DFT matrix and convolutions

For any n, let $\omega_n = e^{-2\pi i/n}$, a DFT matrix of dimension n is given by

$$\forall j, k \in [0, n - 1] \quad D_n(j, k) = \omega_n^{jk}$$

for example $D_4 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & \omega & \omega^2 & \omega^3 \\ 1 & \omega^2 & \omega^4 & \omega^6 \\ 1 & \omega^3 & \omega^6 & \omega^9 \end{bmatrix}$

A convolution takes as input vectors a and b and computes vector c

$$\forall k \in [0, n - 1] \quad c(k) = \sum_{j=0}^{k} a(j) b(k - j)$$

It can be computed via the DFT

$$c = D_n^{-1}[(D_n a) \odot (D_n b)]$$

where \odot is an elementwise product
Radix-2 Fast Fourier Transform (FFT)

We now look at how to apply the DFT via the FFT algorithm

- intuitively, we can expect to compute the DFT quickly since D_n is so nicely structured, a single root of unity parameter ω_n can be used to represent it
- consider $b = D_n a$, we have

$$\forall j \in [0, n-1] \quad b(j) = \sum_{k=0}^{n-1} \omega_n^{jk} a(k)$$

- our goal is to find a recursive algorithm, that expresses the DFT as two DFTs of dimension $n/2$, with a different root of unity $\omega_{n/2}$
- $\omega_{n/2} = \omega_n^2$, so we separate the summands into odds and evens

$$\forall j \in [0, n-1] \quad b(j) = \sum_{k=0}^{n/2-1} \omega_n^{j(2k)} a_{2k} + \sum_{k=0}^{n/2-1} \omega_n^{j(2k+1)} a(2k + 1)$$
$$= \sum_{k=0}^{n/2-1} \omega_{n/2}^{jk} a_{2k} + \omega_j \sum_{k=0}^{n/2-1} \omega_{n/2}^{jk} a(2k + 1)$$
We can note that, given

\[\forall j \in [0, n - 1] \quad b(j) = \sum_{k=0}^{n/2-1} \omega_n^{jk} a(2k) + \omega_n^j \sum_{k=0}^{n/2-1} \omega_n^{jk} a(2k + 1) \]

the summations for \(b(j) \) and \(b(j + n/2) \) are closely related, \(\forall j \in [0, n/2 - 1] \)

\[b(j + n/2) = \sum_{k=0}^{n/2-1} \omega_n^{(j+n/2)k} a(2k) + \omega_n^{j+n/2} \sum_{k=0}^{n/2-1} \omega_n^{(j+n/2)k} a(2k + 1) \]

we now note \(\omega_n^{(j+n/2)k} = \omega_n^{jk} \) since \((\omega_n^{n/2})^k = 1^k = 1 \), so

\[\forall j \in [0, n/2 - 1] \quad b(j + n/2) = \sum_{k=0}^{n/2-1} \omega_n^{jk} a(2k) - \omega_n^j \sum_{k=0}^{n/2-1} \omega_n^{jk} a(2k + 1) \]

where we additionally use \(\omega_n^{n/2} = -1 \).
Radix-2 Fast Fourier Transform (FFT), contd.

Each of these two summation can be done recursively with an FFT

- lets vectors u and v be these two FFTs

$$\forall j \in [0, n/2 - 1] \quad u(j) = \sum_{k=0}^{n/2-1} \omega_{n/2}^{j+n/2} \cdot a(2k)$$

$$\forall j \in [0, n/2 - 1] \quad v(j) = \sum_{k=0}^{n/2-1} \omega_{n/2}^{j+n/2} \cdot a(2k + 1)$$

- we can make these two recursive calls simultaneously and without any work
- we then scale using ”twiddle factors” $z(j) = v(j) \cdot \omega_n^j$
- it then suffices to combine the vectors as follows

$$b = \begin{bmatrix} u + z \\ u - z \end{bmatrix}$$

- notice that the way we combine them can be seen as an FFT of dimension 2

$$b = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \text{vec} \left(\begin{bmatrix} b_1 & b_2 \end{bmatrix} \right) = \text{vec} \left(\begin{bmatrix} u & z \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \right) = \text{vec} \left(\begin{bmatrix} u & z \end{bmatrix} D_2 \right)$$
Cache complexity of radix-2 FFT

We can now analyze the cache complexity of this FFT algorithm:

- Let's consider γ to be the cost per operation, and ν to be the inverse memory bandwidth.
- At every recursive level, we have a linear cost of applying twiddle factors, yielding the recurrence:

 $$T_{FFT2}(n, H) = 2T_{FFT2}(n/2, H) + O(n \cdot \nu + n \cdot \gamma)$$

- Once the problem fits in cache (size H), we incur no more bandwidth cost:

 $$T_{FFT2}(n < H, H) = 2T_{FFT2}(n/2, H) + O(n \cdot \gamma) = O(n \log(n) \cdot \gamma)$$

- Therefore, the total cost (assuming $n > H$) is:

 $$T_{FFT2}(n, H) = O(n \log(n/H) \cdot \nu + n \log n \cdot \gamma)$$

- For $n \gg H$, this is flop to byte ratio approaches 1.
Lowering the cost of twiddle factors

We can subdivide an FFT not just into two FFTs, but into many, then combine the result, with... more FFTs!

- consider any factorization $n_1 n_2 = n$
- we can subdivide the FFT into n_1 FFTs of dimension n_2 then combine them with n_2 FFTs of dimension n_1 as follows

$$c(i_2 n_1 + i_1) = \sum_{j_1=0}^{n_1} \omega_{n_1}^{i_1 j_1} \left[\left(\sum_{j_2=0}^{n_2} \omega_{n_2}^{i_2 j_2} a(j_1 n_2 + j_2) \right) \omega_{n}^{i_1 j_2} \right]$$

- essentially we have separated the columns of the DFT matrix with stride n_1 and expressed the sum in terms of the root of unity $\omega_{n/n_1} = \omega_{n_2}$
- the factors $\omega_n^{i_1 j_2}$ correspond to the twiddle factors by which we multiplied the FFT of the odd subsequence of a in the radix-2 algorithm
Correctness of Radix-\(n_1\) FFT

Let's see why this equation is true

\[
c(i_2 n_1 + i_1) = \sum_{j_1=0}^{n_1} \omega_{n_1}^{i_1 j_1} \left[\left(\sum_{j_2=0}^{n_2} \omega_{n_2}^{i_2 j_2} a(j_1 n_2 + j_2) \right) \omega_{n}^{i_1 j_2} \right]
\]

We can show correctness by pushing the summations to the back

\[
c(i_2 n_1 + i_1) = \sum_{j_1=0}^{n_1} \sum_{j_2=0}^{n_2} \omega_{n_1}^{i_1 j_1} \omega_{n}^{i_1 j_2} \omega_{n_2}^{i_2 j_2} a(j_1 n_2 + j_2)
\]

\[
= \sum_{j_1=0}^{n_1} \sum_{j_2=0}^{n_2} \omega_{n_1}^{i_1 j_1 n_2} \omega_{n}^{i_1 j_2} \omega_{n_2}^{i_2 j_2 n_1} a(j_1 n_2 + j_2)
\]

\[
= \sum_{j_1=0}^{n_1} \sum_{j_2=0}^{n_2} \omega_{n}^{i_1 j_1 n_2 + i_1 j_2 + i_2 j_2 n_1} a(j_1 n_2 + j_2)
\]

\[
= \sum_{j_1=0}^{n_1} \sum_{j_2=0}^{n_2} \omega_{n}^{(i_2 n_1 + i_1)(j_1 n_2 + j_2)} a(j_1 n_2 + j_2)
\]

Q: Why is an extra factor of \(\omega^{i_2 n_1 j_1 n_2}\) not a problem?
Recursive structure of Radix-n_1 FFT

Let's see how we can apply this equation

$$c(i_2n_1 + i_1) = \sum_{j_1=0}^{n_1} \omega_{n_1}^{i_1j_1} \left[\left(\sum_{j_2=0}^{n_2} \omega_{n_2}^{i_2j_2} a(j_1n_2 + j_2) \right) \omega_{n}^{i_1j_2} \right]$$

- first let's decompose a into subvectors of length n_2, $a = \begin{bmatrix} a_1 \\ \vdots \\ a_{n_1} \end{bmatrix}$
- then we apply the FFT recursively to each of them, obtaining $v_{i_1} = D_{n_2}a_{i_1}$
- then we apply the twiddle factors to every element $u_{i_1}(j_2) = v_{i_1}(j_2) \omega_n^{i_1j_2}$
- then we apply the FFT recursively on different subvectors

$$\begin{bmatrix} c_1 \\ \vdots \\ c_{n_1} \end{bmatrix} = \text{vec} \left(\begin{bmatrix} u_1 & \cdots & u_{n_1} \end{bmatrix} D_{n_1} \right)$$

Q: sanity check, D_{n_1} is symmetric, so do we compute $D_{n_1}u_{i_1}$ recursively?

A: no, we do $\nu_{i_2}D_{n_1} = (D_{n_1} \nu_{i_2}^T)^T$ where $\begin{bmatrix} \nu_1 & \cdots & \nu_{n_2} \end{bmatrix}^T = \begin{bmatrix} u_1 & \cdots & u_{n_1} \end{bmatrix}$
Cache oblivious FFT

We can get a cache-oblivious FFT algorithm by choosing $n_1 = n_2 = \sqrt{n}$

- we now get a recurrence

$$T_{FFT}(n, H) = 2\sqrt{n}T_{FFT}(\sqrt{n}) + O(n \cdot \gamma + n \cdot \nu)$$

- once $n < H$, we incur no more bandwidth cost, we get to this after $\log_H(n)$ recursive calls, obtaining a total cost of

$$T_{FFT}(n, H) = O(n \log_H(n) \cdot \nu + n \log(n) \cdot \gamma)$$

- this improves over the radix-2 case, since

$$\log_H(n) = \log_2(n) / \log_2(H) \leq \log_2(n/H) = \log_2(n) - \log_2(H)$$
FFT in BSP

Let’s assume $n \geq P^2$, and again do radix-\sqrt{n} FFT

- The assumption $n \geq P^2$ is similar to what our allgather algorithms assumed (each processor starts with $\geq P$ different elements).
- Each processor computes \sqrt{n}/P FFTs of dimension \sqrt{n} with their local data.
- The data is transposed (all-to-all).
- Each processor computes \sqrt{n}/P FFTs of dimension \sqrt{n} with their local data.
- $T_{\text{BSP}}^{\text{FFT}}(n, P) = \alpha + n/P \cdot \beta$
- Q: Could we achieve the same cost if we allow only point-to-point messages?
- A: No, all-to-all has cost $T_{\text{FFT}}^{\alpha-\beta}(n, P) = \alpha \cdot \log_2(P) + n \log_2(P)/P \cdot \beta$
or $T_{\text{FFT}}^{\alpha-\beta}(n, P) = \alpha \cdot (P - 1) + n/P \cdot \beta$
Short pause
Introduction to communication lower bounds

A brief history of pioneering work

• Floyd 1972: for large cache lines $L = \Theta(H)$, matrix transposition has cost $O(n^2 \log(n) \cdot \beta)$
• Jiawei and Kung 1981, pebbling lower bound
 • model communication as placing pebbles on a dependency graph of an algorithm
 • work with $L = 1$ (only consider H)
 • lower bounds for matrix-matrix multiplication, FFT, stencil computation, odd-even sort
• Aggarwal and Vitter 1988, lower bounds with any L, H
 • communication lower bounds for general permutation networks
 • lower bounds for transposition, FFT, and comparison-based sorting
Lower bounds by partitioning memory operations

Pebbling bounds employ the following general argument

- consider the sequence of loads and stores (memory-cache) transfers computed by a program
- the length of the sequence is the bandwidth cost Q
- partition the sequence into parts of size H
- upper-bound the amount of useful work that can be done between the beginning and end of this sequence
- H bounds the number of inputs we read from memory and outputs we write to cache
- Q: how many other inputs are available during the execution of this sequence?
- A: at the beginning of the sequence we have up to H inputs in cache, and at the end up to H outputs
- with partitioning, all we need is a bound $f_{\text{alg}}(H)$ on how much useful computation can be done with $3H$ inputs + outputs
- if the total amount of computation is F, $Q \geq FH / f_{\text{alg}}(H)$
Lower bounds by partitioning computation

We can also take the dual view

- we are given an algorithm that must perform \(F \) operations
- we need to prove that the given \(3H \) inputs and outputs at most \(f_{\text{alg}}(H) \) of the computation can be done
 - to prove this we generally need some assumptions to guarantee that outputs cannot be discarded
 - it's typical to assume that the \(F \) operations are not recomputed (outputs are not regenerated)
 - we can also represent some algorithms with dependency graphs (DAGs) with \(F \) vertices
- consider any execution schedule (ordering) of the \(F \) operations
- for each subsequence of size \(f_{\text{alg}}(H) \), we can show that \(H \) loads or stores are required
- we then get the desired bound \(Q \geq FH/f_{\text{alg}}(H) \)
Bounding work in matrix multiplication

Consider the $F = n^3$ products computed in square matrix multiplication

- additions are tricky, we don’t want to impose specific summation trees
- consider any G of the products $C(i, j) \leftarrow A(i, k) \cdot B(k, j)$
- the $d = 3$ Loomis-Whitney theorem tells us that the number of unique $(i, k), (k, j),$ and (i, j) indices in G: $g_A, g_B,$ and $g_C,$ satisfy

$$\sqrt{g_A \cdot g_B \cdot g_C} \geq G$$

- in other words, the inputs needed to compute the G entries include g_A values of $A,$ g_B values of $B,$ and they contribute to g_C different entries of C
- we can safely restrict the space of algorithms to those that do not sum products which contribute to different entries of C
- bound the size of G provided the number of inputs and outputs is at most H

$$f_{MM}(H) = \max_{|g_A + g_B + g_C| \leq 3H} \sqrt{g_A \cdot g_B \cdot g_C} = H^{3/2}$$
Cache complexity lower bound for MM

Given $f_{MM}(H) = H^{3/2}$, we are essentially done

- we obtain the sequential memory bandwidth lower bound

$$Q_{\text{seq-MM}}(n, H) \geq n^3 H / f_{MM}(H) = \frac{n^3}{\sqrt{H}}$$

- in the parallel case, one of P processors needs to perform n^3 of the products, so

$$Q_{\text{par-MM}}(n, H, P) \geq \frac{n^3}{P\sqrt{H}}$$
Interprocessor communication lower bound for MM

We can also use f_{MM} to get lower bounds on interprocessor communication

- given that each processor has M memory, $f_{MM}(M)$ tells us how much computation can be done with M inputs/outputs
- we can assume no processor has more than $2n^2/P$ inputs at the start of execution and n^2/P outputs at the end, so

$$W_{\text{par-MM}}(n, H, M, P) \geq n^3 M / f_{MM}(M) - 3n^2 / P = \frac{n^3}{P \sqrt{M}} - 3n^2 / P$$

- for $c \in [1, P^{1/3}]$ we get

$$W_{\text{par-MM}}(n, H, cn^2 / P, P) = \Omega \left(\frac{n^2}{\sqrt{cP}} \right)$$

- restricting the amount of work done to n^3 / P, gets us

$$W_{\text{par-MM}}(n, H, P) = \Omega \left(\frac{n^2}{P^{2/3}} \right)$$