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Laboratory for Parallel Numerical Algorithms
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Karush-Kuhn-Tucker (KKT) conditions

Consider a general quadratic constrained program

min
x∈Rn

1

2
xTHx+ xT c

s.t. Ax = b, Cx ≥ d

common in areas such as optimal control, arise when SQP/Newton is
applied to general nonlinear programs

we consider a standard primal-dual interior point optimization
approach for this problem

augments KKT (optimality) conditions with auxiliary parameters
(barrier parameters, based on slack variables and Lagrange multipliers,
some of which go to zero later IPM iterations)
results in sequence of nonlinear KKT equations, each solved with
Newton’s method
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Interior Point Method (IPM): KKT system

Interior point KKT equations can be written in matrix form as−H AT CT

A 0 0

C 0 D(k)

∆x(k)

∆λ(k)

∆ν(k)

 = −

r
(k)
g

r
(k)
e

r
(k)
a


where D(k) =

(
V (k)

)−1
S(k) is diagonal and changing with iteration k.

Traditional approach is to eliminate ν(k) first, then solve iteratively[
−
(
H + CT

(
D(k)

)−1
C
)

AT

A 0

](
∆x(k)

∆λ(k)

)
= −

(
r
(k)
u

r
(k)
e

)

We instead use a single (for entire IPM execution) factorization of

F =

[
−H AT

A 0

]
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Known Properties of IPM KKT Systems

Iterative methods and preconditioners can be applied to both 2-by-2
and 3-by-3 systems

Such saddle point systems are well-studied1 and arise in numerical
PDE solvers2,3

Preconditioners have often been designed to exploit the block
structure of the systems4,5,6

The 3-by-3 system has better spectral properties, but the reduced
system can nevertheless be preferable computationally7,8

1M. Benzi, G.H. Golub, J. Liesen. Numerical solution of saddle point problems. Acta
Numerica, 2005.

2R. E. Ewing, R. D. Lazarov, P. Lu, P. S. Vassilevski, PCGM 1990.
3C. Greif, D. Schötzau, NLA 2007
4G.H. Golub and C. Greif, SISC 2003.
5C. Keller, N. I.M. Gould, and A. J. Wathen, SIMAX 2000.
6T. Rees, C. Greif, SISC 2007.
7B. Morini, V. Simoncini, M. Tani, NLA 2016.
8B. Morini, V. Simoncini, M. Tani, COA 2017.
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Preconditioning New Reduced KKT System

At each IPM step, given a factorization of F =

[
−H AT

A 0

]
, we iteratively

solve a system with the matrix

K
(k)
F = D(k) −

[
C 0

]
F−1

[
CT

0

]
= D(k) + CH−1(H −AT (AH−1AT )−1A︸ ︷︷ ︸

HA

)H−1CT

Since H−1AT is in the null space of H −HA, we have

rank(HA) ≤ m1, rank(H −HA) ≤ n−m1

where n is # of variables and m1 is # equality constraints.

We propose 2 preconditioners for different regimes of # d.o.f. n−m1

ML = D(k) MH = D(k) + CH−1CT

By the above rank analysis, the low-d.o.f. preconditioner ML converges
after m1 iterations and MH after n−m1 (in exact precision)
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CG Convergence Results
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Comparison to Existing Approaches

Factorize F =

[
−H AT

A 0

]
for k = 1 until IPM converges

Construct preconditioner
M to be ML or MH

depending on # d.o.f.
n−m1

Factorize M
Iteratively solve
M−1KFx = M−1b, by
applying KF =

D(k) −
[
C 0

]
F−1

[
CT

0

]
in implicit form using
factorization of F

for k = 1 until IPM converges

Form augmented system KD =[
−
(
H + CT

(
D(k)

)−1
C
)

AT

A 0

]
Choose M among preconditioners,
e.g., constraint preconditioner[
D̃(k) AT

A 0

]
or block-diagonal[

D̃(k) −ATW (k)A
γI

]
Factorize M
Iteratively solve
M−1KDx = M−1b
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Condition Number Improvement

LPNA Efficient Inexact Optimization Sep 5th, 2022 9 / 21



Arithmetic Cost Model Comparison
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Extensions

What if H is semidefinite? What if F is singular?
our approach assumed we can factorize F
our high-d.o.f. preconditioner MH = D(k) + CH−1CT assumed H is
nonsingular
regularization can ensure H and F are nonsingular

When H is semidefinite but F is nonsingular
can factorize F with pivoting, use pseudoinverse of H in preconditioner

When H and F are singular (A is assumed to be full rank) or when
parts of H are changing (non-quadratic)

can use our approach with a smaller fixed (factorized) subsystem

For further details, see “Efficient Preconditioners for Interior Point

Methods via a New Schur Complementation Strategy”, Samah Karim, E.S.,

(SIMAX/arXiv:2104.12916)
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Randomized Sketching

Linear sketching provides an alternative to iterative solvers or can be
used to precondition them1

A random sketching matrix S ∈ Rk×n is called (δ, ε)-accurate if it
satisfies the Johson-Lindenstrauss (JL) Lemma2

∀x ∈ Sn−1, Pr[|‖Sx‖2 − 1| > ε] < δ

The JL Lemma also implies approximate preservation of distances
between sketches of arbitrary set of points x1, . . . , xd

To sketch a linear LSQ problem, a (δ,max(ε/d2, ε2/d))-accurate
sketching matrix S (with k = O(min(d2/ε, d/ε2) log(1/δ))) gives

∀A ∈ Rn×d, b ∈ Rn, if Ax ∼= b and SAx̂ ∼= Sb,

Pr[‖Ax̂− b‖2 > (1 + ε)‖Ax− b‖2] < δ

1H. Avron, P. Maymounkov, and S. Toledo, SISC 2010
2For a review, see ”Sketching as a Tool for Numerical Linear Algebra”, D. Woodruff
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Random Distributions for Efficient Sketching

If elements sij are independently drawn from a sub-Gaussian
distribution, S satisfies JL Lemma with k = O(log(δ)/ε2)
Selecting each column si from {1,−1} × {e1, . . . ek} (CountSketch)
yields JL Lemma with same k

CountSketch preserves sparsity, #nnz(SA) ≤ #nnz(A)

Selecting S as S1S2, I ⊗ S1, S1 ⊗ S2, or with other tensor
substructure also yields provably accurate sketches1

if input x = u⊗ v, cost of computing Sx reduced from O(dim(x)) to
O(dim(u) + dim(v))

If columns of S are drawn independently from the same random
distribution D, for the JL lemma to hold, we need2

for s ∼ D,E[‖s‖2] = 1, Pr[‖s‖22 > t] < 2e−t/C and

for s1, s2 ∼ D,E[〈s1, s2〉] = 0,Pr[|〈s1, s2〉| > t] < 2e−t/C

1R. Pagh, TOCT 2013; T. D. Ahle, M. Kapralov, J. B. Knudsen, R. Pagh, A.
Velingker, D. P. Woodruff, and A. Zandieh, SODA 2020

2preliminary work with Changsheng Chen and Linjian Ma
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Background on Tensor Decompositions

Tucker decomposition

TTT ≈ XXX ×1 A×2 B ×3 C

TTT ∈ Rn×n×n, XXX ∈ RR×R×R

A,B,C ∈ Rn×R with orthonormal
columns, R < n

CP decomposition

TTT ≈
R∑

r=1

ar ◦ br ◦ cr

TTT ∈ Rn×n×n,
A = [a1, . . . , aR] ∈ Rn×R

R < n2

Higher order orthogonal iteration (HOOI)

min
A,XXX

1

2

∥∥∥(C ⊗B)XT
(1)A

T − TT
(1)

∥∥∥2
F

CP-Alternating least squares (CP-ALS)

min
A

1

2

∥∥∥(C �B)AT − TT
(1)

∥∥∥2
F

Prior work on sketched tensor decompositions

Sketching for CP-ALS: C. Battaglino, G. Ballard, and T. Kolda, SIMAX 2018

Sketching for Tucker-ALS (not HOOI): Malik and Becker, NeurIPS 2018
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Sketching HOOI
Higher order orthogonal iteration (HOOI)

min
A,XXX

1

2

∥∥∥(C ⊗B)XT
(1)A

T − TT
(1)

∥∥∥2
F

Kronecker product C ⊗B ∈ Rn2×R2

Costs Θ(n3R) or Θ(nnz(TTT )R2)

Fast convergence

CP-Alternating least squares (CP-ALS)

min
A

1

2

∥∥∥(C �B)AT − TT
(1)

∥∥∥2
F

Khatri-Rao product C �B ∈ Rn2×R

Costs Θ(n3R) or Θ(nnz(TTT )R)

Slow convergence

New result for sketched low rank approximation (R� n):

Sketched HOOI for Tucker decomposition (Linjian Ma and E.S., NeurIPS 2021 /
arXiv:2104.01101)

Overall cost with t HOOI sweeps reduced to O
(
nnz(TTT ) + t

(
nR3 + R6

))
Can also accelerate CPD via performing CP-ALS on the Tucker core tensor
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Cost comparison for order 3 tensor

ALS + TensorSketch (Malik and Becker, NeurIPS 2018)

Solving for each factor matrix or the core tensor at a time

minA
1
2

∥∥∥(C ⊗B)XT
(1)A

T − TT
(1)

∥∥∥2
F

or

minXXX
1
2 ‖(C ⊗B ⊗A)vec(X)− vec(T )‖2F

Algorithm for Tucker LS subproblem cost Sketch size (k)
HOOI Ω(nnz(TTT )R) /

ALS + TensorSketch Õ(knR+ kR3) O((R2/δ) · (R2 + 1/ε))
HOOI + TensorSketch O(knR+ kR4) O((R2/δ) · (R2 + 1/ε2))
HOOI + leverage scores O(knR+ kR4) O(R2/(ε2δ))

Sketched HOOI performs well in experiments

Across a few test matrices, sketched HOOI converges to at least 98% of the
accuracy of plain HOOI with k = 16R2 (same number of iterations)

ALS+TensorSketch attains noticeably lower accuracy than HOOI
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Optimal Sketching for Arbitrary Tensor Networks

Given input data with tensor network structure, seek cost-optimal accurate
embeddings (Linjian Ma and E.S., arXiv:2205.13163)

Assume Gaussian sketching and classical O(n3) matmul cost
Any ‘linearizable’ tensor network embedding is accurate (follows from
S = S1 · · ·Sm, Si = I ⊗ · · · ⊗ Ŝi ⊗ · · · ⊗ I satisfying JL Lemma)
Ahle et al (SODA 2020) consider binary tree embeddings
We derive a non-tree embedding that reduces cost by up to O(

√
k)

for the same accuracy for Kronecker product inputs
We also derive a general embedding and prove optimality (with some
restrictions) for general inputs
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Partitioning for Parallel Sorting

Problem (Parallel Sorting):

Given p processors with n/p keys per process, sort keys so that processor i owns

the ith subsequence of Θ(n/p) keys in the global order.

We focus on sampling keys to obtain a balanced p-way partition

Communication-optimal algorithms based on mergesort1 communicate
all keys multiple times and have not shown to be effective in practice

State-of-the-art approaches communicate most keys once or twice, by
first computing an approximate partition of the global keys

Obtaining a balanced partition essentially amounts to finding a
sample key for each interval of n/p keys in the global order

1Goodrich, ACM STOC 1996 (derived from Cole’s parallel mergesort, SIAM JC 1988)
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Sample and Histogram Sort

Sample Sort1 finds balanced splitting with a sample of size O(p log p)

Histogram Sort2 calculates histograms – global ranks of a set of an
iteratively-refined set of keys, and is practical3

Histogram Sort with Sampling4 selects keys to histogram by selective
sampling, needs O(log log p) rounds

We show5 Θ(log∗ p) rounds with O(p) total samples suffice; lower
bound uses Yao’s principle and distribution theory of runs (A.M.
Mood, 1940)

1H. Shi and J. Schaeffer, 1992 and others
2L. Kale and S. Krishnan, 1993
3E.S., L. Kale, IPDPS 2010
4Vipul Harsh, E.S., L. Kale, SPAA 2019
5W. Yang, V. Harsh, E.S., arXiv:2204.04599
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Partition Sampling Lower Bound Proof Overview
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