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Tensor notation/terminology

A tensorT € R™**"d has
@ Orderd (i.e. d modes/ indices)
@ Dimensions ni-by-- - - -by-ng4
o Elementst;, i, = t; wherei e @7 {1,...,n;}
Tensors are multidimensional arrays with attributes
@ sparsity
ti; #0 if (i,j) €S

@ symmetry or antisymmetry

tij =1ty Or tij=—tj
@ algebraic structure

tij +tr =? and tij - tr =7
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Tensors in quantum chemistry

Tensor contractions dominate cost of many wavefunction methods
@ Orbital transformations (tensor times matrix)

@ Dense tensor contractions in Post-Hartree-Fock methods

o Maller-Plesset perturbation
e configuration interaction
e coupled cluster

@ Sparse tensors

o localized orbitals (basis functions with compact support)
@ screening of elements

@ Tensor decompositon/factorization
o density fitting
@ resolution of identity
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Generalized tensor summation

Einstein summation notation naturally expresses transformations
beyond tensor contraction

Map [ < . T[i,j1 = fuli])
Reduce . >_ wlil += g(T[i,j])

— I v[i] = h(M[i,i])

Diagonal
extraction
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Generalized tensor contraction

We can identify three classes of contraction-like operations

@ Tensor contraction

e each index appears in exactly two tensors
@ equivalent to matrix multiplication after transposition

@ Tensor contraction with Hadamard indices

e an index appears in all three tensors
e equivalent to batched matrix multiplication after transposition

@ Tensor contractions with map/reduce

@ an index appears in only one tensor
e amenable to pre- or post- processing via generalized summation
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A stand-alone library for parallel tensor computations

Cyclops Tensor Framework (CTF)
@ distributed-memory symmetric/sparse tensors as C++ objects
Matrix<int> A(n, n, AS|SP, World(MPI_COMM_WORLD));

Tensor<float> T(order, is_sparse, dims, syms, ring, world);
T.read(...); T.write(...); T.slice(...); T.permute(...);
@ parallel generalized contraction/summation of tensors

Z["abij"1 += V["ijab"1;

B[L"ai"] = A["aiai"];

T["abij”] = T["abij”1*D["abij"1;
WL"mnij"] += @.5*W["mnef"]1*T["efij"]1;
Z["abij"] -= R["mnje”]1*T3["abeimn"];

ML"ij"]1 += Function<>([](double x){ return 1/x; })(vL["3i"1);

@ NEW: Python! towards autoparallel numpy ndarray: einsum, slicing
(credit to Zecheng Zhang, undergraduate, UIUC)
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Symmetry and sparsity by cyclicity

Symmetric matrix Unique part of symmetric matrix

Naive blocked layout Block-cyclic layout Cyclic layout ~ Improved blocked layout

R

for sparse tensors, a cyclic layout provides a load-balanced distribution
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Parallel contraction in Cyclops

Cyclops uses nested parallel matrix multiplication variants

@ 1D variants
e perform a different matrix-vector product on each processor
e perform a different outer product on each processor
@ 2D variants
e perform a different inner product on each processor
@ scale a vector on each processor then sum
@ 3D variants

e perform a different scalar product on each processor then sum
@ can be achieved by nesting 1D+1D+1D or 2D+1D or 1D+2D

@ All variants are blocked in practice
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Tensor blocking/virtualization

Preserving symmetric-packed layout using cyclic distribution
constrains possible tensor blockings

Subdivision into more blocks than there are processors (virtualization)
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Data mapping and redistribution

Transitions between contractions require redistribution and refolding
@ 1D/2D/3D variants naturally map to 1D/2D/3D processor grids
@ Initial tensor distribution is oblivious of contraction
o by default all tensor distributed over all processors
@ user can specify any processor grid mapping
@ Global redistribution done by one of three methods

@ reassign tensor blocks to processors (easy+fast)
e reorder and reshuffle data to satisfy new blocking (fast)
e treat tensors as sparse and sort globally by function of index

@ Matricization/transposition is then done locally

o dense tensor transpose done using HPTT (by Paul Springer)
o sparse tensor converted to CSR sparse matrix format
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Local summation and contraction

@ For contractions, local summation and contraction is done via BLAS
@ Threading is used via BLAS (done via OpenMP everywhere else)

@ GPU offloading is available but not yet fully robust

@ For sparse matrices, MKL provides fast sparse matrix routines

@ To support general (mixed-type, user-defined) elementwise
functions, manual implementations are available

@ User can specify blocked implementation of their function to
improve performance

American Chemical Society Annual Meeting Scalable Quantum Chemistry with Cyclops 11/22



Performance modeling and intelligent mapping

@ Performance models used to select best contraction algorithm
@ Based on linear cost model for each kernel
T~ aS + w + v + vF
~ é/ \9—/ 2
latency  comm. bandwidth  mem. bandwidth  flops
@ Scaling of S, W, Q, F'is a function of parameters of each kernel
@ Coefficients for all kernels depend on compiler/architecture

@ Linear regression with Tykhonov regularization used to select
parameters x*

@ Model training done by benchmark suite that executes various
end-functionality for growing problem sizes, collecting observations
of parameters in rows of A and execution timing in ¢

x* = argmin(||Az — t||2 + N||z||2)
T
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Applications using Cyclops

Quantum chemistry applications
@ Agquarius (lead by Devin Matthews)
@ QChem via Libtensor (integration lead by Evgeny Epifanovsky)
@ PySCF via new Python interface
@ CC4S (lead by Andreas Griineis and group)

@ QBall (DFT code, just matrix multiplication)
Beyond quantum chemistry

@ Largest-ever quantum circuit simulation (as of Oct 2017, lead by
IBM and LLNL)

@ Lattice QCD (lead by Bartosz Kostrzewa)

@ Graph algorithms (see betweenness centrality SC 2017 paper)
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Coupled cluster: an initial application driver

CCSD contractions from Aquarius (lead by Devin Matthews)
https://github.com/devinamatthews/aquarius

FMIL"mi"] += O.5*WMNEF["mnef"]1*T2["efin"];
WMNIJ["mnij"] += O0.5*WMNEF["mnef"]*T2["efij"];
FAE["ae"] -= @.5*WMNEF["mnef"]1*T2["afmn"];
WAMEI["amei"”] -= 0.5*WMNEF["mnef”]*xT2["afin"];
Z2["abij"] = WMNEF["ijab"1];

Z2["abij"] += FAE["af"]1xT2["fbij"1;

Z2["abij"] -= FMI["ni"]1*T2["abnj"1;

Z2["abij"] += ©.5%xWABEF["abef"1xT2["efij"1;
Z2["abij"] += @.5%xWMNIJL"mnij”1*T2["abmn"1;
Z2["abij"] -= WAMEI["amei”J*T2["ebmj"1;
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Comparison with NWChem

NWChem built using one-sided MPI, not necessarily best performance
@ derives equations via Tensor Contraction Engine (TCE)
@ generates contractions as blocked loops leveraging (Global Arrays)

Strong scaling CCSDT on Edison
Strong scaling CCSD on Edison

T
T T !
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T T T
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Performance of Cyclops for coupled cluster

CCSD up to 55 (50) water molecules with cc-pVDZ
CCSDT up to 10 water molecules with cc-pVDZ

Weak scaling on BlueGene/Q Weak scaling on BlueGene/Q
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MP3 method

Tensor<> Ea, Ei, Fab, Fij, Vabij, Vijab, Vabcd, Vijkl, Vaibj;
// compute above 1-e an 2-e integrals

Tensor<> T(4, Vabij.lens, *Vabij.wrld);
TL"abij"] = Vabij["abij"1;

divide_EaEi(Ea, Ei, T);

Tensor<> Z(4, Vabij.lens, *Vabij.wrld);
Z["abij"] = Vijab["ijab"1;

Z["abij"] += Fab["af"]IxT["fbij"1];
Z["abij"] -= Fij["ni"]IxT["abnj"];
Z["abij"] += @.5%Vabcd["abef"1*xT["efij"];
Z["abij"] += 0.5*Vijkl["mnij"1*T["abmn"];
Z["abij"] += Vaibj["amei"”]xT["ebmj"];

divide_EaEi(Ea, Ei, Z);

double MP3_energy = Z["abij"J]*Vabij["abij"];
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MP3 dense division

A naive dense version of division in MP2/MP3

void divide_EaEi(Tensor<> & Ea,

Tensor<> & Ei,

Tensor<> & T){

Tensor<> D(4,T.lens,*T.wrld);
D["abij"] += Ei["i"1];
D["abij"] += Ei["j"1;
D["abij"] -= Ea["a"];
D["abij"] -= Eal["b"1];

Transform<> div([](double & b){ b=1./b; 3});
div(D["abij"1);
T["abij"] = T["abij"1*D["abij"];

American Chemical Society Annual Meeting Scalable Quantum Chemistry with Cyclops 18/22



MP3 sparse division

A sparsity-aware version of division in MP2/MP3 using CTF functions

struct dp {

double a, b;

dp(int x=0){ a=0.0; b=0.0; }

dp(double a_, double b_){ a=a_, b=b_; }

dp operator+(dp const & p) const { return dp(a+p.a, b+p.b); 3}
}

Tensor<dp> TD(4, 1, T.lens, *T.wrld, Monoid<dp, false>());

TD["abij"] = Function<double,dp>(
[1(double d){ return dp(d, 0.0); }
J(T["abij"1);

Transform<double,dp> ([]l(double d, dp & p){ return p.b += d; }
YCEi["i"], TD["abij"1);
// similar for Ej, Ea, Eb

T["abij"] = Function<dp,double>([]1(dp p){ return p.a/p.b; 3}
J(TDL"abij"1);
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Sparse MP3 code

Strong and weak scaling of sparse MP3 code, with
(1) dense V and T (2) sparse V and dense T' (3) sparse V and T
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Cyclops release v1.5.1 (January 2018)

2014 2015 2016 2017 2018

@ Robust support for Python
e implementation of numpy . ndarray functionality

@ convenient functions for reshape/transposition/slicing (much easier to
prototype code than in C++)

o user-defined elementwise functions not available for direct use

@ Integration with other libraries
o HPTT (Paul Springer), dense transposition ay peak memory bandwidth

e batched BLAS, faster Hadamard product-like contractions, especially
with MKL (credit to Eduardo Yap, undergraduate student, UIUC)

o Scal APACK conversion mature, SVD available as a simple function in
C++/Python (credit to Eric Song, undergraduate student, UIUC)
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Future directions and acknowledgements

Future/ongoing directions in Cyclops development

@ General abstractions for tensor decompositions: HOSVD already
available, CP decomposition, tensor train, etc.

@ Concurrent scheduling of multiple contractions
@ Fourier transforms along tensor modes

@ Further Python functionality

@ Faster/specialized/optimized tensor slicing
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Backup slides
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Performance breakdown on BG/Q

Performance data (from circa 2013) for a CCSD iteration with 200
electrons and 1000 orbitals on 4096 nodes of Mira

4 processes per node, 16 threads per process

Total time: 18 mins
v-orbitals, o-electrons

kernel % of time | complexity architectural bounds
DGEMM 45% O(v*o?/p) flops/mem bandwidth
broadcasts | 20% O(v'o? /pv/M) | multicast bandwidth
prefix sum 10% O(p) allreduce bandwidth
data packing | 7% O(v%o?/p) integer ops
all-to-all-v 7% O(v?0%/p) bisection bandwidth
tensor folding | 4% O(v?0%/p) memory bandwidth
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Applications of partially-symmetric tensor contractions

High-accuracy methods in computational quantum chemistry

@ solve the multi-electron Schrédinger equation H|¥) = E|¥),
where H is a linear operator, but ¥ is a function of all electrons

@ use wavefunction ansatze like ¥ ~ ¥*) = T | (*-1)) where
¥ () is a mean-field (averaged) function and T'*) is an order 2k
tensor, acting as a multilinear excitation operator on the electrons

@ coupled-cluster methods use the above ansatze for k € {2,3,4}
(CCSD, CCSDT, CCSDTQ)

@ solve iteratively for T(¥), where each iteration has cost O(n?*+2),
dominated by contractions of partially antisymmetric tensors

@ for example, a dominant contraction in CCSD (k = 2) is

~ n o n B

ak __ ab Jk

Zig = Z Ti;" - Vie
b=1 j=1
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Our CCSD factorization

Credit to John F. Stanton and Jurgen Gauss
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American Chemical Society Annual Meeting Scalable Quantum Chemistry with Cyclops 26/22



Our CCSD factorization
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