Provably Efficient Algorithms as Tensor Equations

Edgar Solomonik

Department of Computer Science
ETH Zurich

Cornell University

February 2, 2016

Edgar Solomonik Provably Efficient Tensor Algorithms 1/ 28

Tensors and algebraic structures

We consider the expression of data as indexable collections of elements
and algorithms as applications of algebraic operators.

Definition (Algebraic structure)
A set of elements (type), potentially equipped with operators and identitiesJ

Examples: set, monoid, group, semiring, ring

Definition (Tensor)

A collection of elements of a single type, T, with some order k and

dimensions (ny, ..., ng), with elements T;

Examples: scalar, vector, matrix

An algebraic structure defines summation and contraction of tensors.

Edgar Solomonik Provably Efficient Tensor Algorithms 2/ 28

Numerical tensor computations

Classical matrix-based computations over the (+,-) ring
@ stencil computations (iterative methods for sparse linear systems)

x(= Ax(~1)
@ dense matrix factorizations (direct solvers for dense linear systems)

A~ LU A~ QR A~ UDV'

@ tensor contractions (perturbation theory, solvers for nonlinear systems)

Z FRTR - FT+ % S OVETE + Z VTR =) VAT
n e,f

e,m

@ tensor decompositions (compression)

i
Z VV'U a ’kJ T ¢ w w w
iy i is i iy i, iy iy
(k—1)
Z VVI1J1 11212 T M/jk—2ik—1jk 1 Jk— l’k mhmhmh m
i i i e iy i, iy iy

Jteedk—1
Edgar Solomonik Provably Efficient Tensor Algorithms 3/ 28

Discrete tensor algorithms

Alternative algebraic structures expand potential of tensor computations
@ graph algorithms via tropical (geodetic) semiring (min, +)

single-source shortest-paths via Bellman-Ford (stencil-like)

all-pairs shortest-paths (APSP) via Floyd-Warshall (LU-like)

APSP via path doubling (matrix-multiplication-like)

betweenness centrality

hypergraphs are representable by tensors

@ recursion via higher order tensors

e prefix sum, scan
o FFT or other butterfly networks
e bitonic sort

@ particle methods

o direct particle—particle force evaluation
e particle-mesh (PM, P3M, SPME, PIC)

Edgar Solomonik Provably Efficient Tensor Algorithms 4/ 28

Cost model for parallel algorithms

Given a schedule that specifies all work and communication tasks on p
processors, we consider the following costs, measured along dependent
sequences of tasks (as in a — 3, BSP, and LogGP models).

Definition (F — computation cost)

Number of operations performed

Definition (Q — vertical communication cost)

Amount of data moved between memory and cache

Definition (W — horizontal communication cost)

Amount of data moved between processors

Definition (S — synchronization cost)

Number of distinct messages sent between processors

Edgar Solomonik Provably Efficient Tensor Algorithms 5/ 28

Bilinear algorithms
A bilinear algorithm A is defined by three matrices, A = (F(A) F(B) F(C))
Given input vectors a and b, it computes vector,

c = FO[FATa) o (FEB)Tp)]

where o is the Hadamard (pointwise) product

T T

X X X X XX X X X X X X X X X

X X X X X X X XX X X X X X X

X X X X X X XX XX X X

Cl=|x X X X X X X al|o X X X b
X X X X X X X X X

X X Xx X X X X X X X

X X X X X X X XX X

@ the number of columns in the three matrices is equal and is the
bilinear algorithm rank, denoted rank(A)

@ the number of rows in each matrix corresponds to the number of
inputs (dimensions of a and b) and outputs (dimension of c)

Edgar Solomonik Provably Efficient Tensor Algorithms 6/ 28

Bilinear algorithm expansion

A bilinear algorithm A = (F®) F(B) F()) has expansion bound
En N3 5 N, if for all projection matrices P,

Asub = (F(A)Pa F(B)Pa F(C)P)

T T

X X X X X X X X X X X X X X X
X X X X X X X XX X X X X X X

X X X X X X XX XX X X

Cl=|x X X X X X X al|lo X X X b
X X X X X X X X X

X X X X X X X X X X X X

X X X X X X X XX X XX X X XXX

has rank bounded by &x,

rank(Asup) < En (rank(F(A)P), rank(F(B)P), rank(F(C)P)>

Edgar Solomonik Provably Efficient Tensor Algorithms 7/ 28

Communication lower bounds

Consider any algorithm A = (F() F(B) F(C)) and expansion bound &n.
For a cache size H, A requires total vertical communication cost,

0= [Pz

where EA'*(H) = max En(c, c(B) (O,
cA+cB)+c(O)=3H
Given p processors, A requires horizontal communication cost,

w > min {C(A) +cB) 4 (O
En(cW+ 22 c(6) A2 (6 D) > k)
P p

)

p)= p

where r(A), r(B), and r(©) are the number of rows in F(A), F(B), and F(C),
respectively.

Edgar Solomonik Provably Efficient Tensor Algorithms 8/ 28

Dependency interval expansion
Consider a bilinear algorithm that computes a set of multiplications V with
a partial ordering, we denote a dependency interval between a,b € V as

[a,b] ={a,b}U{c:a<c< b,ceV}

If there exists {v1,...,v,} € V with v; < vj4; and ‘[v,-+1, v,-+k]‘ = @(kd)
for all k € N, then
F-S9 1 =Q(n%)

where F is the computation cost and S is the synchronization cost

Further, if the algorithm has bilinear expansion &, satisfying
d
EMX(H) = Q(H7-T1), then

W. 5972 =Qq(n")

Edgar Solomonik Provably Efficient Tensor Algorithms 9/ 28

Example: diamond DAG

ST

et

oplegert el

Multicolored dependency intervals

Monochrome dependency intervals

Dependency chain P

For the n x n diamond DAG (d = 2),

)

Q(n
= Q(n)

b%) - Q(n/b)

= Q((n/b)b)

((n/b)

—F.5=Q
%

F.s9t
W . Sd—2

idea of F - S tradeoff goes back to Papadimitriou and Ullman, 1987

10/ 28

Provably Efficient Tensor Algorithms

Edgar Solomonik

Tradeoffs involving synchronization

For triangular solve with an n x n matrix

Frrsv - Strsv = Q (n°)

For Cholesky of an n x n matrix

Feror - Stuor, = (n*) Wenor - Scrow = Q (r°)

For computing s applications of a (2m + 1)9-point stencil

Fou SG = (m-s7) We-sgt = (m?-s7)

Edgar Solomonik Provably Efficient Tensor Algorithms 11/ 28

Communication-optimal dense matrix algorithms

For any c € [1, p*/3], use cn?/p memory per processor and obtain

Womr = O(n?/+/<p), Spmr = O(\/cp)
2.5D MM on BG/P (n=65,536) LU without pivoting on BG/P (n=65,536)

100 T T 100 T
. 2.5D SUMMA ——+— .
IMMA

o 2D SU
| Scal APACK PDGENIM —=—

ideal scaling ------
25D LU —+—

Percentage of machine peak
Percentage of machine peak

0 0
256 512 1024 2048 256 512 1024 2048
#nodes #nodes

o LU with pairwise pivoting extended to tournament pivoting

@ QR with Givens rotations extended to Householder transformations
o full-to-banded reduction for symmetric eigenvalue problem

@ successive band reduction for symmetric eigenvalue problem

Edgar Solomonik Provably Efficient Tensor Algorithms 12/ 28

Parallel algorithms for the symmetric eigenvalue problem

Direct full-to-band reduction with W = O(n?/,/cp) communication

‘ V(O)T
V(T
\ 2
;
ANES Vi
v, 7
U o\ B2 uo
R
U; U, OU B>
1 U2

Successive band reduction with W, @ = O(n? log p/,/cp) communication

“update
R -

Edgar Solomonik Provably Efficient Tensor Algorithms 13/ 28

Communication-efficient stencil computations

Iterative s-step stencil computations
@ previous work: in-time blocking (matrix powers kernel)
o lowers synchronization cost by factor of b
o lowers vertical communication cost by up to a factor of b'/9
@ increases horizontal communication cost by an additive factor of
O(sb?™1), as dictated by the lower bound Wy - S5+ = Q (s9)
@ new ‘block-cyclic’ algorithm, in-time blocking executed bulk
synchronously
o lowers vertical communication cost by factor of b*/¢
e maintains minimal horizontal communication cost
@ increases synchronization cost

@ alternatives are both optimal in different lower bound regimes

Edgar Solomonik Provably Efficient Tensor Algorithms 14/ 28

lllustration of import region of the matrix-powers kernel

2D stencil
Standard algorithm Matrix Powers
(s synchronizations) (1 synchonization)
local mesh

—~ =

import region volumes

Edgar Solomonik Provably Efficient Tensor Algorithms 15/ 28

Scalable sparse matrix multiplication

Multiplication of a sparse matrix by a dense matrix

@ key primitive with many applications
o iterative solvers
o tensor computations (MP3 or coupled cluster with localized orbitals)
o graph algorithms (Bellman-Ford, APSP, betweenness centrality)

@ new algorithms and analysis
e communication-efficient 3D partitioning
o lower bounds based on worst-case fill structure
e extension to tensor contractions and implementation

Edgar Solomonik Provably Efficient Tensor Algorithms 16/ 28

Exploiting symmetry in tensors

Tensor symmetry (e.g. Aj = Aj;) permits savings in memory and cost
o for order d tensor, d! less memory

@ matrix-vector multiplication

G = ZAijbj = ZAU(bi +bj) - (Z%‘) bi
J J

J
@ rank-2 vector outer product
Cj = aibj + ajb; = (ai + aj)(b,- + bj) — ajbj — ajb;

@ squaring a symmetric matrix

C;j = ZAikAkj = Z(Aik + Akj + A,’j)2 — ...
k k

e for order w contraction, w! less multiplications (lower bilinear rank)

Edgar Solomonik Provably Efficient Tensor Algorithms 17/ 28

Symmetry preserving algorithms

By exploiting symmetry, we can reduce the number of multiplications at
the cost of more additions

@ algorithms generalize to most antisymmetric tensor contractions

o for Hermitian tensors, multiplications cost 3X more than additions

e BLAS routines: hemm and her2k as well as LAPACK routines like hetrd
(tridiagonal reduction) may be done with 25% fewer operations
e achieves (2/3)n? bilinear rank for squaring a nonsymmetric matrix,
assuming elementwise commutativity
@ can be nested for partially symmetric contractions

e reduction in multiplications implies reduction in nested calls to
contractions
e yields significant reductions in overall cost

Edgar Solomonik Provably Efficient Tensor Algorithms 18/ 28

Horizontal communication cost of symmetry preserving
algorithms

For contraction of order s 4+ v tensor with order v + t tensor
@ T is the nonsymmetric contraction algorithm
@ V is the best previously known algorithm

@ & is the symmetry preserving algorithm

Asymptotic communication lower bounds based on bilinear expansion
(H—cache size, p—#processors, n—dimension):

sltflviFlFfv|Fol Qul| Q[Wr|Wy|We
ifofm || 2] @ [| H]] 4
211(0] n ”73 T n3 n3 n pg v ngi
2 2ot [2] 5| o | 0t | 2| 2| £
1l 2| 2 | 2 pZ—Z 2 p’;—;
2011 n* "74 % H’}“/Z H’}—; n® n? p’;—i‘,
2122 | § | & || #n [dn | 35 | #n | im

Edgar Solomonik Provably Efficient Tensor Algorithms 19/ 28

Tensor algebra as a programming abstraction

Cyclops Tensor Framework
@ contraction/summation/functions of tensors
o distributed symmetric-packed/sparse storage via cyclic layout
@ parallelization via MPI+OpenMP(4+CUDA)

Edgar Solomonik Provably Efficient Tensor Algorithms 20/ 28

Tensor algebra as a programming abstraction

Cyclops Tensor Framework
@ contraction/summation/functions of tensors
o distributed symmetric-packed/sparse storage via cyclic layout
@ parallelization via MPI+OpenMP(4+CUDA)

Jacobi iteration example code snippet

void Jacobi(Matrix<> A, Vector<> b, int n){
Matrix<> R(A);
R["ii"] = 0.0;
Vector<> x(n), d(n), r(n);
Function<> inv([](double & d){ return 1./d; });

d["i"]1 = inv(AL"ii"1); // set d to inverse of diagonal of A
do {

X[" "] = d["i"]*(b[" "] R["ij"]*x["‘ll]);
r["i"]1 = bL["i"1-AL"ij"1*x["j"1; // compute residual
} while (r.norm2() > 1.E-6); // check for convergence

Edgar Solomonik Provably Efficient Tensor Algorithms 20/ 28

Tensor algebra as a programming abstraction

Cyclops Tensor Framework
@ contraction/summation/functions of tensors
o distributed symmetric-packed/sparse storage via cyclic layout
@ parallelization via MPI+OpenMP(4+CUDA)

Mgller-Plesset perturbation theory (MP3) code snippet

Z["abij”] += Fab["af"1xT["fbij"1;
Z["abij"] -= Fij["ni"1xT["abnj"I;
Z["abij"] += 0.5xVabcd["abef"I*T["efij"1;
2["abij”] += @.5%Vijkl["mnij"1*T["abmn"1;
Z["abij"] -= Vaibj["amei”1*T["ebmj"];

Edgar Solomonik Provably Efficient Tensor Algorithms 20/ 28

Betweenness centrality

Betweenness centrality code snippet, for k of n nodes

void btwn_central (Matrix<int> A, Matrix<path> P, int n, int k){
Monoid<path> mon(...,
[I(path a, path b){
if (a.w<b.w) return a;
else if (b.w<a.w) return b;
else return path(a.w, a.m+b.m);

o)

Matrix<path> Q(n,k,mon); // shortest path matrix
Q["ijll] = P[llij"];

Function<int,path> append([]1(int w, path p){
return path(w+p.w, p.m);

3D,

for (int i=0; i<n; i++)
QL"ij"]1 = append(AL["ik"1,Q["kj"1);

}
Edgar Solomonik Provably Efficient Tensor Algorithms 21/ 28

Performance of CTF for dense computations

CTF is highly tuned for massively-parallel machines
@ virtualized multidimensional processor grids
@ topology-aware mapping and collective communication
@ performance-model-driven decomposition done at runtime
@ optimized redistribution kernels for tensor transposition

BG/Q matrix multiplication

2048
1024

256

X =
64
32

'CTF ——
I Scalapack E

Teraflop/s
]
(=]

i i i i i
4096 8192 16384 32768 65536 131072 262144
#cores

Edgar Solomonik Provably Efficient Tensor Algorithms 22/ 28

Performance of CTF for sparse computations

MP3 leveraging sparse-dense tensor contractions

Weak scaling of MP3 (m=40, n=160 on 24 cores)

Strong scaling of MP3 with m=40, n=160

40 |

seconds/iteration

T T T
dense ——
16% sparse --@--

seconds/iteration

16

14 P
12
10

T

dense —+—
16% sparse ===
8% sparse —-a---
4% sparse - %+
2% sparse &
1% sparse

. 1
. 1
2 1
| 1 | 0 L -
24 48 96 192 384 24 192 768
#cores #cores
All-pairs shortest-paths based on path doubling with sparsification
Weak scaling of APSP (n=2K on 24 cores) Strong scaling of APSP with n=2K
140
reqular path doubling —+— ! T ' reqular path doubling —+—
120 sparse path doubling | 24 sparse path doubling 1
100 . 20]
8 80 41 g 6} 4
g g
g g
3 60 4 8 12 8
40 4 8 T
20 - 4 4
24 48 96 192 384 24 48 96 192 384 768
#cores #cores

Edgar Solomonik

Provably Efficient Tensor Algorithms

23/ 28

Application to Coupled Cluster

Coupled cluster methods

approximate solution to manybody time-independent Schrédinger
equation via set of nonlinear equations
use 2r-order tensor to represent r-electron correlation

@ measure excitation energy of r electrons to r virtual orbitals

o each possible set of transitions (intermediate states) becomes a
product of tensors

e factorization of this set of multilinear tensor products transforms
equations to bilinear tensor contractions

systematically improvable, CCSD, CCSDT, CCSDTQ (r =1,2,3)

partial antisymmetries in tensors as a consequence of electron
interchangeability

symmetry preserving algorithms can reduce cost of CCSD by about
1.3, CCSDT by about 2.1

Edgar Solomonik Provably Efficient Tensor Algorithms 24/ 28

CCSD using CTF

Extracted from Aquarius (Devin Matthews' code,
https://github.com/devinamatthews/aquarius)

FMIL"mi"] += 0.5*WMNEF["mnef"1*T(2)["efin"];
WMNIJ["mnij"] += @.5%*WMNEF["mnef"1*xT(2)["efij"];
FAEL["ae"] -= @.5*WMNEF["mnef"1*xT(2)["afmn"];
WAMEI["amei"] -= O.5*WMNEF["mnef"]*T(2)["afin"];

Z(2)["abij”1 = WMNEF["ijab"1;

Z(2)["abij"1 += FAE["af"1*T(2)["fbij"1;
Z(2)["abij"1 -= FMI["ni”1*T(2)["abnj"1;
Z(2)["abij"1 += 0.5*WABEF["abef"1xT(2)["efij"1;
Z(2)["abij”]1 += @.5*WMNIJ["mnij"1*T(2)["abmn"1;
Z(2)["abij”1 -= WAMEI[”amei”1*T(2)["ebmj"1;

Other electronic structure codes using CTF include QChem (via Libtensor)

Edgar Solomonik Provably Efficient Tensor Algorithms 25/ 28

https://github.com/devinamatthews/aquarius

Comparison with NWChem

NWChem is the most commonly-used distributed-memory quantum
chemistry method suite

@ provides CCSD and CCSDT
@ uses Global Arrays a Partitioned Global Address Space (PGAS)

backend for tensor contractions

@ derives equations via Tensor Contraction Engine (TCE)

1024

256

seconds
@
R

Strong scaling CCSD on Edison

T
NWChem w20
wis
WI0 -----e

W --ees
AquarusCTF w20 —li— |

i
4 8 16 32 64 128
#nodes

Edgar Solomonik

seconds

1024

256

64

Provably Efficient Tensor Algorithms

Strong scaling CCSDT on Edison

T

T T T
NWChem w3 -->¢ -~

w2 --f-3--
Aquarius-CTF wé —f—

i T
16 32 64
#nodes

128 256

26/ 28

Coupled Cluster on IBM BlueGene/Q

Teraflops

Teraflops

CCSD up to 55 (50) water molecules with cc-pVDZ
CCSDT up to 10 water molecules with cc-pVDZ

Weak scaling on BlueGene/Q

Weak scaling on BlueGene/Q

1024 60
AqUarius-CTF CCSD — - ‘ ' Aquarius-CTF CCSD —1—
512 |- Aquarius-CTF CCSDT --%-- 50 | Aquarius-CTF CCSDT --%-- |
256 - B B
_____ X 2 Wl . . i i
128 - b b X e {
64 | X é_ 30(] i - i
s2r X 5 : : i i
161} N ©
8 g
4 i i i i i i i i i
512 1024 2048 4096 8192 16384 32768 512 1024 2048 4096 8192 16384
#nodes #nodes
Weak scaling on Edison Weak scaling on Edison
512 — . . 350 — ; .
Aquarius-CTF CCSD —— Aquarius-CTF CCSD ——
256 |~ Aquarius-CTF CCSDT --¢-- 300 | Aquarius-CTF CCSDT --%¢--
128 - - -
L 250 - B
64 |- g
32 g 200
16 2
= 150
8 o
4l G 100
2 50
i i

32 64 128 256 512
#nodes

Edgar Solomonik

1024 2048 4096

Provably Efficient Tensor Algorithms

128 256 512 1024 2048 4096
#nodes

27/ 28

Future work

o further work sparse and symmetric tensor computations
e bridging the gap between abstractions and application performance
e bilinear algorithm complexity — fast matrix multiplication
@ tensor decompositions
e communication-efficient parallel algorithms and lower bounds
e symmetry-preserving tensor decomposition and DMRG algorithms
e programming abstractions for dense and sparse tensors
@ sets of tensor operations
e most algorithms correspond to multiple dependent tensors operations
e communication cost analysis for sets of contractions
e scheduling, blocking, and decomposition of multiple tensor operations
o higher-level programming abstractions
@ application-driven development
e tensor decompositions, sparsity, symmetry all motivated by electronic
structure applications
e optimization of primitives serves as feedback loop for development of
new electronic structure methods

Edgar Solomonik Provably Efficient Tensor Algorithms 28/ 28

Backup slides

Edgar Solomonik Provably Efficient Tensor Algorithms 29/ 28

Symmetry preserving algorithm vs Strassen’s algorithm

Symmetry preserving alg. vs Strassen’s alg. (s=t=v=w/3)

64 T T | T
Strassen’s algorithm = ‘
Sym. preserving ®=6 =w==- = |

82 r Sym. preserving @=3 =-==--

[In®/(sltiv])] / #multiplications
(speed-up over classical direct evaluation alg.)

10 100 1000 10000 100000 1e+06
n®/s! (matrix dimension)

Edgar Solomonik Provably Efficient Tensor Algorithms 30/ 28

Nesting of bilinear algorithms

Given two bilinear algorithms:

= EFO)
e =7 B9 FO)

We can nest them by computing their tensor product

Meh =(FM o FM F® o FP) FO o FO)
rank(A1 ® Ap) =rank(A1) - rank(A2)

Edgar Solomonik Provably Efficient Tensor Algorithms 31/ 28

Block-cyclic algorithm for s-step methods

oo o ala °© 0 0 o

Y)
[0 0 o o [¢# o o7 ©o-dummy computation

[c 00 oo o &

|=3u=li0 0 o0 O ¥ o o]u=2 x(3)

vi i

XX
1=2 u=lio o % ™ S[o o o ou=2 x(2)
=1 u=1: ¢ % o ofo o o o]u=2 x(1

For s-steps of a (2m + 1)?-point stencil with block-size of H/?/m,

d msn

d
Wik, = O (Z%) Skr = O(sn?/(pH)) Qu: = O<Hl/dp)

which are good when H = ©(n?/p), so the algorithm is useful when the
cache size is a bit smaller than n?/p

Edgar Solomonik Provably Efficient Tensor Algorithms 32/ 28

2.5D LU on MIC

LU factorization strong scaling on Stampede (MIC + Sandy Bridge)

450
! 2.5D hybrid LU n=131,072 —¥—
2D hybrid LU n=131,072 —=— |
400 7 2.5D pure-cpu LU n=131,072
———————————————— 2.5D hybrid LU n=65,536 —>*— -
350 | 2D hybrid LU n=65,536 —9—
o 2.5D pure-cpu LU n=65,536 —ll—
3 q 3
£ 300
@
[T i R it I T P T
o
T 250 e oo e T
i)
o e
200 |- oo -oos oo e s s ey
L T oo e
100
16 32 64 128 256
#nodes

Edgar Solomonik Provably Efficient Tensor Algorithms 33/ 28

Topology-aware mapping on BG/Q

LU factorization strong scaling on Mira (BG/Q), n=65,536

100

Gigaflop/s/node

2D LU, cI:ustom mappingI —k—
2D LU, default mapping

] e B S — .

Edgar Solomonik

#nodes

Provably Efficient Tensor Algorithms

34/ 28

Symmetric matrix representation

Symmetric matrix Unique part of symmetric matrix

=]

35/ 28

Edgar Solomonik Provably Efficient Tensor Algorithms

Blocked distributions of a symmetric matrix

Naive blocked layout

Block-cyclic layout

PO P2

B
|

P3

Edgar Solomonik

P2

Provably Efficient Tensor Algorithms

36/ 28

P2

Cyclic distribution of a symmetric matrix

Cyclic layout ~ Improved blocked layout

m-P1

Edgar Solomonik Provably Efficient Tensor Algorithms 37/ 28

Our CCSD factorization

Credit to John F. Stanton and Jurgen Gauss

1 .
b = t,j-"+§P§Pth;9tj’,
Foo= 7+ vt
fn

~ 1
F& = (1—5ae)f:—ZF;"tﬁ7—52v§}”f2’2+2v§f”t§,
m fn

mnf

o~ 1
Fmo— (1—5m,-)f,-m+ZFe’"t,-e+EZvéTc”tﬁ,f—FZvi’;’"t,f,
e fn

nef

Edgar Solomonik Provably Efficient Tensor Algorithms 38/ 28

Our CCSD factorization

Wei}vn _ Verlr_m + Z Ven;n tlf7
Wy = RS S
e ef
W = =W 3 Z Ve,
n
Wim = TR Y e+ o Zv:;%,;tf,

7 = f,-a—zﬁ,-mrmzf:mzve, ot oL+ > v
m e em

efm
1 § : A/mn _ea
- 5 Wei tmm
emn

ab ab i ab e a f} : A7am e 2 : am b
zl'j = Vl'j + ID] Vie tj + Pij VVie mj Pb V‘/lj tm
e

me

© YR A e 225;77,,“ Ezwmnmn,

Edgar Solomonik Provably Efficient Tensor Algorithms 39/ 28

Stability of symmetry preserving algorithms

Relative forward error with respect to exact solution

10

13

Relative error of ¢c=A™b with positive A and alternating b

—#fast algorithm relative error
standard algorithm relative error

2
10 10 10
dimension of Aand b

Edgar Solomonik

Relative error of squaring a Householder transformation

c
g 10
% ~—=fast algorithm relative error
@
- standard algorithm relative error
& 10 E
&
£
[N
2 10 E
&
=
S
14
§ 10 3
5
4
-5
£ 10 4
£
@
2
B -
3 10 . . L
L4 0 1 2 3

10 10 10 10 10
dimension of A
Provably Efficient Tensor Algorithms 40/ 28

Performance breakdown on BG/Q

Performance data for a CCSD iteration with 200 electrons and 1000
orbitals on 4096 nodes of Mira

4 processes per node, 16 threads per process

Total time: 18 mins

v-orbitals, o-electrons

kernel % of time | complexity architectural bounds
DGEMM 45% O(v*o?/p) flops/mem bandwidth
broadcasts 20% O(v*0?/pv/M) | multicast bandwidth
prefix sum 10% O(p) allreduce bandwidth
data packing | 7% O(v?0?/p) integer ops
all-to-all-v % 0(v?0?/p) bisection bandwidth
tensor folding | 4% 0(v?0?/p) memory bandwidth

Edgar Solomonik Provably Efficient Tensor Algorithms 41/ 28

Tiskin's path doubling algorithm

Tiskin gives a way to do path-doubling in F = O(n3/p) operations. We
can partition each A¥ by path size (number of edges)

Al =1a A Q)@ AKQ2) @ ... ® AK(K)

where each AK(/) contains the shortest paths of up to k > / edges, which
have exactly / edges. We can see that

Al()) <A < ... < A"()) = A*()),

in particular A*(/) corresponds to a sparse subset of A’(/).
The algorithm works by picking / € [k/2, k] and computing

(1@ APF2 < (1e AR(N) @ A,

which finds all paths of size up to 3k/2 by taking all paths of size exactly
| > k/2 followed by all paths of size up to k.

Edgar Solomonik Provably Efficient Tensor Algorithms 42/ 28

	Representation
	Analysis
	Execution
	Conclusion

