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Electronic Structure Calculations

Electronic Structure Calculations

Models of chemical systems and processes calculate energies
of molecular configurations

@ Lowest-energy configurations describe electron distribution

e Electrons occupy orbitals around each atom
e Their occupancy of a given orbital is probabilistic

@ The Born-Oppenheimer approximation is the separation of
treatment of atomic and electronic distribution

e This approximation is based on the radical difference in size
and momentum of nuclei and electrons

@ Thus, electronic structure calculations typically focus on
computing the free energy of electrons for a fixed
configuration of atoms
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Electronic Structure Calculations

Electronic Hamiltonian

@ The interactions of a system of n electrons are encoded in
a Hamiltonian operator H

@ The wavefunction ¥(x) and its energy E is the
eigenfunction of the Hamiltonian with the smallest
eigenvalue

@ z1,...,x, are the respective coordinates of the n electrons

@ U(x) is a probability density function describing the state
of the system of electrons

@ U*(x)V¥(x) gives the probability of observing the electrons
at locations z1,...,z,
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Electronic Structure Calculations

Time-Independent Schrédinger Equation

The Schrddinger equation describes electronic interactions
@ Most often, a time-independent, nonrelativistic form is used
@ In this case the n-particle Hamiltonian has the form

:—7ZV2+ZV (z4) +ZZU xz,xj

i=1 j<i

@ The one-particle component V (x;) encodes interactions
between electrons and atoms

@ The two-particle component U(x;, x;) encodes
electron—electron interactions

@ U is generally a function of all electrons, to obtain an
approximate solution a simpler ansatz is often used
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Density Functional Theory Kohn—-Sham Equations
Solving the Kohn—Sham Equations

Density Function Theory (DFT)

Density Functional Theory (DFT)
@ Approximate wavefunction ansatz is a Hartree product of n
single-particle wavefunctions

U(z1,...,xn) = VUi(x1) - Yp(xy)

@ The electron (probability) density given this ansatz is
n(x) :Z/~'~/(\IJ*\I/)(:C)CZ$1...dz,;_ldxi+1...d:17n
1=1

~ Z Vi (z) V()

@ Hohenberg—Kohn theorem: one-to-one relationship
between the energy density n and ¥, 3F so E = F(n(x)).
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Density Functional Theory Kohn—-Sham Equations
Solving the Kohn—Sham Equations

Kohn—Sham Equations

The Kohn—-Sham equations describe the action of the
many-body Hamiltonian on the single-electron wavefunctions

_ %VQ V(@) + Vi) + Vi) Wi(a) = E(x)

@ Electron—electron replaced by electron—density potentials
@ Vy(x) is the Hartree potential holding Coulomb repulsion

@ Vxc(x) is an approximation to the exchange-correlation
potential (including model for Pauli exclusion)

@ The exchange-correlation potential Vxc(x) has no known
simple form

@ Various approximations for Vxc mix theory and heuristics
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Density Functional Theory Kohn-Sham Equations
Solving the Kohn—-Sham Equations

Solving the Kohn—Sham equations

The Kohn—Sham equations give ¥;(x) as
single particle wavefunctions = f(electron density)
while the electron density n(x) is defined by
electron density = g(single particle wavefunctions)
DFT solves for these iteratively
@ Define an initial guess for the density 7(?) ()
@ Solve the Kohn-Sham equations with ) (z) to get ¥ (x)
© Calculate a new Kohn—Sham electron density

j-‘rl) Z \I/ ]) *‘I/ (z)
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Density Functional Theory Kohn-Sham Equations
Solving the Kohn—-Sham Equations

Electron Density Representation

A basis is defined for the spatial domain to get a numerical
representation of n(x)

@ Plane waves provide harmonic representation
(sparse/compact/local in Fourier basis)
@ Gaussian (sparse/compact/local) functions local to orbitals

e Typically lowest-energy configuration associates each
electron with a single base orbital

e Compact support of basis functions enable sparse
representations of single-electron wavefunctions

o If system is sufficiently large, potentials are well
approximated by sparse representations
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Density Functional Theory Kohn-Sham Equations
Solving the Kohn—-Sham Equations

Discretized Kohn-Sham Equations

@ Introduce a spatial basis {¢1, ..., ¢, } for single-electron

wavefunctions .
x) = Zcui¢u(x)
pn=1

@ The basis need not be orthonormal, and we generally have
overlap matrix S, where

s = [ @) (@)da

@ Density matrix D then given by

]—H) Z Z Z Cmcyz ¢u l/(w)

p=1v=1i=1
~—

s
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Density Functional Theory Kohn-Sham Equations
Solving the Kohn—-Sham Equations

Discretized Kohn-Sham Equations

@ Projecting onto ¢, (x) and integrating Kohn—Sham
equations with U;(x) = Y7 c,idu (), we get

= EZ/¢M(w)*\I!Z(w)da:
S fwevi=& suwewi so FC=8C
v=1 v=1 (C,'n

@ The columns of C are obtained by solution of a
generalized eigenvalue problem involving Fock matrix F
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Density Functional Theory Kohn-Sham Equations
Solving the Kohn—-Sham Equations

DFT with a Plane Wave Basis Set

@ Every basis function in a plane wave basis set is based on
a 3D periodic lattice in Fourier space

@ The domain is treated as periodic, which makes physical
sends for solids (less so for molecular system with
heterogeneous structure)

@ The Coulomb potential Vi (x) and Laplace operator V2 are
well-approximated in Fourier space

@ Local potentials decay in real-space, motivating use of
mixed representations
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Density Functional Theory Kohn-Sham Equations
Solving the Kohn—-Sham Equations

DFT with Gaussian and Plane Waves

The simultaneous use of both Gaussian and plane wave bases
gives the GPW method

@ GPW split the potentials in the the Kohn-Sham equations
into two parts

e A short-range part that can be resolved using localized
Gaussian basis functions

e A long-range part that is solved using fast methods in the
plane-wave bases

@ Convergent sum = two rapidly convergent sums

@ Methods like GPW provide algorithms for DFT that formally
achieve linear scaling with system size
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Density Functional Theory Kohn-Sham Equations
Solving the Kohn—-Sham Equations

Density Matrix as a Sign Function

@ Many other methods exist for solving the Kohn-Sham
equations (for some representation of potential)

@ Recent methods developed by leverage relationship
between density matrix D, overlap matrix S, and
Hamiltonian matrix H (component of the Fock matrix)

D = (1/2)(I —sign(S™'H — uI))S™!

@ The sign function pushes the negative/positive eigenvalues
to -1/ +1so

sign(A) = A(A>) V2 =Uxz|~lUuT
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Density Functional Theory Kohn-Sham Equations
Solving the Kohn—-Sham Equations

Computing the Matrix Sign Function

@ The sign function sign(A) of symmetric matrix A is given
by taking the eigenvalue decomposition A = UXU and
replacing 3 with a diagonal matrix of signs

@ Sign function can be found by repeated squaring
A = (1/2)A;(31 — Ay)?
which converges quadratically to
sign(A) = A(A%)~1/?
provided Ayg = cA and ¢ < ||A|| ™}

@ This method is done for DFT with screening of
intermediate terms (discarding negligible matrix elements)
to preserve sparsity in each A;
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Self Consistent Field (SCF) Iteration
Hartree-Fock Method Cost of Integral Computation

Hartree—Fock Method

The Hartree—Fock (HF) method provides a more accurate
representation of electron exchange

@ HF is still a mean-field treatment that does not treat
electron—electron interactions explicitly

@ HF uses a Slater determinant as a wavefunction ansatz

\Ifl(xl) ‘lfl(xg)

U(x) ~ det : :

U, (1) -+ Uy(zy)

@ This wavefunction ansatz is an antisymmetrized Hartree
product (DFT wavefunction ansatz)

@ The antisymmetry (any permutation yields to a sign flip)
allows the wavefunction to satisfy Pauli exclusion
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Self Consistent Field (SCF) Iteration
Hartree-Fock Method Cost of Integral Computation

Self Consistent Field lteration

HF is solved by the Self Consistent Field (SCF) iteration, which
is very similar to DFT

@ For density matrix D, the Fock matrix is given by
fuw = W%+ dao (2| Ao) — (u|vo))
Ao

where h{?' is the core-Hamiltonian and (uv|Ao) are the
electron—repulsion integrals

@ Due to explicit calculation of exchange terms (uA|vo), Fock
matrix construction is more expensive in HF than DFT

@ SCF iteratively computes F from D then D from solutions
to the generalized eigenproblem with F'
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Self Consistent Field (SCF) lteration
Hartree-Fock Method Cost of Integral Computation

Electron-Repulsion Integral Computation

A key computational bottleneck in Hartree-Fock is calculation of
the electron—repulsion integrals (ERI tensor)

@ These are generally screened so a subset is computed

@ Anintegral (uv|Ao) is derived from D,;, where
{a,b} € {u,v, A\, o} and contributes to each Fy;

@ Both F and D are symmetric so we consider (3) = 6
permutations

@ If we compute a 4D block of (uv|\o) of size s, require
©(y/s) entries of F and D

@ Thus computing the O(n*) elements of the ERI tensor with
p processors can be done with O(n?/,/p) communication

@ For sufficiently large systems, suffices to keep O(n?) terms
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Configuration Interaction
Moller-Plesset Perturbation Methods
Coupled-Cluster Methods

Post-Hartree-Fock Methods

Configuration Interaction

Hartree-Fock represents an n-electron wavefunction using a
determinant of n basis functions

@ Given a basis set of m > n functions (orbitals), we can
define (") Slater determinants of n-electrons, which
‘occupy’ different subsets of functions (orbitals)

@ Configuration-interaction (Cl) works on a basis that
includes all (") combinations

@ Eigendecomposition of the resulting matrix (dimension
exponential in m) gives exact solution to electronic
Schrddinger equation for given basis

@ Quantum Monte Carlo methods select a subset of
determinants by using weighted sampling

Edgar Solomonik Parallel Numerical Algorithms



Configuration Interaction

Mgller-Plesset Perturbation Methods

Post-Hartree-Fock Methods Coupled-Cluster Methods

Mgller-Plesset Perturbation Theory

Mealler-Plesset perturbation methods, modify the Hamiltonian
slightly to take into account some ‘excited-state’ configurations

@ Brillouin theorem — single-electron excitations have no
integral affect (first-order perturbation is analytically zero)

@ MP2 and MP3 are second and third order perturbations

@ MP2 can be computed directly from the ERI tensor as a
correction, requiring O(n*) cost

@ MP3 requires a tensor contraction between two order four
tensors, requiring O(n’%) cost

@ The dominant part of the cost in MP3 is the tensor
contraction, which can be done by matrix-matrix
multiplication
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Configuration Interaction
Mgller-Plesset Perturbation Methods
Coupled-Cluster Methods

Post-Hartree-Fock Methods

Coupled-Cluster Theory

A more computationally robust alternative to Cl is presented by
coupled-cluster (CC) methods

@ CC methods try to take into account electron correlation,
by taking into account all possible excitations of k electrons
e CCSD: (singles and doubles) k = 2, O(n®) cost
e CCSDT: (singles, doubles, and triples) k = 3, O(n®) cost
e CCSDTQ: (... and quadruples) k = 4, O(n'?) cost

@ CC methods use a wavefunction ansatz of the form
U ~ el1t+1e, where Uy is the HF Slater determinant

@ The exponential is expanded in polynomial form and
truncated, resulting in a set of tensor contractions that
define possible electron state transitions
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Configuration Interaction
Mgller-Plesset Perturbation Methods
Coupled-Cluster Methods

Post-Hartree-Fock Methods

Coupled-Cluster Calculation

@ Coupled-cluster and related methods are dominated by
matrix-multiplication (tensor contractions)

@ The tensor representations have antisymmetry
@ Methods attempt to lower complexity by leveraging sparsity
or low rank structure
o Density Fitting
o Resolution of Identity
e Tensor Hypercontraction, etc.
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Configuration Interaction
Mgller-Plesset Perturbation Methods
Coupled-Cluster Methods

Post-Hartree-Fock Methods

Sources of Parallelism in Quantum Chemistry

@ DFT and SCF methods often use dense linear algebra
e Symmetric (generalized) eigenvalue problem
e Matrix multiplication, QR, Fourier transform

@ Localized bases can introduce sparsity (e.g. GPW)

e Sparse matrix products and eigenvalue problems

@ Integral calculation can be done effectively in parallel
(some load balance challenges with screening)

@ Tensor contractions in post-HF methods are parallelizable

e Tensor transposition or in-place contraction pose
data-layout transformation challenges
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General References

@ David Sherril’'s online notes:
http://vergil.chemistry.gatech.edu/notes/

@ Helgaker, Trygve, Poul Jorgensen, and Jeppe Olsen. Molecular
electronic-structure theory. John Wiley and Sons, 2014.

@ Szabo, Attila, and Neil S. Ostlund. Modern quantum chemistry:
introduction to advanced electronic structure theory. Courier
Corporation, 2012.
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