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Laboratory for Parallel Numerical Algorithms

Recent/ongoing research topics
@ parallel matrix computations
o QR factorization
e triangular solve
e eigenvalue problems
@ tensor computations
e tensor decomposition
e sparse tensor kernels
e tensor completion
@ simulation of quantum systems
e tensor networks
e quantum chemistry
e quantum circuits
o fast bilinear algorithms
e convolution algorithms
e tensor symmetry
e fast matrix multiplication
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Library for Massively-Parallel Tensor Computations

Cyclops Tensor Framework! sparse/dense generalized tensor algebra
@ Cyclops is a C++ library that distributes each tensor over MPI

@ Used in chemistry (PySCF, QChem)Z, quantum circuit simulation
(IBM/LLNL)3, and graph analysis (betweenness centrality)*

@ Summations and contractions specified via Einstein notation
E["aixbjy”] += X[naixbjyn]_U[nabun]*v[nijun]*w[nxyun]

@ Best distributed contraction algorithm selected at runtime via models

@ Support for Python (numpy.ndarray backend), OpenMP, and GPU

@ Simple interface to core ScaLAPACK matrix factorization routines

https://github.com/cyclops-community /ctf

E.S., D. Matthews, J. Hammond, J.F. Stanton, J. Demmel, JPDC 2014
3E. Pednault, J.A. Gunnels, G. Nannicini, L. Horesh, T. Magerlein, E. S., E. Draeger, E. Holland, and R. Wisnieff, 2017
4E.S., M. Besta, F. Vella, T. Hoefler, SC 2017
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Sparsity in Tensor Contractions

Edge weak scaling for uniform random graphs Weak scaling of PYSCF GCSD using Cyclops
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e Cyclops supports sparse representation of tensors!

@ Choice of representation specified in tensor constructor

@ CSR or DCSR? (2-index CSF?3) representation used locally for
contractions

lE.S., T. Hoefler 2015
2 A Bulic, J.R. Gilbert, 2008
35. Smith, G. Karypis 2015
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LPNA

All-at-Once Multi-Tensor Contraction

Cyclops MTTKRP with m=1B, R=50 on 4096 Cores of Stampede2 Cyclops TTTP with m=1B, R=60 on 4096 Cores of Stampede2
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With sparsity, all-at-once contraction® of multiple tensors can be faster?.

@ Tensor times tensor product
(TTTP) enables sparse residual
and CP tensor completion

@ Sparse CP decomposition methods
dominated in cost by MTTKRP

Uiy = Ztijkvjrwkr N s
ik Tijk = ik WirVjr Wiy
T

@ All-at-once sparse MTTKRP needs

less communication than pairwise .
asymptotically

1S. Smith, J. Park, G. Karypis, 2018
2Zecheng Zhang, Xiaoxiao Wu, Naijing Zhang, Siyuan Zhang, and E.S. arXiv:1910.02371
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CP Tensor Decomposition Algorithms

@ Tensor of order N has N modes and dimensions s X --- X s

@ CP and Tucker tensor decompositions®

g
<
S Yy S N
p = H By + H B2 Foet H by . _ A S

o Alternating least squares (ALS) is most widely used method

o Optimize one factor matrix at a time, yielding quadratic optimization
subproblems

e Achieves monotonic linear convergence

@ Gauss-Newton method is an emerging alternative

o Optimizes all factor matrices at once by quadratic approximation of
nonlinear objective function

e Non-monotonic, but can achieve quadratic convergence

1Kolda and Bader, SIAM Review 2009
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Pairwise Perturbation Algorithm

’ initialization step
y 10'] ~*- ALS (NumPy)
-%- ALS (Cyclops)
_ ++ ALS (Tensor-Toolbox)
§ —e-- PP-initialization (NumPy)
8 10°] —o PP-initialization (Cyclops)
3 —m— PP-approximate (NumPy) /
e —&— PP-approximate (Cyclops)
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New algorithm: pairwise perturbation (PP)! approximates ALS

@ based on perturbative expansion of ALS update to
approximate MTTKRP

@ approximation is accurate when ALS updates stagnate o

e rank R < s~ CP decomposition:

-

o ALS sweep cost O(sV R) = O(s?R), up to 33x speed-up  Linjian Ma

1Linjian Ma, E.S. arXiv:1811.10573
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Parallel Pairwise Perturbation Algorithm
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Effective parallelization by decomposing MTTKRP into local MTTKRPs !

U = MTTKRP(T,V, W) = U, = Y MTTKRP(T 1, V;, W;,)

e processor (i, j, k) owns Tk, V;, and Wy,

gk

@ pairwise perturbation can be used to approximate local MTTKRPs
@ multi-sweep dimension-tree (MSDT) amortizes terms across sweeps

1Linjian Ma, E.S. IPDPS 2021
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Regularization and Parallelism for Gauss-Newton

Random low rank tensor with s=4

3 H20 system with R=200
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New regularization scheme! for Gauss-Newton CP with implicit CG?

@ Oscillates regularization parameter geometrically
between lower and upper thresholds

@ Achieves higher convergence likelihood

@ More accurate than ALS in applications
o Faster than ALS sequentially and in parallel Navjot Singh

1Navjot Singh, Linjian Ma, Hongru Yang, and E.S. arXiv:1910.12331
P. Tichavsky, A. H. Phan, and A. Cichocki., 2013
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Sparse Tensor Decomposition

@ MTTKRP is the most costly operation in spars CP-ALS

Ujr = § ik Vjr Wiy
J.k

@ Sparse MTTKRP can be done faster all-at-once than by contracting

two tensors at a time
Cyclops MTTKRP with m=1B, R=50 on 4096 Cores of Stampede2

Negative Log Density -log2(m/(I*J*K))
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Randomized Methods for Sparse Tensor Decomposition

@ When seeking a low-rank R = O(1) decomposition for a sparse
tensor, sketching schemes have been shown to be efficient

@ In this regime, Tucker can be used to construct a CP decomposition

@ Leverage score sampling on the rank-constrained least squares
problem minx ..uk(x)<r [|[AX — Bl F leads to a state-of-the-art
cost-accuracy trade-off! in approximations to Tucker-ALS

o Ideas similar to work by Liu and Moitra (2020) on tensor completion

Algorithm for Tucker LS solve cost Sample size (m)

ALS O(nnz(T)RN™h) /

ALS + TensorSketch®> | O(mRY + msR) O(R? -3V /(€26))

ALS + TTMTS? O(msRN~1) O(RQW D 3N=1/(€26))

ALS + TensorSketch! | O(mR*N =2 + sRN™) | O((RVN ™Y +1/¢*) - BR)N =1 /5)
ALS + leverage scores’ | O(mR* 2 4 sRN~1) | O(RW D /(€26))

1Linjian Ma and E.S., in preparation
2
O. Malik and S. Becker, 2018 (assuming unconstrained LSQ)
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Tensor Completion

Random tensor w/ s=100 R=20 frac= 0.3

Rank 100 Completion of Netflix Tensor with 100M nonzeros — ALs
GN
= SGD with sample rate .003 and learning rate .00003 10°
580 —e- CCD++ without TTTP
2 - ALS with implicit CG
2 SGD with MTTKRP. o
€40 - CCD with MTTKRP 10
2 - ALS with implicit CG and MTTKRP g
z z
520 1072
H 10 102
2
z
05 4 10 20 30 40 50
0 500 1000 1500 2000 2500 3000 3500 4000
iterations

Execution Time (seconds) on 1024 Cores of Stampede2

@ Via the CTF Python interface, we have implemented SGD, CCD, ALS
(with iterative and direct solves), and Gauss-Newton!

e Can also handle a variety of loss functions (generalized
decomposition)

@ All-at-once primitives for MTTKRP, TTTP, and explicit solves in
completion ALS drastically improve performance

1Navjot Singh, Zecheng Zhang, Xiaoxiao Wu, Naijing Zhang, Siyuan Zhang, and Edgar Solomonik arXiv:1910.02371
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Quantum Circuit Simulation with Tensor Networks

e A quantum circuit is a direct description of a tensor network®

ip ip ip ig @—A i -
) ~lo
11 jl jl kl
0) H H P
.@ i .ei - ( ) ey

@ Why use HPC to (approximately) simulate quantum circuits?
enable development/testing/tuning of larger quantum circuits
o understand approximability of different quantum algorithms

e quantify sensitivity of algorithms to noise/error

e potentially enable new hybrid quantum-classical algorithms

@ Cyclops utilized to simulate 49-qubit circuits by IBM+LLNL team via
direct contraction? and by another team from via exact PEPS
evolution /contraction?

!Markov and Shi SIAM JC 2007

2Pednault et al. arXiv:1710.05867

3Guo et al. Phys Rev Letters, 2019
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Tensor Network State Simulation
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PEPS Contraction

@ Exact contraction of PEPS is #P-complete, so known methods have
exponential cost in the number of sites

@ PEPS contraction is needed to compute expectation values

@ Boundary contraction is common for finite PEPS and can be
simplified with einsumsvd
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Implicit Randomized einsumsvd

@ The einsumsvd primitive provides an effective abstraction for tensor
network simulation methods

b oo

e An efficient general implementation is to leverage randomized SVD /
orthogonal iteration, which iteratively computes a low-rank SVD by a
matrix—matrix product that can be done implicitly via tensor
contractions
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PEPS Benchmark Performance

—e— Evolution: 88, r=70 #- Contraction: 88, r =80
©- Evolution: 8x8, r=140  -#- Contraction: 88, r = 160
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e We introduce a new library, Koala!, for high-performance simulation
of quantum circuits and time evolution with PEPS?

@ Koala achieves good parallel scalability for approximate gate
application (evolution) and contraction

@ Approximation can be effective even for adversarially-designed circuits
such as Google's random quantum circuit model (figure on right)

Yhttps://github.com/cyclops-community/koala
2Yuchen Pang, Tianyi Hao, Annika Dugad, Yiging Zhou, and E.S. SC 2020
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PEPS Accuracy for Quantum Simulation
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@ ITE code achieves improvable accuracy with increased PEPS bond
dimension, but approximation in PEPS contraction is not variational

e Variational quantum eigensolver (VQE), which represents a
wavefunction using a parameterized circuit U(#) and minimizes

{U©) H|U(9)),
also achieves improvable accuracy with higher PEPS bond dimension
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Automatic Differentiation for Tensor Computations

@ Tensor network and tensor decomposition methods all typically based
on applying Newton's method on a sequence of subsets of variables

e Automatic differentiation (AD) in principle enables automatic
generation of these methods

e However, existing AD tools such as Jax (used by TensorFlow) are

designed for deep learning and are ineffective for more complex tensor
computations
o these focus purely on first order optimization via Jacobian-vector
products
e unable to propagate tensor algebra identities such as
(A® B)"!' = A~! @ B~! to generate efficient code

LPNA Algorithms for Tensor Computations February 24th, 2021 20/26



AutoHOOT: Automatic High-Order Optimization for
Tensors

o AutoHOOT! provides a tensor-algebra centric AD engine

@ Designed for einsum expressions and alternating minimization
common in tensor decomposition and tensor network methods

@ Python-level AD is coupled with optimization of contraction order
and caching of intermediates

@ Generates code for CPU/GPU /supercomputers using high-level
back-end interface to tensor contractions

w

== AutoHOOT DT
mmm AutoHOOT

= AutoHOOT
Quimb

o

10° Tensorly
scikit-tensor

Time for one ALS sweep (s)
>

Time for one sweep of HVP (s)
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Linjian Ma, Jiayu Ye, and E.S. PACT 2020
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Group Symmetry in Tensor Contractions

@ Tensor with cyclic group symmetry can be represented as block-sparse
tige.. =0 if  [i/Gi] + [j/G2] + [k/G3] +---#0 (mod G).

@ Group symmetries of multiple types arise due to conservation laws
when physical systems (quantum number symmetry, spin symmetry,
rotational symmetry, translational symmetry)

@ New contraction algorithm, irreducible representation alignment uses
new dense reduced form tensor to handle group symmetry without
looping over blocks or sparsity®

B Loop Blocks (1 Proc, NumPy)
A Symtensor (1 Proc, BLAS)

A Symtensor (1 Proc, CTF)

Ml Loop Blocks (64 Proc, NumPy)
[ Symtensor (64 Proc, BLAS)
CJSymtensor (64 Proc, CTF)
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1Y. Gao, P. Helms, G. Chan, and E.S., arXiv:2007.08056
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Permutational Symmetry in Tensor Contractions

Reduction in operation count for different entry types Performance of nested AB+BA on full KNL node
128 T T T T T 4096 T T T T
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[} Effective matrix dimension (n*b)
New contraction algorithms reduce cost via permutational symmetry?
@ Symmetry is hard to use in contraction e.g. y = Ax with A symmetric

@ For contraction of order s + v and v + t tensors to produce an order s + t tensor,
previously known approaches reduce cost by s!t!v!

@ New algorithm reduces number of products by w! where w = s+t + v, leads to
same reduction in cost for partially-symmetric contractions

C=AB+ BA = ¢ = Z[(aij + aik + aji) - (bij + bik + bjx)] — ...
k

lE.S, J. Demmel, CMAM 2020
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Communication Cost of Fast Bilinear Algorithms

@ Given inputs a and b, a bilinear algorithm computes
c= FO[(FMNTq)o (FBTh)

@ All fast algorithmns for matrix multiplication, convolution, and
symmetric tensor contractions are bilinear algorithms

@ Communication lower bounds can be attained for any execution of a
bilinear algorithm, given a lower bound on the rank of subset of
columns of F(A) F(B) o F(O)1

@ Can automatically obtain rank lower bounds for A ® B from that of
A and B, enabling application of these lower bounds to nested
algorithms such Strassen’s algorithm, convolution, and symmetry
preserving algorithms applied to partially symmetric contractions?

'ES., J. Demmel, T. Hoefler arXiv:1707.04618
2Caleb Ju, Yifan Zhang, E.S. in preparation
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Conclusion and Future Directions

@ Talk introduced new algorithms and software for tensor contractions,

tensor decomposition, and tensor networks, consideri

ng challenges

involved in handling symmety, sparsity, and parallelism

@ We are also exploring solvers for QP interior point methods via a new

Schur complementation strategy and preconditioners

Number of Krylov terations Per Interior Point Iteration

1

Unprec
A
Py

G Iteration Count

24 40
Number of equality constraints m;

!Samah Karim and E.S. in preparation
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