efficient Tensor Algorithms 31/ 28

Block-cyclic algorithm for s-step methods

For s-steps of a (2m + 1)d -point stencil with block-size of H1/d/m,

WKr = O

(
msnd

H1/dp

)
SKr = O(snd/(pH)) QKr = O

(
msnd

H1/dp

)
which are good when H = Θ(nd/p), so the algorithm is useful when the
cache size is a bit smaller than nd/p

Edgar Solomonik Provably Efficient Tensor Algorithms 32/ 28

2.5D LU on MIC

 100

 150

 200

 250

 300

 350

 400

 450

16 32 64 128 256

G
ig

af
lo

p/
s/

no
de

#nodes

LU factorization strong scaling on Stampede (MIC + Sandy Bridge)

2.5D hybrid LU n=131,072
2D hybrid LU n=131,072

2.5D pure-cpu LU n=131,072
2.5D hybrid LU n=65,536

2D hybrid LU n=65,536
2.5D pure-cpu LU n=65,536

Edgar Solomonik Provably Efficient Tensor Algorithms 33/ 28

Topology-aware mapping on BG/Q

 0

 20

 40

 60

 80

 100

256 512 1024 2048 4096

G
ig

af
lo

p/
s/

no
de

#nodes

LU factorization strong scaling on Mira (BG/Q), n=65,536

2D LU, custom mapping
2D LU, default mapping

Edgar Solomonik Provably Efficient Tensor Algorithms 34/ 28

Symmetric matrix representation

Edgar Solomonik Provably Efficient Tensor Algorithms 35/ 28

Blocked distributions of a symmetric matrix

Edgar Solomonik Provably Efficient Tensor Algorithms 36/ 28

Cyclic distribution of a symmetric matrix

Edgar Solomonik Provably Efficient Tensor Algorithms 37/ 28

Our CCSD factorization

Credit to John F. Stanton and Jurgen Gauss

τ abij = tabij +
1

2
Pa
bP

i
j t

a
i t

b
j ,

F̃m
e = f me +

∑
fn

vmn
ef t fn ,

F̃ a
e = (1− δae)f ae −

∑
m

F̃m
e tam −

1

2

∑
mnf

vmn
ef tafmn +

∑
fn

vanef t
f
n ,

F̃m
i = (1− δmi)f

m
i +

∑
e

F̃m
e tei +

1

2

∑
nef

vmn
ef tefin +

∑
fn

vmn
if t fn ,

Edgar Solomonik Provably Efficient Tensor Algorithms 38/ 28

Our CCSD factorization

W̃mn
ei = vmn

ei +
∑
f

vmn
ef t fi ,

W̃mn
ij = vmn

ij + P i
j

∑
e

vmn
ie tej +

1

2

∑
ef

vmn
ef τ

ef
ij ,

W̃ am
ie = v am

ie −
∑
n

W̃mn
ei tan +

∑
f

vma
ef t fi +

1

2

∑
nf

vmn
ef tafin ,

W̃ am
ij = v am

ij + P i
j

∑
e

v am
ie tej +

1

2

∑
ef

v am
ef τ

ef
ij ,

zai = f ai −
∑
m

F̃m
i tam +

∑
e

f ae t
e
i +

∑
em

vma
ei tem +

∑
em

v ae
im F̃

m
e +

1

2

∑
efm

v am
ef τ

ef
im

− 1

2

∑
emn

W̃mn
ei teamn,

zabij = v ab
ij + P i

j

∑
e

v ab
ie tej + Pa

bP
i
j

∑
me

W̃ am
ie tebmj − Pa

b

∑
m

W̃ am
ij tbm

+ Pa
b

∑
e

F̃ a
e t

eb
ij − P i

j

∑
m

F̃m
i tabmj +

1

2

∑
ef

v ab
ef τ

ef
ij +

1

2

∑
mn

W̃mn
ij τ abmn,

Edgar Solomonik Provably Efficient Tensor Algorithms 39/ 28

Stability of symmetry preserving algorithms

Edgar Solomonik Provably Efficient Tensor Algorithms 40/ 28

Performance breakdown on BG/Q

Performance data for a CCSD iteration with 200 electrons and 1000
orbitals on 4096 nodes of Mira
4 processes per node, 16 threads per process
Total time: 18 mins
v -orbitals, o-electrons

kernel % of time complexity architectural bounds

DGEMM 45% O(v4o2/p) flops/mem bandwidth

broadcasts 20% O(v4o2/p
√
M) multicast bandwidth

prefix sum 10% O(p) allreduce bandwidth

data packing 7% O(v2o2/p) integer ops

all-to-all-v 7% O(v2o2/p) bisection bandwidth

tensor folding 4% O(v2o2/p) memory bandwidth

Edgar Solomonik Provably Efficient Tensor Algorithms 41/ 28

Tiskin’s path doubling algorithm

Tiskin gives a way to do path-doubling in F = O(n3/p) operations. We
can partition each Ak by path size (number of edges)

Ak = I⊕ Ak(1)⊕ Ak(2)⊕ . . .⊕ Ak(k)

where each Ak(l) contains the shortest paths of up to k ≥ l edges, which
have exactly l edges. We can see that

Al(l) ≤ Al+1(l) ≤ . . . ≤ An(l) = A∗(l),

in particular A∗(l) corresponds to a sparse subset of Al(l).
The algorithm works by picking l ∈ [k/2, k] and computing

(I⊕ A)3k/2 ≤ (I⊕ Ak(l))⊗ Ak ,

which finds all paths of size up to 3k/2 by taking all paths of size exactly
l ≥ k/2 followed by all paths of size up to k .

Edgar Solomonik Provably Efficient Tensor Algorithms 42/ 28

	Representation
	Analysis
	Execution
	Conclusion

