
2.5D parallel algorithms for dense linear algebra
Edgar Solomonik and James Demmel
solomon@cs.berkeley.edu

2.5D matrix multiplication

0

1

2

3

0 21 3

1

2

3

0

2 03 1

0

1

21 2 0

0

10 1
0

0

2

32 3
0

10 1
0

0

2
2

+

2
2

3
3

0
0

1
1

+
3D (P=64, c=4)

2.5D (P=32, c=2)

2D (P=16, c=1)

B₀₁

B₁₁

B₂₁

B₃₁

A₂₁A₂₀ A₂₂ A₂₃
=

 0

 20

 40

 60

 80

 100

256 512 1024 2048

P
er

ce
nt

ag
e

of
 m

ac
hi

ne
 p

ea
k

#nodes

2.5D MM on BG/P (n=65,536)

2.5D MM
2D MM (Cannon)

ScaLAPACK PDGEMM

 0

 10

 20

 30

 40

 50

 60

8192 32768 131072

P
er

ce
nt

ag
e

of
 m

ac
hi

ne
 p

ea
k

n

2.5D MM on 16,384 nodes of BG/P

2D MM
2.5D MM

2.5D LU factorization

2. Perform TRSMs to compute
a panel of L and a panel of U.

1. Factorize A₀₀
redundantly on each layer.

L₀₀

U₀₀

U₀₃

U₀₃

U₀₁

L₂₀
L₃₀

L₁₀

3. Broadcast blocks so all
layers own the panels
of L and U.

(A)

(B)

4.Broadcast different
subpanels within each
layer.

5.Multiply subpanels
on each layer.

6.Reduce (sum) the
next panels.*

U

L

7. Broadcast the panels and
continue factorizing the Schur's
complement...

* All layers always need to contribute to reduction
even if iteration done with subset of layers.

(C)
(D)

U₀₀

U₀₀

L₀₀

L₀₀

U₀₀

L₀₀

 0

 20

 40

 60

 80

 100

256 512 1024 2048

P
er

ce
nt

ag
e

of
 m

ac
hi

ne
 p

ea
k

#nodes

2.5D LU on BG/P (n=65,536)

2.5D LU (no pvt)
2D LU (no pvt)

 0

 5

 10

 15

 20

 25

 30

 35

 40

8192 32768 131072
P

er
ce

nt
ag

e
of

 m
ac

hi
ne

 p
ea

k

n

2.5D LU without pivoting on 16,384 nodes of BG/P

2D LU
2.5D LU

2.5D LU with pivoting

PA₀

L
U

L
U

L
₂₀

L₁₀

L
₃₀

L
₄₀

3. Pivot rows in first big block column
on each layer.

2. Reduce to find best pivot rows.

L
U

L
U

L U

L
U

L
₂₀

L
₃₀

L
₄₀

U
pdate

Update

Update

Update

Update

U
pdate

U
pdate

L₀₀
U₀₀

U₀₁

U₀₂

U₀₃

8. Perform TRSMs
 to compute panel of U

L₃₀

L₁₀
L₂₀

1. Factorize each block
in the first column with pivoting.

4. Apply TRSMs to
compute first column of L
and the first block of a row of U.

5. Update corresponding
interior blocks S=A-L *U₀₁.

6. Recurse to compute the rest
of the first big block column of L.

9. Update the rest
of the matrix as
before and recurse
on next block panel...

7. Pivot rows in the rest
of the matrix on each
layer.

P
L
U

P
L
U

P
L
U

P
L
U

P
L
U P

L
U

P
L
U

P
L
U

PA₃ PA₂ PA₁

U₀₁

U₀₁

U₀₁

U₀₁

L₁₀

L₁₀

L₁₀

U

U

L

L

L₁₀

U₀₁

U₀₁

U₀₁

U₀₁
L₁₀

L₁₀

L₁₀ L₀₀
U₀₀

L₀₀
U₀₀

L₀₀
U₀₀

k0

PA₀

 0

 20

 40

 60

 80

 100

256 512 1024 2048

P
er

ce
nt

ag
e

of
 m

ac
hi

ne
 p

ea
k

#nodes

2.5D LU with CA-pivoting on BG/P (n=65,536)

2.5D LU (CA-pvt)
2D LU (CA-pvt)

ScaLAPACK PDGETRF

 0

 5

 10

 15

 20

8192 32768 131072

P
er

ce
nt

ag
e

of
 m

ac
hi

ne
 p

ea
k

n

2.5D LU with CA-pivoting on 16,384 nodes of BG/P

2D LU with CA-pvt
2.5D LU with CA-pvt

Reduced communication complexity
2.5D algorithms replicate matrices to reduce communication.

• Memory usage: ↑ O(c)

• Words communicated: ↓ O(
√
c)

• Messages sent: ↓ O(c3/2) for MM and ↑ O(
√
c) for LU

All communication costs are theoretically optimal according to lower
bounds. 2D algorithms (standard in ScaLAPACK) are generalized by
2.5D algorithms (c = 1).

Network topology awareness
Replication of matrices adds a third dimension to the logical proces-
sor grid. 2.5D algorithms parameterize this layout according to phys-
ical network topology.

• Network contention reduced or eliminated

• Multicasts and reductions performed along torus edges

• More network bandwidth saturated

These mappings are suitable for torus network topologies. Recursive
layouts are probably better for tree or switched network topologies.

Future directions
Algorithmic challenges:

• Nested 2D/2.5D MM tensor contraction algorithms

• Resolution of dependency challenges in 2.5D Householder QR

• Better theoretical models for network topologies

Technical challenges:

• Efficient abstraction of distributed matrix layouts

• Automation of topology mapping and algorithm synthesis

1

