Parallel Numerical Algorithms

Chapter 7 – Differential Equations Section 7.5 – Tensor Analysis

Edgar Solomonik

Department of Computer Science University of Illinois at Urbana-Champaign

CS 554 / CSE 512

Outline

Tensor Algebra

- Tensors
- Tensor Transposition
- Tensor Contractions
- 2 Tensor Decompositions
 - OP Decomposition
 - Tucker Decomposition
 - Tensor Train Decomposition

Fast Algorithms

- Strassen's Algorithm
- Bilinear Algorithms

Tensors Tensor Transposition Tensor Contractions

A tensor $T \in \mathbb{R}^{n_1 imes \cdots imes n_d}$ has

Tensors

- Order d (i.e. d modes / indices)
- Dimensions n_1 -by-···-by- n_d
- *Elements* $t_{i_1...i_d} = t_i$ where $i \in \bigotimes_{i=1}^d \{1, ..., n_i\}$

Order d tensors represent d-dimensional arrays

- $(d \ge 3)$ -dimensional arrays are prevalent in scientific computing
 - Regular grids, collections of matrices, multilinear operators
 - Experimental data, visual/graphic data
- Tensors analysis is the expression and study of numerical methods using tensor representations

Tensors Tensor Transposition Tensor Contractions

Reshaping Tensors

When using tensors, it is often necessary to transition between high-order and low-order representations of the same object

• Recall for a matrix $A \in \mathbb{R}^{m \times n}$ its *unfolding* is given by

$$\boldsymbol{v} = \operatorname{vec}\left(\boldsymbol{A}\right), \Rightarrow \boldsymbol{v} \in \mathbb{R}^{mn}, v_{i+jm} = a_{ij}$$

• A tensor $m{T} \in \mathbb{R}^{n_1 imes \cdots imes n_d}$ can be fully unfolded the same way

$$\boldsymbol{v} = \operatorname{vec}\left(\boldsymbol{T}\right), \Rightarrow \boldsymbol{v} \in \mathbb{R}^{n_{1}\cdots n_{d}}, v_{i_{1}+i_{2}n_{1}+i_{3}n_{1}n_{2}+\ldots} = t_{i_{1}i_{2}i_{3}\ldots}$$

- Often we also want to *fold* tensors into higher-order ones
- Generally, we can *reshape* (fold or unfold) any tensor

$$\boldsymbol{U} = o_{n_1 \times \dots \times n_d}(\boldsymbol{V}) \quad \Rightarrow \quad \boldsymbol{U} \in \mathbb{R}^{n_1 \times \dots \times n_d}, \quad \operatorname{vec}\left(\boldsymbol{U}\right) = \operatorname{vec}\left(\boldsymbol{V}\right)$$

Tensors Tensor Transposition Tensor Contractions

Tensor Transposition

For tensors of order $\geq 3,$ there is more than one way to transpose modes

• A *tensor transposition* is defined by a permutation p containing elements $\{1, \ldots, d\}$

$$oldsymbol{Y} = oldsymbol{X}^{\langle oldsymbol{p}
angle} \quad \Rightarrow \quad y_{i_{p_1}, \dots, i_{p_d}} = x_{i_1, \dots, i_d}$$

• In this notation, a transposition of matrix A is defined as

$$\boldsymbol{A}^T = \boldsymbol{A}^{\langle [2,1] \rangle}$$

- Tensor transposition is a convenient primitive for manipulating multidimensional arrays and mapping tensor computations to linear algebra
- In tensor derivations, indices are often carried through to avoid transpositions

Tensors Tensor Transposition Tensor Contractions

Tensor Symmetry

We say a tensor is *symmetric* if $\forall j, k \in \{1, \dots, d\}$

 $t_{i_1...i_j...i_k...i_d} = t_{i_1...i_k...i_j...i_d}$ or equivalently $T = T^{\langle [1,...,j,...,k,...d]
angle}$

A tensor is *antisymmetric* (skew-symmetric) if $\forall j, k \in \{1, ..., d\}$

$$\boldsymbol{t}_{i_1\dots i_j\dots i_k\dots i_d} = (-1)\boldsymbol{t}_{i_1\dots i_k\dots i_j\dots i_d}$$

A tensor is *partially-symmetric* if such index interchanges are restricted to be within subsets of $\{1, \ldots, d\}$, e.g.

$$oldsymbol{t}_{ijkl} = oldsymbol{t}_{jikl} = oldsymbol{t}_{jilk} = oldsymbol{t}_{ijlk}$$

Tensors Tensor Transposition Tensor Contractions

Tensor Products and Kronecker Products

Tensor products can be defined with respect to maps $f: V_f \to W_f$ and $g: V_g \to W_g$

 $h = f \times g \quad \Rightarrow \quad g: (V_f \times V_g) \to (W_f \times W_g), \quad h(x,y) = f(x)g(y)$

Tensors can be used to represent multilinear maps and have a corresponding definition for a tensor product

$$T = X \times Y \quad \Rightarrow \quad t_{i_1,\dots,i_m,j_1,\dots,j_n} = x_{i_1,\dots,i_m} y_{j_1,\dots,j_n}$$

The *Kronecker product* between two matrices $A \in \mathbb{R}^{m_1 \times m_2}$, $B \in \mathbb{R}^{n_1 \times n_2}$

$$C = A \otimes B \quad \Rightarrow \quad c_{i_2+i_1m_2, j_2+j_1n_2} = a_{i_1j_1}b_{i_2j_2}$$

corresponds to transposing and reshaping the tensor product

$$\boldsymbol{A}\otimes \boldsymbol{B}=o_{m_1n_1,m_2n_2}((\boldsymbol{A}\times \boldsymbol{B})^{\langle [3,1,4,2] \rangle})$$

Tensors Tensor Transposition Tensor Contractions

Tensor Partial Sum

Y of order d - r is a partial sum of X of order d if for some q containing r elements of {1,...,d}

$$\mathbf{Y} = \sum_{\mathbf{q}} (\mathbf{X}) \quad \Rightarrow \quad \bar{\mathbf{X}} = \mathbf{X}^{\langle [q_1, \dots, q_r, \dots] \rangle}$$
$$y_{i_1 \dots i_{d-r}} = \sum_{j_1} \dots \sum_{j_r} \bar{x}_{j_1, \dots, j_r, i_1, \dots, i_{d-r}}$$

 Partial summations provide a powerful primitive operation when coupled with transposition and reshape

Tensors Tensor Transposition Tensor Contractions

Tensor Trace

• Z of order d - 2r is a *trace* of X of order $d \ge r$ if for some p, q each containing a different set of r elements of $\{1, \ldots, d\}$

$$\mathbf{Y} = \operatorname{trace}_{\mathbf{p},\mathbf{q}}(\mathbf{X}) \quad \Rightarrow \quad \bar{\mathbf{X}} = \mathbf{X}^{\langle [p_1,\dots,p_rq_1,\dots,q_r,\dots] \rangle},$$
$$y_{i_1\dots i_{d-2r}} = \sum_{j_1} \cdots \sum_{j_r} \bar{x}_{j_1,\dots j_r,j_1,\dots j_r,i_1,\dots i_{d-2r}}$$

• The trace of a matrix A in this notation is

trace(
$$\boldsymbol{A}$$
) = trace_{[0],[1]}(\boldsymbol{A}) = $\sum_{i} a_{ii}$

Tensors Tensor Transposition Tensor Contractions

Tensor Contraction

Tensor contraction is a transpose of a trace of a tensor product

$$m{C} = \left[egin{array}{c} ext{trace}(m{A} imes m{B})
ight]^{\langle m{r}
angle} & ext{for some } m{p}, m{q}, m{r} \end{array}$$

- Examples in linear algebra include: vector inner and outer products, matrix-vector product, matrix-matrix product
- The *contracted* modes of *A* appear in *p* and of *B* in *q*, while *uncontracted* modes appear in *r*
- Matrix multiplication would be given by p = [2], q = [3], r = [1, 4]

Tensors Tensor Transposition Tensor Contractions

Tensor Times Matrix

Tensor times matrix (TTM) is one of the most common tensor contractions involving tensors of order ≥ 3

- Given an order 3 tensor T and matrix V, TTM computes order 3 tensor W, generalizes naturally to higher-order T
- TTM can contract one of three modes of T

$$\begin{split} \boldsymbol{W} &= \left[\begin{array}{c} \mathrm{trace}(\boldsymbol{T} \times \boldsymbol{V}) \right]^{\langle [1,2,5] \rangle} \quad \text{or} \quad \boldsymbol{W} = \left[\begin{array}{c} \mathrm{trace}(\boldsymbol{T} \times \boldsymbol{V}) \\ [2],[4] \end{array} \right]^{\langle [1,3,5] \rangle} \\ \\ \text{or} \quad \boldsymbol{W} &= \left[\begin{array}{c} \mathrm{trace}(\boldsymbol{T} \times \boldsymbol{V}) \\ [1],[4] \end{array} \right]^{\langle [2,3,5] \rangle} \end{split}$$

In the first case, we have

$$w_{ijk} = \sum_{l} t_{ijl} v_{lk}$$

Tensors Tensor Transposition Tensor Contractions

Tensor Contraction Diagrams

Consider the tensor contraction

$$w_{ijk} = \sum_{lm} t_{ijlm} v_{mkl}$$

which we can also write in tensor notation

$$oldsymbol{W} = \left[egin{array}{c} ext{trace} \ [3,4], [7,5] \ \end{array}
ight(oldsymbol{T} imes oldsymbol{V})
ight]^{\langle [1,2,6]
angle}$$

or in the following diagrammatic form

CP Decomposition Tucker Decomposition Tensor Train Decomposition

CP decomposition

The SVD corresponds to a sum of outer products of the form

$$oldsymbol{A} = \sum_{k=1}^r \sigma_k oldsymbol{u}_k oldsymbol{v}_k^T$$

so it is natural to seek to approximate a tensor as

$$oldsymbol{T} = \sum_{k=1}^r \sigma_k oldsymbol{u}_k^{(1)} imes \cdots imes oldsymbol{u}_k^{(d)}$$

where each $u_k^{(i)}$ is orthogonal to any other $u_{k'}^{(i)}$, yielding the canonical polyadic (CP) decomposition of T

• *r* is referred to as the *canonical rank* of the tensor

CP Decomposition Tucker Decomposition Tensor Train Decomposition

Computing the CP decomposition

- Computing the canonical rank is NP hard
- Approximation by CP decomposition is *ill-posed*
- Regularization (imposing bounds on the norm of the factor matrices) make the optimization problem feasible
- Alternating least squares (ALS) commonly used for computation
 - Optimizes for one factor matrix at a time
 - Least squares problem for each matrix
- Alternatives include coordinate and gradient descent methods, much like in numerical optimization for matrix completion

CP Decomposition Tucker Decomposition Tensor Train Decomposition

Tucker Decomposition

The *Tucker decomposition* introduces an order d *core tensor* into the CP decomposition

$$t_{i_1\dots i_d} = \sum_{k_1\dots k_d} s_{k_1\dots k_d} w_{i_1k_1}^{(1)} \cdots w_{i_dk_d}^{(d)}$$

where the columns of each $W^{(i)}$ are orthonormal

- Unlike CP decomposition (given by 'diagonal' tensor *S*), each index appears in no more than two tensors
- Tucker decomposition is not *low-order* since the order of T matches that of S

Computing the Tucker Decomposition

The *SVD* (*HOSVD*) can refer to the Tucker decomposition or the following basic method for its computation

 Compute the left singular vectors W⁽ⁱ⁾ of all d single-mode unfoldings of T

$$\boldsymbol{T}_{(i)} = o_{n_i \times n_1 \cdots n_{i-1} n_{i+1} \cdots n_d} (\boldsymbol{T}^{\langle [i,1,\ldots,i-1,i+1,\ldots d] \rangle})$$

• Compute the core tensor by projecting *A* onto these singular vectors along each mode

$$oldsymbol{S} = \left[egin{array}{c} ext{trace} \ [1,...d], [d+2,d+4,...,2d] \end{array} (oldsymbol{T} imes oldsymbol{W}^{(1)} imes \cdots imes oldsymbol{W}^{(d)})
ight]^{\langle [d+1,d+3,...,2d-1]
angle}$$

• The HOSVD works well when the core tensor *S* can be shown to have decaying entries

CP Decomposition Tucker Decomposition Tensor Train Decomposition

Tensor Train Decomposition

The *tensor train* decomposition has the following diagrammatic representation

- The tensor train is a chain of contracted order 3 tensors with the two ends having order 2
- Elements of T are given by matrix product chain

$$t_{i_1\ldots i_d} = \boldsymbol{u}^{(i_1)} \boldsymbol{U}^{(i_2)} \cdots \boldsymbol{U}^{(i_{d-1})} \boldsymbol{u}^{(i_d)}$$

 Has been used for decades in physics, known as the matrix product states (MPS) representation

CP Decomposition Tucker Decomposition Tensor Train Decomposition

Tensor Train Properties

- The *tensor train (TT) ranks* are given by the dimensions of the auxiliary modes in the factorization
- The *tensor train (TT) rank* is the maximum number of columns in any matrix $U^{(i_j)}$
- The tensor train rank is a matrix rank, i.e. it corresponds to a low-rank decomposition of a matrix (given by contracting two parts of the tensor train)
- Summation and products of tensor trains can be readily computed

CP Decomposition Tucker Decomposition Tensor Train Decomposition

Quantized Tensor Train

- The *quantized tensor train (QTT)* corresponds to the application of TT to a tensor that is reshaped to be higher-order (e.g. each resulting mode dimension is constant)
- For some classes of matrices QTT analytic decompositions are known
- Toeplitz matrices have constant TT rank
- 3D Poisson operator has constant TT rank, more generally for FEM methods with simple mass and stiffness matrices

Computing the Tensor Train Decomposition

- Product of matrix with constant QTT rank and vector of dimension n has cost $\Theta(n \log n)$
- Given general vector, can compute TT decomposition by hierarchical SVD
- Faster algorithms leveraging low-rank of SVD are possible
- Can interpolate order d tensor with dimensions equal to n and TT rank r with cost $O(dnr^2)$
- Can efficiently obtain *cross approximation*, i.e. a lower-rank approximation to an existing TT approximation
- For order *d* tensor with *n*-dimensions and TT rank *r*, cross approximation cost is $O(dnr^3)$

Strassen's Algorithm Bilinear Algorithms

Strassen's Algorithm

Strassen's algorithm
$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \cdot \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

 $M_1 = (A_{11} + A_{22}) \cdot (B_{11} + B_{22})$
 $M_2 = (A_{21} + A_{22}) \cdot B_{11}$
 $M_3 = A_{11} \cdot (B_{12} - B_{22})$
 $M_4 = A_{22} \cdot (B_{21} - B_{11})$
 $M_5 = (A_{11} + A_{12}) \cdot B_{22}$
 $M_6 = (A_{21} - A_{11}) \cdot (B_{11} + B_{12})$
 $M_7 = (A_{12} - A_{22}) \cdot (B_{21} + B_{22})$
 $\begin{bmatrix} A_{11} & A_{12} \\ A_{22} \end{bmatrix} \cdot \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$

Minimize products \Rightarrow minimize number of recursive calls

$$T(n) = 7T(n/2) + O(n^2) = O(7^{\log_2 n}) = O(n^{\log_2 7})$$

For convolution, DFT matrix reduces from naive $O(n^2)$ products to O(n), both of these are bilinear algorithms

Strassen's Algorithm Bilinear Algorithms

Bilinear Algorithms

Definition (Bilinear algorithms (V. Pan, 1984))

A bilinear algorithm $\Lambda = ({\pmb{F}}^{(A)}, {\pmb{F}}^{(B)}, {\pmb{F}}^{(C)})$ computes

$$\boldsymbol{c} = \boldsymbol{F}^{(C)}[(\boldsymbol{F}^{(A)\mathsf{T}}\boldsymbol{a}) \odot (\boldsymbol{F}^{(B)\mathsf{T}}\boldsymbol{b})],$$

where a and b are inputs and \odot is the Hadamard (pointwise) product.

$$\begin{bmatrix} \mathbf{c} \end{bmatrix} = \begin{bmatrix} \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf$$

Strassen's Algorithm Bilinear Algorithms

Bilinear Algorithms as Tensor Factorizations

A bilinear algorithm corresponds to a CP tensor decomposition

$$c_{i} = \sum_{r=1}^{r} f_{ir}^{(C)} \left(\sum_{j} f_{jr}^{(A)} \boldsymbol{a}_{j} \right) \left(\sum_{k} f_{kr}^{(B)} b_{k} \right)$$

$$= \sum_{j} \sum_{k} \left(\sum_{r=1}^{r} f_{ir}^{(C)} f_{jr}^{(A)} f_{kr}^{(B)} \right) a_{j} b_{k}$$

$$= \sum_{j} \sum_{k} t_{ijk} a_{j} b_{k} \quad \text{where} \quad t_{ijk} = \sum_{r=1}^{r} f_{ir}^{(C)} f_{jr}^{(A)} f_{kr}^{(B)}$$

For multiplication of $n \times n$ matrices,

- T is $n^2 \times n^2 \times n^2$
- Classical algorithm has rank $r = n^3$
- Strassen's algorithm has rank $r \approx n^{\log_2(7)}$

References

- Golub, Gene H., and Charles F. Van Loan. Matrix computations. Vol. 3. *JHU Press*, 2012.
- Kolda, Tamara G., and Brett W. Bader. Tensor decompositions and applications. *SIAM review* 51.3 (2009): 455-500.
- Khoromskij, Boris N. Tensors-structured numerical methods in scientific computing: Survey on recent advances. *Chemometrics and Intelligent Laboratory Systems* 110.1 (2012): 1-19.
- Grasedyck, Lars, Daniel Kressner, and Christine Tobler. A literature survey of low-rank tensor approximation techniques. *GAMM-Mitteilungen* 36.1 (2013): 53-78.

References

- Kazeev, Vladimir A., and Boris N. Khoromskij. Low-rank explicit QTT representation of the Laplace operator and its inverse. *SIAM Journal on Matrix Analysis and Applications* 33.3 (2012): 742-758.
- Khoromskaia, Venera, Boris Khoromskij, and Reinhold Schneider. QTT representation of the Hartree and exchange operators in electronic structure calculations. *Computational Methods in Applied Mathematics Comput. Methods Appl. Math.* 11.3 (2011): 327-341.
- Khoromskij, Boris N., and Ivan V. Oseledets. QTT approximation of elliptic solution operators in higher dimensions. *Russian Journal of Numerical Analysis and Mathematical Modelling* 26.3 (2011): 303-322.

- De Silva, Vin, and Lek-Heng Lim. Tensor rank and the ill-posedness of the best low-rank approximation problem. *SIAM Journal on Matrix Analysis and Applications* 30.3 (2008): 1084-1127.
- Pan, Victor. How can we speed up matrix multiplication? *SIAM review* 26.3 (1984): 393-415.
- Karlsson, Lars, Daniel Kressner, and André Uschmajew. Parallel algorithms for tensor completion in the CP format. *Parallel Computing* 57 (2016): 222-234.