Bitonic sequence as a circle
Matching opposite pairs in the circle
Swapping opposite pairs in the circle
Collecting the min/max into different subsequences
Any partition subdivides smaller/greater halves
Arranging the two halves into new circles
Swapping opposites again
Continuing with bitonic merge recursively
Bitonic merge

A *bitonic sequence* is any cyclic shift of the sequence
\[
\{i_0 \leq \cdots \leq i_k \geq \cdots i_{n-1}\}
\]
- each step of bitonic merge partitions the sequence into smaller and greater sets of size \(n/2\), both of which are bitonic sequences
- each compare-and-swap acts on elements a distance of \(n/2\) away
- these pairings are unaffected by a cyclic shift
- therefore, it suffices to consider swaps on the sequence
 \[
 S = \{i_0 \leq \cdots \leq i_k \geq \cdots i_{n-1}\}
 \]
- there exists \(l \leq k\), such that the largest \(n/2\) elements of \(S\) are the subsequence \(\{i_l, \ldots, i_{l+n/2-1}\}\)
- since every element is compared with one \(n/2\) away, all of these will be paired with an element outside of the subsequence
- hence the elements of this subsequence are the larger elements in the \(n/2\) comparisons
- any subset of a bitonic sequence is a bitonic sequence
Shortest paths in graphs

Given a connected graph $G = (V, E)$ and a weight function $w : E \rightarrow \mathbb{R}$

- find paths $P = (v_1, \ldots, v_s), \ v_i \in V, (v_i, v_{i+1}) \in E$, with min weight

$$W(P) = \sum_{i=1}^{s-1} w((v_i, v_{i+1}))$$

- we define the distance between $u, v \in V$, $d(u, v)$ as the minimal weight $W(P)$ of any path $P = (u, \ldots, v)$ in G

- single-source shortest-paths (SSSP) computes $d(s, v)$ from a source $s \in V$ to all destinations $v \in V$

- all-pairs shortest-paths (APSP) computes $d(u, v)$ from all sources $u \in V$ to all destinations $v \in V$

- shortest paths from u can be constructed from distances, by computing the predecessor(s) of each node v:

$$\{x : d(u, x) + w(x, v) = d(u, v)\}$$
Breadth first search (BFS)

Given an unweighted graph \(w(e) = 1 \) for all \(e \in E \), BFS computes SSSP

- BFS is also a primitive in many other graph algorithms
- a good way to think of BFS is as iterative computation of frontiers
- the root vertex \(r \) is the first frontier, and each subsequent frontier is connected to the previous
- the frontiers are a disjoint partition of vertices

\[
\left\{ F_1, \ldots, F_d \right\}, \quad F_1 = \{ r \}, \quad V = \bigcup_{i=1}^{d} F_i,
\]

\[
F_i = \left\{ v : v \in V \setminus (F_{i-1} \cup F_{i-2}), \exists u \in F_{i-1}, (u, v) \in E \right\}
\]

- for each vertex \(u \in F_i \), there is a path of \(i - 1 \) edges from \(r \) to \(u \)
- therefore the unweighted distance \(d(r, u) = i - 1 \) if \(u \in F_i \)
Expressing BFS algebraically

BFS is repeated multiplication of a sparse matrix and a sparse vector
- let the $|V| = n$ vertex labels be unique numbers, so $V = \{1, \ldots, n\}$
- consider the adjacency matrix A, where $A(i, j) = 1$ if $(i, j) \in E$
- Q: if G is undirected what property would A satisfy?
- A: A would be symmetric
- we can think of a non-existent edge as an edge with infinite weight, so $A(i, j) = \infty$ if $(i, j) \notin E$
- we represent each frontier F_i as a vector f_i, where $f_i(j) = i - 1$ if $j \in F_i$ and $f_i(j) = \infty$ otherwise
- so, if the root vertex is $r = 1$, $f_1 = [0 \ \infty \ \cdots \ \infty]^T$
- now, we can compute each frontier and tentative distances D_i, with $D_1 = f_1$ from the subsequent via

$$f_{i+1}(j) = \begin{cases} \infty & : D_i(j) \neq \infty \\ \min_k (f_i(k) + A(k, j)) & : \text{otherwise} \end{cases}$$

and set $D_{i+1}(j) = \min(D_i(j), f_{i+1}(j))$
Semirings

To express graph operations as matrix operations, we need to redefine the elementwise operators

- a **semiring** \((S, \oplus, \otimes)\) is an algebraic structure
 - it defines an additive operator \(\oplus\) and a multiplicative operator \(\otimes\) on elements in set \(S\)
 - both operators should have an identity
 - the additive operator should be commutative and the multiplicative operator should be distributive
 - the additive operator *need not* have an inverse, which differentiates semirings from rings

- other algebraic structures, in particular monoids can make sense for graph algorithms when combined with appropriate functions

- a semiring induces corresponding matrix/vector operations

\[
C = A \oplus B \rightarrow C(i, j) = A(i, j) \oplus B(i, j)
\]

\[
Z = X \otimes Y \rightarrow Z(i, j) = \bigoplus_{k=1}^{n} X(i, k) \otimes Y(k, j)
\]
The tropical semiring

The tropical semiring \((\mathbb{R} \cup \{\infty\}, \min, +)\) enables shortest path computation
- note that \(+\) is the \textit{multiplicative} operator in the tropical semiring
- Q: what are the additive and multiplicative identities of the tropical semiring?
- A: \(\infty\) and 0
- the tropical semiring allows us to compute frontier in BFS, recall

\[
f_{i+1}(j) = \begin{cases} \infty : D_i(j) \neq \infty \\ \min_k (f_i(k) + A(k,j)) : \text{otherwise} \end{cases}
\]

- perform \(x_{i+1} = f_i \otimes A\) to get \(x_{i+1}(j) = \min_k (f_i(k) + A(k,j))\) then set

\[
f_{i+1}(j) = \begin{cases} \infty : D_i(j) \neq \infty \\ x_{i+1}(j) : \text{otherwise} \end{cases}
\]

- with unweighted graphs we could also choose do BFS with other semirings
BFS cost

Let's now analyze the cost of BFS

- the number of operations needed to compute BFS is $O(|E|)$, since each edge is traversed once
- the bandwidth cost is at least $O(|E| \cdot \nu)$, since we need to read each edge from memory to cache
- parallelizing BFS in shared or distributed memory can be challenging
 - partitioning the graph could reduce communication costs, but is generally more expensive than BFS
 - in shared memory, threads can branch and perform atomic updates or do redundant work
 - in distributed memory, it makes sense to use a 2D processor grid distribution for A (the edges)
- the dominant cost is multiplication of sparse matrices with sparse vectors
- if we are able to balance the work of the d (depth of G) SpMSpVs, we obtain

\[
T_{BFS} = O(d \log(P) \cdot \alpha + \frac{n}{\sqrt{P}} \cdot \beta + \frac{|E|}{P} \cdot (\nu + \gamma))
\]
Load balancing by randomization

So how can we balance the work for arbitrary graphs?

- randomly ordering the vertices should achieve load balance with high probability

- **balls-into-bins problem:**
 - place m balls randomly into k bins, what maximum load l is obtained with high probability?
 - $l = m/k$ would be ideal, answer depends on ratio of m to k
 - if $m > k \log k$, we get $l = O(m/k)$, in particular
 - $l = m/k + O(\sqrt{m \log k} / k)$
 - in other scenarios there can be (poly)logarithmic factors of imbalance (less than $O(\min(\log(m), \log(k)))$)
 - we will return to this problem in more depth in a subsequent lecture
Load imbalance in BFS

What does the load balance of BFS depend on, given a 2D distribution with randomized vertex ordering?

- If $|F_i| > \sqrt{P} \log(P)$, we can expect the vertices in the frontier to be balanced across columns of the processor grid.
- So when $|F_i|$ is small, we expect to have more load imbalance.
- We can argue that the distribution of edges (sparse matrix A) among processors is load balanced by a similar argument:
 - Given a uniform degree graph, we can assign each ball a constant weight and think of bins as processor grid rows/columns.
 - Variance of vertex degree would increase load imbalance, having some fully connected vertices (few dense columns/rows in A) is a worst case.
Load imbalance in BFS for quickly growing frontiers

What might the load imbalance in BFS be for some typical graphs?
- many “real-world” graphs have high vertex expansion, typically defined as
 \[h(G) = \min_{|S| \leq n/2} \frac{|\delta(G, S)|}{|S|} \]
 where \(\delta(G, S) \) is the outer boundary of \(S \) in \(G \) (its also \(F_{i-1} \cup F_{i+1} \) if \(S = F_i \) and \(G \) is undirected)
 \[\delta(G, S) = \{ v : v \in V \setminus S, \exists u \in S, (u, v) \in E \} \]
- one can also measure expansion with respect to a subset of size \(s \), namely \(h(G, s) = \min_{|S| = s} |\delta(G, S)| \)
- if \(h(G) > 2 \) or \(h(G, s) \geq 2s \) then \(|F_i| \) will grow geometrically with \(i \)
- even if these conditions don’t hold, \(|F_i| \) may grow very quickly, for instance in power-law graphs, which contain high-degree vertices
- in such cases, parallel BFS would be load imbalanced when \(|F_i| \) is small, but the bandwidth costs will be dominated by processing the larger frontiers
Short pause
Projects

Project is in total 60% of the course grade

- first proposal grade deferred, 10% of total grade or 1/6 of project grade is proposal
- 30-min presentation and project report need to be done by end of semester
- guidelines for stage 2 proposal (due Oct 19)
 - project should be set into context with respect to at least 2 previous work citations
 - novelty of the proposed work should be discussed
 - an ideal proposal should be the first ~2 pages of your project report: problem statement, previous work, methodology
- project report should additionally detail the completed work and results (~5 pages)
Dijkstra’s algorithm

Let’s now return to SSSP for weighted graphs

- BFS is not generally correct, since it only considers paths with a minimal number of edges
- The classical solution for graphs with nonnegative edge weights is Dijkstra’s algorithm
 - Visit the closest unvisited node and update distances by relaxing edges connected to that node
 - Priority queue typically used to find closest node
 - Each edge relaxed once and queue modified once for each node, for a cost of $O(|E| + n \log n)$
- Dijkstra’s algorithm has very little parallelism
- Expressed algebraically, it performs $n - 1$ SpMSpVs with a vector containing a single nonzero
- Δ-stepping [Meyer, Sanders 2003] modifies Dijkstra to exploit more parallelism, by relaxing edges of all nodes within a distance of Δ from the visited nodes
Bellman-Ford algorithm

The Bellman-Ford algorithm computes shortest shortest paths in an arbitrary graph

- if there are negative cycles the problem of computing distances is not well-defined
- Dijkstra’s algorithm is not correct in the presence of negative edges
 - we cannot just visit each vertex once (“set labels”), we may always detect a shorter path later
- the Bellman-Ford algorithm relaxes all edges (”updates labels”) in the graph at every iteration
 - for sequential execution, the edges are relaxed in some order
 - for parallel execution we can think of an iteration as relaxing all vertices simultaneously
 - of course, we should avoid relaxing outgoing edges from nodes with tentative distance (label) ∞
 - furthermore, we can avoid relaxing edges from nodes whose distance was unchanged since the last set of relaxations
Bellman-Ford algorithm algebraically

At each iteration, we relax a subset of vertices (a frontier), and take the next frontier to be the set of vertices with modified distance labels

\[x_{i+1} = f_i \otimes A \quad f_{i+1}(j) = \begin{cases} \infty : x_{i+1}(j) = D_i(j) \\ x_{i+1}(j) : \text{otherwise} \end{cases} \]

and as in BFS, set \(D_{i+1}(j) = \min(D_i(j), f_{i+1}(j)) \)

For a worst case graph, every node appears in every frontier, for a cost of

\[T_{BF} = O(h \log(P) \cdot \alpha + hn/\sqrt{P} \cdot \beta + h|E|/P \cdot (\nu + \gamma)) \]

where \(h \) is the max number of edges in any shortest path, and assuming a load balanced 2D layout of \(A \)

This is the cost of \(h \) SpMVs (sparse-matrix times dense vector) with \(|E|\) nonzeros in the matrix, rather than \(d \) SpMSpVs, which gave the BFS cost

\[T_{BFS} = O(d \log(P) \cdot \alpha + n/\sqrt{P} \cdot \beta + |E|/P \cdot (\nu + \gamma)) \]