Parallel Numerical Algorithms
Chapter 3 – Dense Linear Systems
Section 3.1 – Vector and Matrix Products

Michael T. Heath and Edgar Solomonik

Department of Computer Science
University of Illinois at Urbana-Champaign

CS 554 / CSE 512
Outline

1. BLAS
2. Inner Product
3. Outer Product
4. Matrix-Vector Product
5. Matrix-Matrix Product
Basic Linear Algebra Subprograms (BLAS) are building blocks for many other matrix computations.

BLAS encapsulate basic operations on vectors and matrices so they can be optimized for particular computer architecture while high-level routines that call them remain portable.

BLAS offer good opportunities for optimizing utilization of memory hierarchy.

Generic BLAS are available from netlib, and many computer vendors provide custom versions optimized for their particular systems.
Examples of BLAS

<table>
<thead>
<tr>
<th>Level</th>
<th>Work</th>
<th>Examples</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$O(n)$</td>
<td>daxpy</td>
<td>Scalar \times vector + vector</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ddot</td>
<td>Inner product</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dnrm2</td>
<td>Euclidean vector norm</td>
</tr>
<tr>
<td>2</td>
<td>$O(n^2)$</td>
<td>dgemv</td>
<td>Matrix-vector product</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dtrsv</td>
<td>Triangular solve</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dger</td>
<td>Outer-product</td>
</tr>
<tr>
<td>3</td>
<td>$O(n^3)$</td>
<td>dgemm</td>
<td>Matrix-matrix product</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dtrsm</td>
<td>Multiple triangular solves</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dsyrk</td>
<td>Symmetric rank-k update</td>
</tr>
</tbody>
</table>

$\gamma_1 \gg \gamma_2 \gg \gamma_3$

BLAS 1 effective sec/flop BLAS 2 effective sec/flop BLAS 3 effective sec/flop
Inner Product

- Inner product of two n-vectors x and y given by
 \[x^T y = \sum_{i=1}^{n} x_i y_i \]

- Computation of inner product requires n multiplications and $n - 1$ additions
 \[M_1 = \Theta(n), \quad Q_1 = \Theta(n), \quad T_1 = \Theta(\gamma n) \]

- Effective as hard as scalar reduction, can be done via binary or binomial tree summation
Partition

- For $i = 1, \ldots, n$, fine-grain task i stores x_i and y_i, and computes their product $x_i y_i$

Communicate

- Sum reduction over n fine-grain tasks
Fine-Grain Parallel Algorithm

\[z_i = x_i y_i \] \{ local scalar product \}

reduce \(z_i \) across all tasks \(i = 1, \ldots, n \) \{ sum reduction \}
Agglomeration and Mapping

Agglomerate

- Combine \(k \) components of both \(x \) and \(y \) to form each coarse-grain task, which computes inner product of these subvectors
- Communication becomes sum reduction over \(n/k \) coarse-grain tasks

Map

- Assign \((n/k)/p \) coarse-grain tasks to each of \(p \) processors, for total of \(n/p \) components of \(x \) and \(y \) per processor
Coarse-Grain Parallel Algorithm

\[z_i = x^T[i] y[i] \quad \{ \text{local inner product} \} \]

reduce \(z_i \) across all processors \(i = 1, \ldots, p \) \(\{ \text{sum reduction} \} \)

\[[x[i] \text{ – subvector of } x \text{ assigned to processor } i] \]
The parallel costs \((S_p, W_p, F_p)\) for the inner product are given by

- **Computational cost** \(F_p = \Theta(n/p)\) regardless of network
- The latency and bandwidth costs depend on network:
 - 1-D mesh: \(S_p, W_p = \Theta(p)\)
 - 2-D mesh: \(S_p, W_p = \Theta(\sqrt{p})\)
 - hypercube: \(S_p, W_p = \Theta(\log p)\)

For a hypercube or fully-connected network time is

\[
T_p = \alpha S_p + \beta W_p + \gamma F_p = \Theta(\alpha \log(p) + \gamma n/p)
\]

- Efficiency and scaling are the same as for binary tree sum
Inner product on 1-D Mesh

- For 1-D mesh, total time is $T_p = \Theta(\gamma n/p + \alpha p)$
- To determine strong scalability, we set constant efficiency and solve for p_s

$$\text{const} = E_{p_s} = \frac{T_1}{p_s T_{p_s}} = \Theta \left(\frac{\gamma n}{\gamma n + \alpha p_s^2} \right) = \Theta \left(\frac{1}{1 + (\alpha/\gamma)p_s^2/n} \right)$$

which yields $p_s = \Theta(\sqrt{(\gamma/\alpha)n})$

- 1-D mesh weakly scalable to $p_w = \Theta((\gamma/\alpha)n)$ processors:

$$E_{p_w}(p_w n) = \Theta \left(\frac{1}{1 + (\alpha/\gamma)p_w^2/(p_w n)} \right) = \Theta \left(\frac{1}{1 + (\alpha/\gamma)p_w/n} \right)$$
Inner product on 2-D Mesh

- For 2-D mesh, total time is \(T_p = \Theta(\gamma n/p + \alpha \sqrt{p}) \)
- To determine strong scalability, we set constant efficiency and solve for \(p_s \)

\[
\text{const} = E_{p_s} = \frac{T_1}{p_s T_p} = \Theta\left(\frac{\gamma n}{\gamma n + \alpha p_s^{3/2}}\right) = \Theta\left(\frac{1}{1 + (\alpha/\gamma)p_s^{3/2}/n}\right)
\]

which yields \(p_s = \Theta((\gamma/\alpha)^{2/3}n^{2/3}) \)

- 2-D mesh weakly scalable to \(p_w = \Theta((\gamma/\alpha)^2 n^2) \), since

\[
E_{p_w}(p_w n) = \Theta\left(\frac{1}{1 + (\alpha/\gamma)p_w^{3/2}/(p_w n)}\right) = \Theta\left(\frac{1}{1 + (\alpha/\gamma)\sqrt{p_w}/n}\right)
\]
Outer Product

- Outer product of two n-vectors x and y is an $n \times n$ matrix $Z = xy^T$ whose (i, j) entry $z_{ij} = x_i y_j$

- For example,

$$
\begin{bmatrix}
 x_1 \\
 x_2 \\
 x_3
\end{bmatrix}
\begin{bmatrix}
 y_1 \\
 y_2 \\
 y_3
\end{bmatrix}^T
=
\begin{bmatrix}
 x_1 y_1 & x_1 y_2 & x_1 y_3 \\
 x_2 y_1 & x_2 y_2 & x_2 y_3 \\
 x_3 y_1 & x_3 y_2 & x_3 y_3
\end{bmatrix}
$$

- Computation of outer product requires n^2 multiplications,

$$
M_1 = \Theta(n^2), \quad Q_1 = \Theta(n^2), \quad T_1 = \Theta(\gamma n^2)
$$

(in this case, we should treat M_1 as output size or define the problem as in the BLAS: $Z = Z_{\text{input}} + xy^T$)
Parallel Algorithm

Partition

- For \(i, j = 1, \ldots, n \), fine-grain task \((i, j)\) computes and stores \(z_{ij} = x_i y_j \), yielding 2-D array of \(n^2 \) fine-grain tasks.
- Assuming no replication of data, at most \(2n \) fine-grain tasks store components of \(x \) and \(y \), say either
 - for some \(j \), task \((i, j)\) stores \(x_i \) and task \((j, i)\) stores \(y_i \), or
 - task \((i, i)\) stores both \(x_i \) and \(y_i \), \(i = 1, \ldots, n \).

Communicate

- For \(i = 1, \ldots, n \), task that stores \(x_i \) broadcasts it to all other tasks in \(i \)th task row.
- For \(j = 1, \ldots, n \), task that stores \(y_j \) broadcasts it to all other tasks in \(j \)th task column.
Fine-Grain Tasks and Communication
Fine-Grain Parallel Algorithm

\begin{align*}
\text{broadcast } x_i \text{ to tasks } (i, k), & \quad k = 1, \ldots, n & \{ \text{horizontal broadcast} \} \\
\text{broadcast } y_j \text{ to tasks } (k, j), & \quad k = 1, \ldots, n & \{ \text{vertical broadcast} \} \\
z_{ij} = x_i y_j & \{ \text{local scalar product} \}
\end{align*}
Agglomeration

Agglomerate

With $n \times n$ array of fine-grain tasks, natural strategies are

- **2-D**: Combine $k \times k$ subarray of fine-grain tasks to form each coarse-grain task, yielding $(n/k)^2$ coarse-grain tasks

- **1-D column**: Combine n fine-grain tasks in each column into coarse-grain task, yielding n coarse-grain tasks

- **1-D row**: Combine n fine-grain tasks in each row into coarse-grain task, yielding n coarse-grain tasks
2-D Agglomeration

- Each task that stores portion of x must broadcast its subvector to all other tasks in its task row
- Each task that stores portion of y must broadcast its subvector to all other tasks in its task column
2-D Agglomeration

\[
\begin{align*}
&x_1y_1 & &x_1y_2 \\
&x_2y_1 & &x_2y_2 \\
&x_3y_1 & &x_3y_2 \\
&x_4y_1 & &x_4y_2 \\
&x_5y_1 & &x_5y_2 \\
&x_6y_1 & &x_6y_2 \\
\end{align*}
\]
1-D Agglomeration

- If either x or y stored in one task, then broadcast required to communicate needed values to all other tasks.

- If either x or y distributed across tasks, then multinode broadcast required to communicate needed values to other tasks.
1-D Column Agglomeration
1-D Row Agglomeration

\[
\begin{align*}
&x_1y_1 \quad x_1y_2 \quad x_1y_3 \quad x_1y_4 \quad x_1y_5 \quad x_1y_6 \\
&x_2y_1 \quad x_2y_2 \quad x_2y_3 \quad x_2y_4 \quad x_2y_5 \quad x_2y_6 \\
&x_3y_1 \quad x_3y_2 \quad x_3y_3 \quad x_3y_4 \quad x_3y_5 \quad x_3y_6 \\
&x_4y_1 \quad x_4y_2 \quad x_4y_3 \quad x_4y_4 \quad x_4y_5 \quad x_4y_6 \\
&x_5y_1 \quad x_5y_2 \quad x_5y_3 \quad x_5y_4 \quad x_5y_5 \quad x_5y_6 \\
&x_6y_1 \quad x_6y_2 \quad x_6y_3 \quad x_6y_4 \quad x_6y_5 \quad x_6y_6
\end{align*}
\]
Mapping

Map

- 2-D: Assign \((n/k)^2/p\) coarse-grain tasks to each of \(p\) processors using any desired mapping in each dimension, treating target network as 2-D mesh

- 1-D: Assign \(n/p\) coarse-grain tasks to each of \(p\) processors using any desired mapping, treating target network as 1-D mesh
2-D Agglomeration with Block Mapping
1-D Column Agglomeration with Block Mapping

\[\begin{align*}
 x_1 y_1 & \quad x_1 y_2 \\
 x_2 y_1 & \quad x_2 y_2 \\
 x_3 y_1 & \quad x_3 y_2 \\
 x_4 y_1 & \quad x_4 y_2 \\
 x_5 y_1 & \quad x_5 y_2 \\
 x_6 y_1 & \quad x_6 y_2
\end{align*} \]
1-D Row Agglomeration with Block Mapping
Coarse-Grain Parallel Algorithm

broadcast $x[i]$ to ith process row \hspace{1cm} \{ horizontal broadcast \}

broadcast $y[j]$ to jth process column \hspace{1cm} \{ vertical broadcast \}

$Z[i][j] = x[i] y^T[j]$ \hspace{1cm} \{ local outer product \}

$[Z[i][j]]$ means submatrix of Z assigned to process (i,j) by mapping.
Performance

The parallel costs \((S_p, W_p, F_p)\) for the outer product are given by

- Computational cost \(F_p = \Theta(n^2/p)\) regardless of network
- The latency and bandwidth costs can be derived from the cost of broadcast
 - 1-D agglomeration: \(S_p = \Theta(\log p), W_p = \Theta(n)\)
 - 2-D agglomeration: \(S_p = \Theta(\log p), W_p = \Theta(n/\sqrt{p})\)
- For 1-D agglomeration, execution time is
 \[T_{p}^{1-D} = T_{p}^{\text{bcast}}(n) + \Theta(\gamma n^2/p) = \Theta(\alpha \log(p) + \beta n + \gamma n^2/p) \]
- For 2-D agglomeration, execution time is
 \[T_{p}^{2-D} = 2T_{\sqrt{p}}^{\text{bcast}}(n/\sqrt{p}) + \Theta(\gamma n^2/p) = \Theta(\alpha \log(p) + \beta n/\sqrt{p} + \gamma n^2/p) \]
Outer Product Strong Scaling

1-D agglomeration is strongly scalable to

\[p_s = \Theta(\min((\gamma/\alpha)n^2 / \log((\gamma/\alpha)n^2), (\gamma/\beta)n)) \]

processors, since

\[E_{p_s}^{1-D} = \Theta(1/(1 + (\alpha/\gamma) \log(p_s)p_s/n^2 + (\beta/\gamma)p_s/n)) \]

2-D agglomeration is strongly scalable to

\[p_s = \Theta(\min((\gamma/\alpha)n^2 / \log((\gamma/\alpha)n^2), (\gamma/\beta)^2 n^2)) \]

processors, since

\[E_{p_s}^{2-D} = \Theta(1/(1 + (\alpha/\gamma) \log(p_s)p_s/n^2 + (\beta/\gamma)\sqrt{p_s}/n)) \]
1-D agglomeration is weakly scalable to

\[p_w = \Theta(\min(2^{(\gamma/\alpha)n^2}, (\gamma/\beta)^2 n^2)) \]

processors, since

\[E^{1-D}_{p_w}(\sqrt{p_w} n) = \Theta(1/(1 + (\alpha/\gamma) \log(p_w)/n^2 + (\beta/\gamma) \sqrt{p_w}/n)) \]

2-D agglomeration is weakly scalable to

\[p_w = \Theta(2^{(\gamma/\alpha)n^2}) \]

processors, since

\[E^{2-D}_{p_w}(\sqrt{p_w} n) = \Theta(1/(1 + (\alpha/\gamma) \log(p_w)/n^2 + (\beta/\gamma)/n)) \]
Memory Requirements

- The memory requirements are dominated by storing Z, which in practice means the outer-product is a poor primitive (local flop-to-byte ratio of 1).
- If possible, Z should be operated on as it is computed, e.g. if we really need
 \[v_i = \sum_j f(x_iy_j) \quad \text{for some scalar function } f \]
- If Z does not need to be stored, vector storage dominates.
- Without further modification, 1-D algorithm requires $M_p = \Theta(np)$ overall storage for vector.
- Without further modification, 2-D algorithm requires $M_p = \Theta(n\sqrt{p})$ overall storage for vector.
Matrix-Vector Product

- Consider matrix-vector product

\[y = Ax \]

where \(A \) is \(n \times n \) matrix and \(x \) and \(y \) are \(n \)-vectors

- Components of vector \(y \) are given by inner products:

\[y_i = \sum_{j=1}^{n} a_{ij} x_j, \quad i = 1, \ldots, n \]

- The sequential memory, work, and time are

\[M_1 = \Theta(n^2), \quad Q_1 = \Theta(n^2), \quad T_1 = \Theta(\gamma n^2) \]
Parallel Algorithm

Partition

- For $i, j = 1, \ldots, n$, fine-grain task (i, j) stores a_{ij} and computes $a_{ij} x_j$, yielding 2-D array of n^2 fine-grain tasks.
- Assuming no replication of data, at most $2n$ fine-grain tasks store components of x and y, say either:
 - for some j, task (j, i) stores x_i and task (i, j) stores y_i, or
 - task (i, i) stores both x_i and y_i, $i = 1, \ldots, n$.

Communicate

- For $j = 1, \ldots, n$, task that stores x_j broadcasts it to all other tasks in jth task column.
- For $i = 1, \ldots, n$, sum reduction over ith task row gives y_i.

Michael T. Heath and Edgar Solomonik
Parallel Numerical Algorithms

33 / 77
Fine-Grain Tasks and Communication
Fine-Grain Parallel Algorithm

broadcast x_j to tasks (k, j), $k = 1, \ldots, n$ \{ vertical broadcast \}

$y_i = a_{ij} x_j$ \{ local scalar product \}

reduce y_i across tasks (i, k), $k = 1, \ldots, n$ \{ horizontal sum reduction \}
Agglomeration

Agglomerate

With $n \times n$ array of fine-grain tasks, natural strategies are

- **2-D**: Combine $k \times k$ subarray of fine-grain tasks to form each coarse-grain task, yielding $(n/k)^2$ coarse-grain tasks

- **1-D column**: Combine n fine-grain tasks in each column into coarse-grain task, yielding n coarse-grain tasks

- **1-D row**: Combine n fine-grain tasks in each row into coarse-grain task, yielding n coarse-grain tasks
2-D Agglomeration

- Subvector of \mathbf{x} broadcast along each task column
- Each task computes local matrix-vector product of submatrix of \mathbf{A} with subvector of \mathbf{x}
- Sum reduction along each task row produces subvector of result \mathbf{y}

Michael T. Heath and Edgar Solomonik
Parallel Numerical Algorithms
2-D Agglomeration

\[
\begin{align*}
& a_{11}x_1 & a_{12}x_2 \\
& y_1 & a_{21}x_1 & a_{22}x_2 \\
& a_{31}x_1 & a_{32}x_2 \\
& y_3 & a_{41}x_1 & a_{42}x_2 \\
& a_{51}x_1 & a_{52}x_2 \\
& y_5 & a_{61}x_1 & a_{62}x_2 \\
& a_{13}x_3 & a_{14}x_4 \\
& a_{23}x_3 & a_{24}x_4 \\
& a_{33}x_3 & a_{34}x_4 \\
& a_{43}x_3 & a_{44}x_4 \\
& a_{53}x_3 & a_{54}x_4 \\
& a_{63}x_3 & a_{64}x_4 \\
& a_{15}x_5 & a_{16}x_6 \\
& a_{25}x_5 & a_{26}x_6 \\
& a_{35}x_5 & a_{36}x_6 \\
& a_{45}x_5 & a_{46}x_6 \\
& a_{55}x_5 & y_5 \\
& a_{65}x_5 & a_{66}x_6 \\
& y_6
\end{align*}
\]
1-D Agglomeration

1-D column agglomeration

- Each task computes product of its component of x times its column of matrix, with no communication required
- Sum reduction across tasks then produces y

1-D row agglomeration

- If x stored in one task, then broadcast required to communicate needed values to all other tasks
- If x distributed across tasks, then multinode broadcast required to communicate needed values to other tasks
- Each task computes inner product of its row of A with *entire* vector x to produce its component of y
1-D Column Agglomeration

\[a_{11}x_1 \]
\[a_{12}x_2 \]
\[a_{13}x_3 \]
\[a_{14}x_4 \]
\[a_{15}x_5 \]
\[a_{16}x_6 \]

\[y_1 \]
\[y_2 \]
\[y_3 \]
\[y_4 \]
\[y_5 \]
\[y_6 \]
1-D Row Agglomeration

\[
\begin{align*}
& a_{11}x_1 \\
& y_1 \\
& a_{12}x_2 \\
& a_{13}x_3 \\
& a_{14}x_4 \\
& a_{15}x_5 \\
& a_{16}x_6 \\
& a_{21}x_1 \\
& a_{22}x_2 \\
& y_2 \\
& a_{23}x_3 \\
& a_{24}x_4 \\
& a_{25}x_5 \\
& a_{26}x_6 \\
& a_{31}x_1 \\
& a_{32}x_2 \\
& a_{33}x_3 \\
& y_3 \\
& a_{34}x_4 \\
& a_{35}x_5 \\
& a_{36}x_6 \\
& a_{41}x_1 \\
& a_{42}x_2 \\
& a_{43}x_3 \\
& y_4 \\
& a_{44}x_4 \\
& a_{45}x_5 \\
& a_{46}x_6 \\
& a_{51}x_1 \\
& a_{52}x_2 \\
& a_{53}x_3 \\
& y_5 \\
& a_{54}x_4 \\
& a_{55}x_5 \\
& a_{56}x_6 \\
& a_{61}x_1 \\
& a_{62}x_2 \\
& a_{63}x_3 \\
& y_6 \\
& a_{64}x_4 \\
& a_{65}x_5 \\
& a_{66}x_6
\end{align*}
\]
1-D Agglomeration

Column and row algorithms are dual to each other

- Column algorithm begins with communication-free local vector scaling (daxpy) computations combined across processors by a reduction
- Row algorithm begins with broadcast followed by communication-free local inner-product (ddot) computations
Mapping

Map

- 2-D: Assign \((n/k)^2/p\) coarse-grain tasks to each of \(p\) processes using any desired mapping in each dimension, treating target network as 2-D mesh

- 1-D: Assign \(n/p\) coarse-grain tasks to each of \(p\) processes using any desired mapping, treating target network as 1-D mesh
2-D Agglomeration with Block Mapping

\[a_{11}x_1 + \cdots + a_{66}x_6 = y_1 + \cdots + y_6 \]
1-D Column Agglomeration with Block Mapping
1-D Row Agglomeration with Block Mapping

```
  a_{11}x_1  a_{12}x_2  a_{13}x_3  a_{14}x_4  a_{15}x_5  a_{16}x_6
  y_1

  a_{21}x_1  a_{22}x_2  a_{23}x_3  a_{24}x_4  a_{25}x_5  a_{26}x_6
  y_2

  a_{31}x_1  a_{32}x_2  a_{33}x_3  a_{34}x_4  a_{35}x_5  a_{36}x_6
  y_3

  a_{41}x_1  a_{42}x_2  a_{43}x_3  a_{44}x_4  a_{45}x_5  a_{46}x_6
  y_4

  a_{51}x_1  a_{52}x_2  a_{53}x_3  a_{54}x_4  a_{55}x_5  a_{56}x_6
  y_5

  a_{61}x_1  a_{62}x_2  a_{63}x_3  a_{64}x_4  a_{65}x_5  a_{66}x_6
  y_6
```
Coarse-Grain Parallel Algorithm

broadcast $x[j]$ to jth process column

reduce $y[i]$ across ith process row

{ horizontal sum reduction }
Performance

The parallel costs \((S_p, W_p, F_p)\) for the matrix-vector product are

- Computational cost \(F_p = \Theta(n^2/p)\) regardless of network
- The latency and bandwidth costs can be derived from the cost of broadcast
 - 1-D agglomeration: \(S_p = \Theta(\log p), W_p = \Theta(n)\)
 - 2-D agglomeration: \(S_p = \Theta(\log p), W_p = \Theta(n/\sqrt{p})\)

For 1-D row agglomeration, execution time is

\[
T_{\text{1-D}}^p = T_{\text{bcast}}^p(n) + \Theta(\gamma n^2/p) = \Theta(\alpha \log(p) + \beta n + \gamma n^2/p)
\]

For 2-D agglomeration, using \(T_{\text{bcast}}^p = T_{\text{reduce}}\), time is

\[
T_{\text{2-D}}^p = 2T_{\text{bcast}}^p(n/\sqrt{p}) + \Theta(\gamma n^2/p) = \Theta(\alpha \log(p) + \beta n/\sqrt{p} + \gamma n^2/p)
\]

So scalability is essentially the same as for outer product
Consider matrix-matrix product

\[C = AB \]

where \(A \), \(B \), and result \(C \) are \(n \times n \) matrices

Entries of matrix \(C \) are given by

\[c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}, \quad i, j = 1, \ldots, n \]

Each of \(n^2 \) entries of \(C \) requires \(n \) multiply-add operations, so model serial time as

\[T_1 = \gamma n^3 \]
Matrix-Matrix Product

- Matrix-matrix product can be viewed as
 - n^2 inner products, or
 - sum of n outer products, or
 - n matrix-vector products

 and each viewpoint yields different algorithm

- One way to derive parallel algorithms for matrix-matrix product is to apply parallel algorithms already developed for inner product, outer product, or matrix-vector product

- However, considering the problem as a whole yields the best algorithms
Parallel Algorithm

Partition

- For $i, j, k = 1, \ldots, n$, fine-grain task (i, j, k) computes product $a_{ik} b_{kj}$, yielding 3-D array of n^3 fine-grain tasks.

- Assuming no replication of data, at most $3n^2$ fine-grain tasks store entries of A, B, or C, say task (i, j, j) stores a_{ij}, task (i, j, i) stores b_{ij}, and task (i, j, k) stores c_{ij} for $i, j = 1, \ldots, n$ and some fixed k.

- We refer to subsets of tasks along i, j, and k dimensions as rows, columns, and layers, respectively, so kth column of A and kth row of B are stored in kth layer of tasks.
Parallel Algorithm

Communicate

- Broadcast entries of jth column of A horizontally along each task row in jth layer
- Broadcast entries of ith row of B vertically along each task column in ith layer
- For $i, j = 1, \ldots, n$, result c_{ij} is given by sum reduction over tasks (i, j, k), $k = 1, \ldots, n$
Fine-Grain Algorithm

broadcast a_{ik} to tasks (i, q, k), $q = 1, \ldots, n$ \{ horizontal broadcast \}

broadcast b_{kj} to tasks (q, j, k), $q = 1, \ldots, n$ \{ vertical broadcast \}

$c_{ij} = a_{ik} b_{kj}$ \{ local scalar product \}

reduce c_{ij} across tasks (i, j, q), $q = 1, \ldots, n$ \{ lateral sum reduction \}
Agglomeration

Agglomerate

With \(n \times n \times n \) array of fine-grain tasks, natural strategies are:

- **3-D:** Combine \(q \times q \times q \) subarray of fine-grain tasks
- **2-D:** Combine \(q \times q \times n \) subarray of fine-grain tasks, eliminating sum reductions
- **1-D column:** Combine \(n \times 1 \times n \) subarray of fine-grain tasks, eliminating vertical broadcasts and sum reductions
- **1-D row:** Combine \(1 \times n \times n \) subarray of fine-grain tasks, eliminating horizontal broadcasts and sum reductions
Corresponding mapping strategies are

- **3-D:** Assign \(\frac{(n/q)^3}{p} \) coarse-grain tasks to each of \(p \) processors using any desired mapping in each dimension, treating target network as 3-D mesh

- **2-D:** Assign \(\frac{(n/q)^2}{p} \) coarse-grain tasks to each of \(p \) processors using any desired mapping in each dimension, treating target network as 2-D mesh

- **1-D:** Assign \(\frac{n}{p} \) coarse-grain tasks to each of \(p \) processors using any desired mapping, treating target network as 1-D mesh
Agglomeration with Block Mapping

1-D row 1-D col 2-D 3-D
Coarse-Grain 3-D Parallel Algorithm

\[C_{[i][j]} = A_{[i][k]} B_{[k][j]} \]

broadcast \(A_{[i][k]} \) to \(i \)th processor row

\{ horizontal broadcast \}

broadcast \(B_{[k][j]} \) to \(j \)th processor column

\{ vertical broadcast \}

reduce \(C_{[i][j]} \) across processor layers

\{ local matrix product \}

\{ lateral sum reduction \}
Agglomeration with Block Mapping

2-D:

\[
\begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{bmatrix}
\begin{bmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{bmatrix}
= \begin{bmatrix}
A_{11}B_{11} + A_{12}B_{21} \\
A_{21}B_{11} + A_{22}B_{21}
\end{bmatrix}
\begin{bmatrix}
A_{11}B_{12} + A_{12}B_{22} \\
A_{21}B_{12} + A_{22}B_{22}
\end{bmatrix}
\]

1-D column:

\[
\begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{bmatrix}
\begin{bmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{bmatrix}
= \begin{bmatrix}
A_{11}B_{11} + A_{12}B_{21} \\
A_{21}B_{11} + A_{22}B_{21}
\end{bmatrix}
\begin{bmatrix}
A_{11}B_{12} + A_{12}B_{22} \\
A_{21}B_{12} + A_{22}B_{22}
\end{bmatrix}
\]

1-D row:

\[
\begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{bmatrix}
\begin{bmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{bmatrix}
= \begin{bmatrix}
A_{11}B_{11} + A_{12}B_{21} \\
A_{21}B_{11} + A_{22}B_{21}
\end{bmatrix}
\begin{bmatrix}
A_{11}B_{12} + A_{12}B_{22} \\
A_{21}B_{12} + A_{22}B_{22}
\end{bmatrix}
\]
Coarse-Grain 2-D Parallel Algorithm

\[
\text{allgather } A[i][j] \text{ in } i\text{th processor row} \quad \{ \text{horizontal broadcast} \} \\
\text{allgather } B[i][j] \text{ in } j\text{th processor column} \quad \{ \text{vertical broadcast} \} \\
C[i][j] = 0 \\
\text{for } k = 1, \ldots, \sqrt{p} \\
\quad C[i][j] = C[i][j] + A[i][k]B[k][j] \quad \{ \text{sum local products} \} \\
\text{end}
\]
Algorithm just described requires excessive memory, since each process accumulates \sqrt{p} blocks of both A and B

One way to reduce memory requirements is to

- broadcast blocks of A successively across processor rows
- broadcast blocks of B successively across processor cols

\[
C[i][j] = 0 \\
\text{for } k = 1, \ldots, \sqrt{p} \\
\quad \text{broadcast } A[i][k] \text{ in } i\text{th processor row} \quad \{ \text{horizontal broadcast} \} \\
\quad \text{broadcast } B[k][j] \text{ in } j\text{th processor column} \quad \{ \text{vertical broadcast} \} \\
\quad C[i][j] = C[i][j] + A[i][k] B[k][j] \quad \{ \text{sum local products} \} \\
\text{end}
SUMMA Algorithm

16 CPUs (4x4)
Another approach, due to Cannon (1969), is to circulate blocks of B vertically and blocks of A horizontally in ring fashion.

Blocks of both matrices must be initially aligned using circular shifts so that correct blocks meet as needed.

Requires less memory than SUMMA and replaces line broadcasts with shifts, lowering the number of messages.
Cannon Algorithm

A
- Starting position

B
- Starting position
- Stagger up: $B[i,j] := B[i+1,j]$
- Shift down: $B[i,j] := B[i-1,j]$

\[\vdots \]
Fox Algorithm

- It is possible to mix techniques from SUMMA and Cannon’s algorithm:
 - circulate blocks of B in ring fashion vertically along processor columns step by step so that each block of B
 comes in conjunction with appropriate block of A broadcast at that same step

- This algorithm is due to Fox et al.

- Shifts, especially in Cannon’s algorithm, are harder to generalize to nonsquare processor grids than collectives in algorithms like SUMMA
Execution Time for 3-D Agglomeration

- For 3-D agglomeration, computing each of p blocks $C_{i,j}$ requires matrix-matrix product of two $(n/\sqrt[3]{p}) \times (n/\sqrt[3]{p})$ blocks, so

$$F_p = (n/\sqrt[3]{p})^3 = n^3/p$$

- On 3-D mesh, each broadcast or reduction takes time

$$T_{p^{1/3}}^\text{bcast} ((n/p^{1/3})^2) = O(\alpha \log p + \beta n^2/p^{2/3})$$

- Total time is therefore

$$T_p = O(\alpha \log p + \beta n^2/p^{2/3} + \gamma n^3/p)$$

- However, overall memory footprint is

$$M_p = \Theta(p(n/p^{1/3})^2) = \Theta(p^{1/3}n^2)$$
Strong Scalability of 3-D Agglomeration

The 3-D agglomeration efficiency is given by

\[E_p(n) = \frac{pT_1(n)}{T_p(n)} = O\left(\frac{1}{1 + (\alpha/\gamma)p \log p/n^3 + (\beta/\gamma) p^{1/3}/n}\right) \]

For strong scaling to \(p_s \) processors we need

\[E_{p_s}(n) = \Theta(1), \text{ so 3-D agglomeration strong scales to} \]

\[p_s = O\left(\min\left(\frac{(\gamma/\alpha)n^3}{\log(n)}, \frac{(\gamma/\beta)n^3}{\gamma}\right)\right) \text{ processors} \]
Weak Scalability of 3-D Agglomeration

- For weak scaling (with constant input size / processor) to p_w processor, we need $E_{p_w}(n\sqrt{p_w}) = \Theta(1)$, which holds.

- However, note that the algorithm is not memory-efficient as $M_p = \Theta(p^{1/3}n^2)$, and if keeping memory footprint per processor constant, we must grow n with $p^{1/3}$.

- Scaling with constant memory footprint processor ($M_p/p = \text{const}$) is possible to p_m processors where $E_{p_m}(np^{1/3}_m) = \Theta(1)$, which holds for

 $$p_m = \Theta(2^{(\gamma/\alpha)n^3})$$

- The isoefficiency function is $\tilde{Q}(p) = \Theta(p \log(p))$.
Execution Time for 2-D Agglomeration

- For 2-D agglomeration (SUMMA), computation of each block $C_{[i][j]}$ requires \sqrt{p} matrix-matrix products of $(n/\sqrt{p}) \times (n/\sqrt{p})$ blocks, so

$$F_p = \sqrt{p} \left(\frac{n}{\sqrt{p}} \right)^3 = \frac{n^3}{p}$$

- For broadcast among rows and columns of processor grid, communication time is

$$2\sqrt{p}T^{\text{bcast}}_p \left(\frac{n^2}{p} \right) = \Theta(\alpha \sqrt{p} \log(p) + \beta n^2 / \sqrt{p})$$

- Total time is therefore

$$T_p = O(\alpha \sqrt{p} \log(p) + \beta n^2 / \sqrt{p} + \gamma n^3 / p)$$

- The algorithm is memory-efficient, $M_p = \Theta(n^2)$
Strong Scalability of 2-D Agglomeration

- The 2-D agglomeration efficiency is given by
 \[E_p(n) = \frac{pT_1(n)}{T_p(n)} = O\left(\frac{1}{1+(\alpha/\gamma)p^{3/2}\log p/n^3 + (\beta/\gamma)\sqrt{p/n}}\right) \]

- For strong scaling to \(p_s \) processors we need \(E_{p_s}(n) = \Theta(1) \), so 2-D agglomeration strong scales to
 \[p_s = O\left(\min\left((\gamma/\alpha)n^2 / \log(n)^{2/3}, (\gamma/\beta)n^2\right)\right) \]

- For weak scaling to \(p_w \) processors with \(n^2/p \) matrix elements per processor, we need \(E_{p_w}(\sqrt{p_w}n) = \Theta(1) \), so 2-D agglomeration (SUMMA) weak scales to
 \[p_w = O\left(2^{(\gamma/\alpha)n^3}\right) \]

- Cannon’s algorithm achieves unconditional weak scalability
For 1-D agglomeration on 1-D mesh, total time is

$$T_p = O(\alpha \log(p) + \beta n^2 + \gamma n^3 / p)$$

The corresponding efficiency is

$$E_p = O(1/(1 + (\alpha/\beta)p \log(p)n^3 + (\beta/\gamma)p/n))$$

Strong scalability is possible to at most $$p_s = O((\gamma/\beta)n)$$ processors

Weak scalability is possible to at most $$p_w = O(\sqrt{(\gamma/\beta)n})$$ processors
For Rectangular Matrix Multiplication, if \(C \) is \(m \times n \), \(A \) is \(m \times k \), and \(B \) is \(k \times n \), choosing a 3D grid that optimizes volume-to-surface-area ratio yields bandwidth cost...

\[
W_p(m, n, k) = O\left(\min_{p1, p2, p3 = p} \left[\frac{mk}{p1p2} + \frac{kn}{p1p3} + \frac{mn}{p2p3} \right] \right)
\]
Communication cost for 2-D algorithms for matrix-matrix product is optimal, assuming no replication of storage.

If explicit replication of storage is allowed, then lower communication volume is possible via 3-D algorithm.

Generally, we assign $\frac{n}{p_1} \times \frac{n}{p_2} \times \frac{n}{p_3}$ computation subvolume to each processor.

The largest face of the subvolume gives communication cost, the smallest face gives minimal memory usage:
- can keep smallest face local while successively computing slices of subvolume.
Provided \bar{M} total available memory, 2-D and 3-D algorithms achieve bandwidth cost

$$W_p(n, \bar{M}) = \begin{cases}
\infty & : \bar{M} < n^2 \\
\frac{n^2}{\sqrt{p}} & : \bar{M} = \Theta(n^2) \\
\frac{n^2}{p^{2/3}} & : \bar{M} = \Theta(n^2 p^{1/3})
\end{cases}$$

For general \bar{M}, possible to pick processor grid to achieve

$$W_p(n, \bar{M}) = O\left(\frac{n^3}{\sqrt{p}}\frac{1}{\bar{M}^{1/2}} + \frac{n^2}{p^{2/3}}\right)$$

and an overall execution time of

$$T_p(n, \bar{M}) = O\left(\alpha \log p + \frac{n^3}{\sqrt{p}}\frac{1}{\bar{M}^{3/2}} + \beta W_p(n, \bar{M}) + \gamma \frac{n^3}{p}\right)$$
Strong Scaling using All Available Memory

- The efficiency of the algorithm for a given amount of total memory \tilde{M}_p is

$$E_p(n, \tilde{M}_p) = O(1/(1 + (\alpha/\gamma)(p \log p/n^3 + p^{3/2}/\tilde{M}_p^{3/2})$$

$$+ (\beta/\gamma)(\sqrt{p}/\tilde{M}_p^{1/2} + p^{1/3}/n)))$$

- For strong scaling assuming $\tilde{M}_p = p\tilde{M}_1$, we need

$$E_{ps}(n, p_s\tilde{M}_1) = p_s T_1(n, \tilde{M}_1)/T_{ps}(n, p_s\tilde{M}_1) = \Theta(1)$$

- In this case, we obtain

$$p_s = \Theta(\min((\alpha/\gamma)n^3/\log(n), (\beta/\gamma)n^3))$$

as good as the 3-D algorithm, but more memory-efficient
References

References

References