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Tensors

A tensor T ∈ Rn1×···×nd has

Order d (i.e. d modes / indices)

Dimensions n1-by-· · · -by-nd

Elements ti1...id = ti where i ∈
⊗d

i=1{1, . . . , ni}

Order d tensors represent d-dimensional arrays

(d ≥ 3)-dimensional arrays are prevalent in scientific
computing

Regular grids, collections of matrices, multilinear operators
Experimental data, visual/graphic data

Tensors analysis is the expression and study of numerical
methods using tensor representations
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Reshaping Tensors

When using tensors, it is often necessary to transition between
high-order and low-order representations of the same object

Recall for a matrix A ∈ Rm×n its unfolding is given by

v = vec (A) ,⇒ v ∈ Rmn, vi+jm = aij

A tensor T ∈ Rn1×···×nd can be fully unfolded the same way

v = vec (T ) ,⇒ v ∈ Rn1···nd , vi1+i2n1+i3n1n2+... = ti1i2i3...

Often we also want to fold tensors into higher-order ones

Generally, we can reshape (fold or unfold) any tensor

U = on1×···×nd
(V ) ⇒ U ∈ Rn1×···×nd , vec (U) = vec (V )
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Tensor Transposition

For tensors of order ≥ 3, there is more than one way to
transpose modes

A tensor transposition is defined by a permutation p
containing elements {1, . . . , d}

Y = X〈p〉 ⇒ yip1 ,...,ipd = xi1,...,id

In this notation, a transposition of matrix A is defined as

AT = A〈[2,1]〉

Tensor transposition is a convenient primitive for
manipulating multidimensional arrays and mapping tensor
computations to linear algebra

In tensor derivations, indices are often carried through to
avoid transpositions
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Tensor Symmetry

We say a tensor is symmetric if ∀j, k ∈ {1, . . . , d}

ti1...ij ...ik...id = ti1...ik...ij ...id or equivalently T = T 〈[1,...,j,...,k,...d]〉

A tensor is antisymmetric (skew-symmetric) if ∀j, k ∈ {1, . . . , d}

ti1...ij ...ik...id = (−1)ti1...ik...ij ...id

A tensor is partially-symmetric if such index interchanges are
restricted to be within subsets of {1, . . . , d}, e.g.

tijkl = tjikl = tjilk = tijlk

Edgar Solomonik Parallel Numerical Algorithms 6 / 26



Tensor Algebra
Tensor Decompositions

Fast Algorithms

Tensors
Tensor Transposition
Tensor Contractions

Tensor Products and Kronecker Products

Tensor products can be defined with respect to maps
f : Vf →Wf and g : Vg →Wg

h = f×g ⇒ g : (Vf×Vg)→ (Wf×Wg), h(x, y) = f(x)g(y)

Tensors can be used to represent multilinear maps and have a
corresponding definition for a tensor product

T = X × Y ⇒ ti1,...,im,j1,...,jn = xi1,...,imyj1,...,jn

The Kronecker product between two matrices A ∈ Rm1×m2 ,
B ∈ Rn1×n2

C = A⊗B ⇒ ci2+i1m2,j2+j1n2 = ai1j1bi2j2

corresponds to transposing and reshaping the tensor product

A⊗B = om1n1,m2n2((A×B)〈[3,1,4,2]〉)
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Tensor Partial Sum

Y of order d− r is a partial sum of X of order d if for some
q containing r elements of {1, . . . , d}

Y =
∑
q

(X) ⇒ X̄ = X〈[q1,...,qr,...]〉,

yi1...id−r
=
∑
j1

· · ·
∑
jr

x̄j1,...jr,i1,...id−r

Partial summations provide a powerful primitive operation
when coupled with transposition and reshape
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Tensor Trace

Z of order d− 2r is a trace of X of order d ≥ r if for some
p, q each containing a different set of r elements of
{1, . . . , d}

Y = trace
p,q

(X) ⇒ X̄ = X〈[p1,...,prq1,...,qr,...]〉,

yi1...id−2r
=
∑
j1

· · ·
∑
jr

x̄j1,...jr,j1,...jr,i1,...id−2r

The trace of a matrix A in this notation is

trace(A) = trace
[0],[1]

(A) =
∑
i

aii
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Tensor Contraction

Tensor contraction is a transpose of a trace of a tensor product

C =

[
trace
p,q

(A×B)

]〈r〉
for some p, q, r

Examples in linear algebra include: vector inner and outer
products, matrix–vector product, matrix–matrix product

The contracted modes of A appear in p and of B in q,
while uncontracted modes appear in r

Matrix multiplication would be given by p = [2], q = [3],
r = [1, 4]
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Tensor Times Matrix

Tensor times matrix (TTM) is one of the most common tensor
contractions involving tensors of order ≥ 3

Given an order 3 tensor T and matrix V , TTM computes
order 3 tensor W , generalizes naturally to higher-order T

TTM can contract one of three modes of T

W =

[
trace
[3],[4]

(T × V )

]〈[1,2,5]〉
or W =

[
trace
[2],[4]

(T × V )

]〈[1,3,5]〉
or W =

[
trace
[1],[4]

(T × V )

]〈[2,3,5]〉
In the first case, we have

wijk =
∑
l

tijlvlk
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Tensor Contraction Diagrams

Consider the tensor contraction

wijk =
∑
lm

tijlmvmkl

which we can also write in tensor notation

W =

[
trace

[3,4],[7,5]
(T × V )

]〈[1,2,6]〉
or in the following diagrammatic form
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CP decomposition

The SVD corresponds to a sum of outer products of the form

A =

r∑
k=1

σkukv
T
k

so it is natural to seek to approximate a tensor as

T =

r∑
k=1

σku
(1)
k × · · · × u

(d)
k

where each u
(i)
k is orthogonal to any other u(i)

k′ , yielding the
canonical polyadic (CP) decomposition of T

r is referred to as the canonical rank of the tensor
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Computing the CP decomposition

Computing the canonical rank is NP hard

Approximation by CP decomposition is ill-posed

Regularization (imposing bounds on the norm of the factor
matrices) make the optimization problem feasible

Alternating least squares (ALS) commonly used for
computation

Optimizes for one factor matrix at a time

Least squares problem for each matrix

Alternatives include coordinate and gradient descent
methods, much like in numerical optimization for matrix
completion
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Tucker Decomposition

The Tucker decomposition introduces an order d core tensor
into the CP decomposition

ti1...id =
∑

k1···kd

sk1...kdw
(1)
i1k1
· · ·w(d)

idkd

where the columns of each W (i) are orthonormal

Unlike CP decomposition (given by ‘diagonal’ tensor S),
each index appears in no more than two tensors

Tucker decomposition is not low-order since the order of T
matches that of S
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Computing the Tucker Decomposition

The SVD (HOSVD) can refer to the Tucker decomposition or
the following basic method for its computation

Compute the left singular vectors W (i) of all d single-mode
unfoldings of T

T(i) = oni×n1···ni−1ni+1···nd
(T 〈[i,1,...,i−1,i+1,...d]〉)

Compute the core tensor by projecting A onto these
singular vectors along each mode

S =
[

trace
[1,...d],[d+2,d+4,...,2d]

(T ×W (1) × · · · ×W (d))
]〈[d+1,d+3,...,2d−1]〉

The HOSVD works well when the core tensor S can be
shown to have decaying entries
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Tensor Train Decomposition

The tensor train decomposition has the following diagrammatic
representation

The tensor train is a chain of contracted order 3 tensors
with the two ends having order 2

Elements of T are given by matrix product chain

ti1...id = u(i1)U (i2) · · ·U (id−1)u(id)

Has been used for decades in physics, known as the
matrix product states (MPS) representation
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Tensor Train Properties

The tensor train (TT) ranks are given by the dimensions of
the auxiliary modes in the factorization

The tensor train (TT) rank is the maximum number of
columns in any matrix U (ij)

The tensor train rank is a matrix rank, i.e. it corresponds to
a low-rank decomposition of a matrix (given by contracting
two parts of the tensor train)

Summation and products of tensor trains can be readily
computed

Edgar Solomonik Parallel Numerical Algorithms 18 / 26



Tensor Algebra
Tensor Decompositions

Fast Algorithms

CP Decomposition
Tucker Decomposition
Tensor Train Decomposition

Quantized Tensor Train

The quantized tensor train (QTT) corresponds to the
application of TT to a tensor that is reshaped to be
higher-order (e.g. each resulting mode dimension is
constant)

For some classes of matrices QTT analytic
decompositions are known

Toeplitz matrices have constant TT rank

3D Poisson operator has constant TT rank, more generally
for FEM methods with simple mass and stiffness matrices
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Computing the Tensor Train Decomposition

Product of matrix with constant QTT rank and vector of
dimension n has cost Θ(n log n)

Given general vector, can compute TT decomposition by
hierarchical SVD

Faster algorithms leveraging low-rank of SVD are possible

Can interpolate order d tensor with dimensions equal to n
and TT rank r with cost O(dnr2)

Can efficiently obtain cross approximation, i.e. a
lower-rank approximation to an existing TT approximation

For order d tensor with n-dimensions and TT rank r, cross
approximation cost is O(dnr3)
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Strassen’s Algorithm

Strassen’s algorithm
[
C11 C12

C21 C22

]
=

[
A11 A12

A21 A22

]
·
[
B11 B12

B21 B22

]
M1 = (A11 +A22) · (B11 +B22)

M2 = (A21 +A22) ·B11

M3 = A11 · (B12 −B22)

M4 = A22 · (B21 −B11)

M5 = (A11 +A12) ·B22

M6 = (A21 −A11) · (B11 +B12)

M7 = (A12 −A22) · (B21 +B22)

C11 = M1 +M4 −M5 +M7

C21 = M2 +M4

C12 = M3 +M5

C22 = M1 −M2 +M3 +M6

Minimize products⇒ minimize number of recursive calls

T (n) = 7T (n/2) +O(n2) = O(7log2 n) = O(nlog2 7)

For convolution, DFT matrix reduces from naive O(n2) products
to O(n), both of these are bilinear algorithms
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Bilinear Algorithms

Definition (Bilinear algorithms (V. Pan, 1984))

A bilinear algorithm Λ = (F (A),F (B),F (C)) computes

c = F (C)[(F (A)Ta)� (F (B)Tb)],

where a and b are inputs and � is the Hadamard (pointwise)
product.
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Bilinear Algorithms as Tensor Factorizations

A bilinear algorithm corresponds to a CP tensor decomposition

ci =

r∑
r=1

f
(C)
ir

(∑
j

f
(A)
jr aj

)(∑
k

f
(B)
kr bk

)

=
∑
j

∑
k

( r∑
r=1

f
(C)
ir f

(A)
jr f

(B)
kr

)
ajbk

=
∑
j

∑
k

tijkajbk where tijk =

r∑
r=1

f
(C)
ir f

(A)
jr f

(B)
kr

For multiplication of n× n matrices,
T is n2 × n2 × n2

Classical algorithm has rank r = n3

Strassen’s algorithm has rank r ≈ nlog2(7)
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