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Tensors and algebraic structures

We consider the expression of data as indexable collections of elements
and algorithms as applications of algebraic operators.

Definition (Algebraic structure)

A set of elements (type), potentially equipped with operators and identities

Examples: set, monoid, group, semiring, ring

Definition (Tensor)

A collection of elements of a single type, T, with some order k and
dimensions (n1, . . . , nk), with elements Ti1...ik

Examples: scalar, vector, matrix

An algebraic structure defines summation and contraction of tensors.
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Numerical tensor computations

Classical matrix-based computations over the (+, ·) ring

stencil computations (iterative methods for sparse linear systems)

x(l) := Ax(l−1)

dense matrix factorizations (direct solvers for dense linear systems)

A ≈ LU A ≈ QR A ≈ UDVT

tensor contractions (perturbation theory, solvers for nonlinear systems)∑
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Discrete tensor algorithms

Alternative algebraic structures expand potential of tensor computations

graph algorithms via tropical (geodetic) semiring (min,+)

single-source shortest-paths via Bellman-Ford (stencil-like)
all-pairs shortest-paths (APSP) via Floyd-Warshall (LU-like)
APSP via path doubling (matrix-multiplication-like)
betweenness centrality
hypergraphs are representable by tensors

recursion via higher order tensors

prefix sum, scan
FFT or other butterfly networks
bitonic sort

particle methods

direct particle–particle force evaluation
particle–mesh (PM, P3M, SPME, PIC)
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Cost model for parallel algorithms

Given a schedule that specifies all work and communication tasks on p
processors, we consider the following costs, measured along dependent
sequences of tasks (as in α− β, BSP, and LogGP models).

Definition (F – computation cost)

Number of operations performed

Definition (Q – vertical communication cost)

Amount of data moved between memory and cache

Definition (W – horizontal communication cost)

Amount of data moved between processors

Definition (S – synchronization cost)

Number of distinct messages sent between processors
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Bilinear algorithms

A bilinear algorithm Λ is defined by three matrices, Λ = (F(A),F(B),F(C))
Given input vectors a and b, it computes vector,

c = F(C)[(F(A)Ta) ◦ (F(B)Tb)]

where ◦ is the Hadamard (pointwise) product

the number of columns in the three matrices is equal and is the
bilinear algorithm rank, denoted rank(Λ)

the number of rows in each matrix corresponds to the number of
inputs (dimensions of a and b) and outputs (dimension of c)
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Bilinear algorithm expansion

A bilinear algorithm Λ = (F(A),F(B),F(C)) has expansion bound
EΛ : N3 → N, if for all projection matrices P,

Λsub = (F(A)P,F(B)P,F(C)P)

has rank bounded by EΛ,

rank(Λsub) ≤ EΛ

(
rank(F(A)P), rank(F(B)P), rank(F(C)P)

)
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Communication lower bounds

Consider any algorithm Λ = (F(A),F(B),F(C)) and expansion bound EΛ.
For a cache size H, Λ requires total vertical communication cost,

Q ≥
[

2H
rank(Λ)

Emax
Λ (H)

]
where Emax

Λ (H) := max
c(A)+c(B)+c(C)=3H

EΛ(c(A), c(B), c(C)).

Given p processors, Λ requires horizontal communication cost,

W ≥ min
EΛ

(
c(A)+ r(A)

p
,c(B)+ r(B)

p
,c(B)+ r(C)

p

)
≥ rank(Λ)

p

[
c(A) + c(B) + c(C)

]

where r (A), r (B), and r (C) are the number of rows in F(A), F(B), and F(C),
respectively.
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Dependency interval expansion

Consider a bilinear algorithm that computes a set of multiplications V with
a partial ordering, we denote a dependency interval between a, b ∈ V as

[a, b] = {a, b} ∪ {c : a < c < b, c ∈ V }

If there exists {v1, . . . , vn} ∈ V with vi < vi+1 and
∣∣[vi+1, vi+k ]

∣∣ = Θ(kd)
for all k ∈ N, then

F · Sd−1 = Ω(nd)

where F is the computation cost and S is the synchronization cost

Further, if the algorithm has bilinear expansion E , satisfying

Emax(H) = Ω(H
d

d−1 ), then

W · Sd−2 = Ω(nd−1)
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Example: diamond DAG

For the n × n diamond DAG (d = 2),

F · Sd−1 = F · S = Ω((n/b)b2) · Ω(n/b) = Ω(n2)

W · Sd−2 = W = Ω((n/b)b) = Ω(n)

idea of F · S tradeoff goes back to Papadimitriou and Ullman, 1987
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Tradeoffs involving synchronization

For triangular solve with an n × n matrix

FTRSV · STRSV = Ω
(
n2
)

For Cholesky of an n × n matrix

FCHOL · S2
CHOL = Ω

(
n3
)

WCHOL · SCHOL = Ω
(
n2
)

For computing s applications of a (2m + 1)d -point stencil

FSt · Sd
St = Ω

(
m2d · sd+1

)
WSt · Sd−1

St = Ω
(
md · sd

)
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Communication-optimal dense matrix algorithms

For any c ∈ [1, p1/3], use cn2/p memory per processor and obtain

WDMF = O(n2/
√
cp), SDMF = O(

√
cp)
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Parallel algorithms for the symmetric eigenvalue problem

Direct full-to-band reduction with W = O(n2/
√
cp) communication

Successive band reduction with W ,Q = O(n2 log p/
√
cp) communication
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Communication-efficient stencil computations

Iterative s-step stencil computations

previous work: in-time blocking (matrix powers kernel)

lowers synchronization cost by factor of b
lowers vertical communication cost by up to a factor of b1/d

increases horizontal communication cost by an additive factor of
O(sbd−1), as dictated by the lower bound WSt · Sd−1

St = Ω
(
sd
)

new ‘block-cyclic’ algorithm, in-time blocking executed bulk
synchronously

lowers vertical communication cost by factor of b1/d

maintains minimal horizontal communication cost
increases synchronization cost

alternatives are both optimal in different lower bound regimes
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Illustration of import region of the matrix-powers kernel
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Scalable sparse matrix multiplication

Multiplication of a sparse matrix by a dense matrix

key primitive with many applications

iterative solvers
tensor computations (MP3 or coupled cluster with localized orbitals)
graph algorithms (Bellman-Ford, APSP, betweenness centrality)

new algorithms and analysis

communication-efficient 3D partitioning
lower bounds based on worst-case fill structure
extension to tensor contractions and implementation
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Exploiting symmetry in tensors

Tensor symmetry (e.g. Aij = Aji ) permits savings in memory and cost

for order d tensor, d! less memory

matrix-vector multiplication

ci =
∑
j

Aijbj =
∑
j

Aij(bi + bj)−
(∑

j

Aij

)
bi

rank-2 vector outer product

Cij = aibj + ajbi = (ai + aj)(bi + bj)− aibi − ajbj

squaring a symmetric matrix

Cij =
∑
k

AikAkj =
∑
k

(Aik + Akj + Aij)
2 − . . .

for order ω contraction, ω! less multiplications (lower bilinear rank)
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Symmetry preserving algorithms

By exploiting symmetry, we can reduce the number of multiplications at
the cost of more additions

algorithms generalize to most antisymmetric tensor contractions

for Hermitian tensors, multiplications cost 3X more than additions

BLAS routines: hemm and her2k as well as LAPACK routines like hetrd
(tridiagonal reduction) may be done with 25% fewer operations

achieves (2/3)n3 bilinear rank for squaring a nonsymmetric matrix,
assuming elementwise commutativity

can be nested for partially symmetric contractions

reduction in multiplications implies reduction in nested calls to
contractions
yields significant reductions in overall cost

Edgar Solomonik Provably Efficient Tensor Algorithms 18/ 28



Horizontal communication cost of symmetry preserving
algorithms

For contraction of order s + v tensor with order v + t tensor

Υ is the nonsymmetric contraction algorithm

Ψ is the best previously known algorithm

Φ is the symmetry preserving algorithm

Asymptotic communication lower bounds based on bilinear expansion
(H–cache size, p–#processors, n–dimension):
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Tensor algebra as a programming abstraction

Cyclops Tensor Framework

contraction/summation/functions of tensors

distributed symmetric-packed/sparse storage via cyclic layout

parallelization via MPI+OpenMP(+CUDA)
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Tensor algebra as a programming abstraction

Cyclops Tensor Framework

contraction/summation/functions of tensors

distributed symmetric-packed/sparse storage via cyclic layout

parallelization via MPI+OpenMP(+CUDA)

Jacobi iteration example code snippet

void Jacobi(Matrix <> A, Vector <> b, int n){
Matrix <> R(A);
R["ii"] = 0.0;
Vector <> x(n), d(n), r(n);
Function <> inv ([]( double & d){ return 1./d; });
d["i"] = inv(A["ii"]); // set d to inverse of diagonal of A
do {

x["i"] = d["i"]*(b["i"]-R["ij"]*x["j"]);
r["i"] = b["i"]-A["ij"]*x["j"]; // compute residual

} while (r.norm2() > 1.E-6); // check for convergence
}
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Tensor algebra as a programming abstraction

Cyclops Tensor Framework

contraction/summation/functions of tensors

distributed symmetric-packed/sparse storage via cyclic layout

parallelization via MPI+OpenMP(+CUDA)

Møller-Plesset perturbation theory (MP3) code snippet

Z["abij"] += Fab["af"]*T["fbij"];
Z["abij"] -= Fij["ni"]*T["abnj"];
Z["abij"] += 0.5*Vabcd["abef"]*T["efij"];
Z["abij"] += 0.5*Vijkl["mnij"]*T["abmn"];
Z["abij"] -= Vaibj["amei"]*T["ebmj"];
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Betweenness centrality

Betweenness centrality code snippet, for k of n nodes

void btwn_central(Matrix <int > A, Matrix <path > P, int n, int k){
Monoid <path > mon(...,

[]( path a, path b){
if (a.w<b.w) return a;
else if (b.w<a.w) return b;
else return path(a.w, a.m+b.m);

}, ...);

Matrix <path > Q(n,k,mon); // shortest path matrix
Q["ij"] = P["ij"];

Function <int ,path > append ([]( int w, path p){
return path(w+p.w, p.m);

}; );

for (int i=0; i<n; i++)
Q["ij"] = append(A["ik"],Q["kj"]);

...
}
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Performance of CTF for dense computations

CTF is highly tuned for massively-parallel machines

virtualized multidimensional processor grids

topology-aware mapping and collective communication

performance-model-driven decomposition done at runtime

optimized redistribution kernels for tensor transposition

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

4096 8192 16384 32768 65536 131072 262144

Te
ra

flo
p/

s

#cores

BG/Q matrix multiplication

CTF
Scalapack

Edgar Solomonik Provably Efficient Tensor Algorithms 22/ 28



Performance of CTF for sparse computations

MP3 leveraging sparse-dense tensor contractions
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Application to Coupled Cluster

Coupled cluster methods

approximate solution to manybody time-independent Schrödinger
equation via set of nonlinear equations

use 2r -order tensor to represent r -electron correlation

measure excitation energy of r electrons to r virtual orbitals
each possible set of transitions (intermediate states) becomes a
product of tensors
factorization of this set of multilinear tensor products transforms
equations to bilinear tensor contractions

systematically improvable, CCSD, CCSDT, CCSDTQ (r = 1, 2, 3)

partial antisymmetries in tensors as a consequence of electron
interchangeability

symmetry preserving algorithms can reduce cost of CCSD by about
1.3, CCSDT by about 2.1
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CCSD using CTF

Extracted from Aquarius (Devin Matthews’ code,
https://github.com/devinamatthews/aquarius)

FMI["mi"] += 0.5*WMNEF["mnef"]*T(2)["efin"];
WMNIJ["mnij"] += 0.5*WMNEF["mnef"]*T(2)["efij"];
FAE["ae"] -= 0.5*WMNEF["mnef"]*T(2)["afmn"];
WAMEI["amei"] -= 0.5*WMNEF["mnef"]*T(2)["afin"];

Z(2)["abij"] = WMNEF["ijab"];
Z(2)["abij"] += FAE["af"]*T(2)["fbij"];
Z(2)["abij"] -= FMI["ni"]*T(2)["abnj"];
Z(2)["abij"] += 0.5*WABEF["abef"]*T(2)["efij"];
Z(2)["abij"] += 0.5*WMNIJ["mnij"]*T(2)["abmn"];
Z(2)["abij"] -= WAMEI["amei"]*T(2)["ebmj"];

Other electronic structure codes using CTF include QChem (via Libtensor)
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Comparison with NWChem

NWChem is the most commonly-used distributed-memory quantum
chemistry method suite

provides CCSD and CCSDT

uses Global Arrays a Partitioned Global Address Space (PGAS)
backend for tensor contractions

derives equations via Tensor Contraction Engine (TCE)
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Coupled Cluster on IBM BlueGene/Q

CCSD up to 55 (50) water molecules with cc-pVDZ
CCSDT up to 10 water molecules with cc-pVDZ
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Future work

further work sparse and symmetric tensor computations
bridging the gap between abstractions and application performance
bilinear algorithm complexity – fast matrix multiplication

tensor decompositions
communication-efficient parallel algorithms and lower bounds
symmetry-preserving tensor decomposition and DMRG algorithms
programming abstractions for dense and sparse tensors

sets of tensor operations
most algorithms correspond to multiple dependent tensors operations
communication cost analysis for sets of contractions
scheduling, blocking, and decomposition of multiple tensor operations
higher-level programming abstractions

application-driven development
tensor decompositions, sparsity, symmetry all motivated by electronic
structure applications
optimization of primitives serves as feedback loop for development of
new electronic structure methods
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Backup slides
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Symmetry preserving algorithm vs Strassen’s algorithm
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Nesting of bilinear algorithms

Given two bilinear algorithms:

Λ1 =(F
(A)
1 ,F

(B)
1 ,F

(C)
1 )

Λ2 =(F
(A)
2 ,F

(B)
2 ,F

(C)
2 )

We can nest them by computing their tensor product

Λ1 ⊗ Λ2 :=(F
(A)
1 ⊗ F

(A)
2 ,F

(B)
1 ⊗ F

(B)
2 ,F

(C)
1 ⊗ F

(C)
2 )

rank(Λ1 ⊗ Λ2) = rank(Λ1) · rank(Λ2)
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Block-cyclic algorithm for s-step methods

For s-steps of a (2m + 1)d -point stencil with block-size of H1/d/m,

WKr = O

(
msnd

H1/dp

)
SKr = O(snd/(pH)) QKr = O

(
msnd

H1/dp

)
which are good when H = Θ(nd/p), so the algorithm is useful when the
cache size is a bit smaller than nd/p
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2.5D LU on MIC
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Topology-aware mapping on BG/Q
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Symmetric matrix representation
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Blocked distributions of a symmetric matrix
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Cyclic distribution of a symmetric matrix
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Our CCSD factorization

Credit to John F. Stanton and Jurgen Gauss
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Our CCSD factorization
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Stability of symmetry preserving algorithms
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Performance breakdown on BG/Q

Performance data for a CCSD iteration with 200 electrons and 1000
orbitals on 4096 nodes of Mira
4 processes per node, 16 threads per process
Total time: 18 mins
v -orbitals, o-electrons

kernel % of time complexity architectural bounds

DGEMM 45% O(v4o2/p) flops/mem bandwidth

broadcasts 20% O(v4o2/p
√
M) multicast bandwidth

prefix sum 10% O(p) allreduce bandwidth

data packing 7% O(v2o2/p) integer ops

all-to-all-v 7% O(v2o2/p) bisection bandwidth

tensor folding 4% O(v2o2/p) memory bandwidth
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Tiskin’s path doubling algorithm

Tiskin gives a way to do path-doubling in F = O(n3/p) operations. We
can partition each Ak by path size (number of edges)

Ak = I⊕ Ak(1)⊕ Ak(2)⊕ . . .⊕ Ak(k)

where each Ak(l) contains the shortest paths of up to k ≥ l edges, which
have exactly l edges. We can see that

Al(l) ≤ Al+1(l) ≤ . . . ≤ An(l) = A∗(l),

in particular A∗(l) corresponds to a sparse subset of Al(l).
The algorithm works by picking l ∈ [k/2, k] and computing

(I⊕ A)3k/2 ≤ (I⊕ Ak(l))⊗ Ak ,

which finds all paths of size up to 3k/2 by taking all paths of size exactly
l ≥ k/2 followed by all paths of size up to k .
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