
A massively-parallel framework for Coupled Cluster
Edgar Solomonik (in collaboration with Devin Matthews, Jeff Hammond, and James Demmel)
solomon@cs.berkeley.edu

Tensor contractions
Aim: support parallel execution of tensor contractions
such as those needed by CCD,

Rab
ij = V ab

ij + P (ia, jb)

[
T ae
ij Ibe − T ab

imImj +
1

2
V ab
ef T

ef
ij +

1

2
T ab
mnI

mn
ij − T ae

mjI
mb
ie − Ima

ie T eb
mj + (2T ea

mi − T ea
im)Imb

ej

]

Iab = (−2V mn
eb + V mn

be )T ea
mn

Iij = (2V mi
ef − V im

ef )T ef
mj

Iijkl = V ij
kl + V ij

efT
ef
kl

Iiajb = V ia
jb −

1

2
V im
eb T ea

jm

Iiabj = V ia
bj + V im

be (T ea
mj −

1

2
T ae
mj)−

1

2
V mi
be T ae

mj

would like to have extensiblity to CCSDT/CCSDTQ
methods with 6-dimensional and 8-dimensional sym-
metric tensors.

Cyclops Tensor Framework (CTF)
Cyclops Tensor Framework is a parallel C++ framework
which provides support for symmetric tensors

CTF_World(MPI_COMM_WORLD) w;
CTF_Matrix(no, no, SY, w) I;
CTF_Tensor(4, {no, no, nv, nv}, {AS, NS, AS, NS}, w) T;
CTF_Tensor(4, {no, no, nv, nv}, {AS, NS, AS, NS}, w) R;

arbitrary contractions are supported via index strings

R[”abij”]+ = 1.0 ∗ T[”aeij”] ∗ I[”be”];

Each contraction is executed in a massively-parallel
fashion. Data may be entered and read by global index

for(i = 0; i < len; i++)

data[i] = foo(indices[i]));

A.write_remote_data(len, indices, data);

This disributed functionality layer is employed by
higher-level chemistry libraries such as Aquarius and
QChem which provide spin-symmetric tensor types and
implement Coupled Cluster.

CCSD weak scaling
Cyclops Tensor Framework scales CCSD to no = 250, nv = 1, 000.

 100

 200

 300

 400

 500

 600

8192 16384 32768 65536 131072

Te
ra

flo
p/

s

#cores

CCSD weak scaling on Mira (BG/Q)

Aquarius/CTF

Virtualized topology-aware mapping

Cyclic data-layout
Blocked layout Block-cyclic layout Cyclic layout

Red denotes padding / load imbalanceGreen denotes fill (unique values)

CCSD comparison with NWChem
CCSD iteration time on 64 nodes of Cray XE6 (Hopper), compares favorably
to NWChem:

system no nv CTF NWChem
w5 25 180 14 sec 36 sec
w7 35 252 90 sec 178 sec
w9 45 324 127 sec -
w12 60 432 336 sec -

On 128 nodes, CTF completed w9 in 73 sec/iter, NWChem in 223 sec/iter.

Nested parallel matrix multiplication

When possible, tensor data is also replicated to reduce communication.

Tensor transposition
Three data reshuffling stages are needed, kernels for each are threaded

1. Sparse writes input tensor data

2. Tensor globally redistributed to map up each contraction

3. Tensor blocks partially unpacked and locally tansposed

Future work
• Sparse tensor support

• Improved algorithms for broken tensor symmetries

• CCSDT (currently in optimization) CCSDTQ (to be implemented)

• Tensor slicing (e.g. B = A[”1 : no/2, 1 : no/2, 1 : nv, 1 : nv”];)

1


