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OBJECTIVES : COST AND SCALABILITY ANALYSIS
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Initialize empty matrix F of element size L XL
Determine basis points xg,..,x,—1 and Yo, ..., Yn-1
Determine evaluation points X, ..,X;_1 Yy, ...,Y,—1 and near-boundary step size

\

F = lagrange(f,x,y,X,Y) # call interpolation function

) . if i<p—yp—1: send F(X,Y,_3), FX,Y,_,),FX,Y,_y) to i++p i=0 [ = \/5 -1
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ifi<p—yp-—-1:
enforce continuous first derivative condition and update F(X,Y;,_,)

e Error norm of solution vector ~10~1% for serial and if i>yp-1:

. . enforce continuous first derivative condition and update F(X,Y,)
parallel implementations \_\ if i#nyp—1 for n=1,..yp: i=p—p—1 i=p—1

— | = 178 enforce continuous first derivative condition and update F(X,,Y)

54 L = 1024 enforce continuous first derivative condition and update F(X;_;,Y)
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Fiotar = gather(F) # compile local results
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CONCLUSIONS
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Parallel Efficiency: E, = ( - ) [(a) p (,8)] » 1. Developed 1-D and 2-D Lagrangian interpolation algorithms. 2-- Intefpdlated
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Strong Scaling: Ds = o+ 68

Finite strong scalability was verified experimentally. 10"
Error for serial and parallel implementation was consistent. )
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Weak Scaling: unconditional

Central difference formula was used to ensure a continuous first derivative between elements. 0.5 -
Elements of size m or m X m were interpolated from nt" order polynomials. '
2. Analyzed the theoretical parallel scalability of both algorithms. % 0.0
Both algorithms are strongly scalable to a finite number of processors. = '
Both algorithms are unconditionally weakly scalable.
3. Implemented the 1-D algorithm and analyze the experimental scalability. —0.5-
Unconditional weak scalability was verified experimentally.
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