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Electronic Structure Calculations

Models of chemical systems and processes calculate energies
of molecular configurations

Lowest-energy configurations describe electron distribution

Electrons occupy orbitals around each atom
Their occupancy of a given orbital is probabilistic

The Born-Oppenheimer approximation is the separation of
treatment of atomic and electronic distribution

This approximation is based on the radical difference in size
and momentum of nuclei and electrons

Thus, electronic structure calculations typically focus on
computing the free energy of electrons for a fixed
configuration of atoms
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Electronic Hamiltonian

The interactions of a system of n electrons are encoded in
a Hamiltonian operator H

The wavefunction Ψ(x) and its energy E is the
eigenfunction of the Hamiltonian with the smallest
eigenvalue

HΨ(x) = EΨ(x)

x1, . . . , xn are the respective coordinates of the n electrons

Ψ(x) is a probability density function describing the state
of the system of electrons

Ψ∗(x)Ψ(x) gives the probability of observing the electrons
at locations x1, . . . , xn
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Time-Independent Schrödinger Equation

The Schrödinger equation describes electronic interactions
Most often, a time-independent, nonrelativistic form is used
In this case the n-particle Hamiltonian has the form

H = − 1

2m

n∑
i=1

∇2
i +

n∑
i=1

V (xi) +

n∑
i=1

∑
j<i

U(xi, xj)

The one-particle component V (xi) encodes interactions
between electrons and atoms
The two-particle component U(xi, xj) encodes
electron–electron interactions
Ψ is generally a function of all electrons, to obtain an
approximate solution a simpler ansatz is often used
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Density Function Theory (DFT)

Density Functional Theory (DFT)
Approximate wavefunction ansatz is a Hartree product of n
single-particle wavefunctions

Ψ(x1, . . . , xn) ≈ Ψ1(x1) · · ·Ψn(xn)

The electron (probability) density given this ansatz is

η(x) =

n∑
i=1

∫
· · ·
∫

(Ψ∗Ψ)(x)dx1 . . . dxi−1dxi+1 . . . dxn

≈
n∑

i=1

Ψ∗
i (x)Ψi(x)

Hohenberg–Kohn theorem: one-to-one relationship
between the energy density η and Ψ, ∃F so E = F (η(x)).
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Kohn–Sham Equations

The Kohn–Sham equations describe the action of the
many-body Hamiltonian on the single-electron wavefunctions[

− 1

2m
∇2 + V (x) + VH(x) + VXC(x)

]
Ψi(x) = EiΨi(x)

Electron–electron replaced by electron–density potentials

VH(x) is the Hartree potential holding Coulomb repulsion

VXC(x) is an approximation to the exchange-correlation
potential (including model for Pauli exclusion)

The exchange-correlation potential VXC(x) has no known
simple form

Various approximations for VXC mix theory and heuristics
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Solving the Kohn–Sham equations

The Kohn–Sham equations give Ψi(x) as

single particle wavefunctions = f(electron density)

while the electron density η(x) is defined by

electron density = g(single particle wavefunctions)

DFT solves for these iteratively
1 Define an initial guess for the density η(0)(x)

2 Solve the Kohn–Sham equations with η(j)(x) to get Ψ
(j)
i (x)

3 Calculate a new Kohn–Sham electron density

η(j+1)(x) =
n∑
i=1

Ψ
(j)
i (x)∗Ψ

(j)
i (x)
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Electron Density Representation

A basis is defined for the spatial domain to get a numerical
representation of η(x)

Plane waves provide harmonic representation
(sparse/compact/local in Fourier basis)

Gaussian (sparse/compact/local) functions local to orbitals

Typically lowest-energy configuration associates each
electron with a single base orbital

Compact support of basis functions enable sparse
representations of single-electron wavefunctions

If system is sufficiently large, potentials are well
approximated by sparse representations
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Discretized Kohn-Sham Equations

Introduce a spatial basis {φ1, . . . , φm} for single-electron
wavefunctions

Ψi(x) =

m∑
µ=1

cµiφµ(x)

The basis need not be orthonormal, and we generally have
overlap matrix S, where

sµν =

∫
φµ(x)φν(x)dx

Density matrix D then given by

η(j+1)(x) =

m∑
µ=1

m∑
ν=1

n∑
i=1

c∗µicνi︸ ︷︷ ︸
dµν

φµ(x)∗φν(x)
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Discretized Kohn-Sham Equations

Projecting onto φµ(x) and integrating Kohn–Sham
equations with Ψi(x) =

∑m
ν=1 cνiφν(x), we get∫

φµ(x)∗
[
− 1

2m
∇2 + V (x) + VH(x) + VXC(x)

]
Ψi(x)dx

= Ei
∫
φµ(x)∗Ψi(x)dx

m∑
ν=1

fµνcνi = Ei
m∑
ν=1

sµνcνi so FC = SC

E1 . . .
En


The columns of C are obtained by solution of a
generalized eigenvalue problem involving Fock matrix F
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DFT with a Plane Wave Basis Set

Every basis function in a plane wave basis set is based on
a 3D periodic lattice in Fourier space

The domain is treated as periodic, which makes physical
sends for solids (less so for molecular system with
heterogeneous structure)

The Coulomb potential VH(x) and Laplace operator ∇2 are
well-approximated in Fourier space

Local potentials decay in real-space, motivating use of
mixed representations
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DFT with Gaussian and Plane Waves

The simultaneous use of both Gaussian and plane wave bases
gives the GPW method

GPW split the potentials in the the Kohn-Sham equations
into two parts

A short-range part that can be resolved using localized
Gaussian basis functions

A long-range part that is solved using fast methods in the
plane-wave bases

Convergent sum⇒ two rapidly convergent sums

Methods like GPW provide algorithms for DFT that formally
achieve linear scaling with system size
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Density Matrix as a Sign Function

Many other methods exist for solving the Kohn-Sham
equations (for some representation of potential)

Recent methods developed by leverage relationship
between density matrix D, overlap matrix S, and
Hamiltonian matrix H (component of the Fock matrix)

D = (1/2)(I − sign(S−1H − µI))S−1

The sign function pushes the negative/positive eigenvalues
to −1/+ 1 so

sign(A) = A(A2)−1/2 = UΣ|Σ|−1UT
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Computing the Matrix Sign Function

The sign function sign(A) of symmetric matrix A is given
by taking the eigenvalue decomposition A = UΣUT and
replacing Σ with a diagonal matrix of signs

Sign function can be found by repeated squaring

Ai+1 = (1/2)Ai(3I −Ai)
2

which converges quadratically to

sign(A) = A(A2)−1/2

provided A0 = cA and c < ||A||−1

This method is done for DFT with screening of
intermediate terms (discarding negligible matrix elements)
to preserve sparsity in each Ai
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Hartree–Fock Method

The Hartree–Fock (HF) method provides a more accurate
representation of electron exchange

HF is still a mean-field treatment that does not treat
electron–electron interactions explicitly

HF uses a Slater determinant as a wavefunction ansatz

Ψ(x) ≈ det


Ψ1(x1) · · · Ψ1(x2)

...
...

Ψn(x1) · · · Ψn(xn)




This wavefunction ansatz is an antisymmetrized Hartree
product (DFT wavefunction ansatz)
The antisymmetry (any permutation yields to a sign flip)
allows the wavefunction to satisfy Pauli exclusion
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Self Consistent Field Iteration

HF is solved by the Self Consistent Field (SCF) iteration, which
is very similar to DFT

For density matrix D, the Fock matrix is given by

fµν = hcore
µν +

∑
λσ

dλσ(2(µν|λσ)− (µλ|νσ))

where hcore
ij is the core-Hamiltonian and (µν|λσ) are the

electron–repulsion integrals

Due to explicit calculation of exchange terms (µλ|νσ), Fock
matrix construction is more expensive in HF than DFT

SCF iteratively computes F from D then D from solutions
to the generalized eigenproblem with F
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Electron-Repulsion Integral Computation

A key computational bottleneck in Hartree-Fock is calculation of
the electron–repulsion integrals (ERI tensor)

These are generally screened so a subset is computed

An integral (µν|λσ) is derived from Dab where
{a, b} ∈ {µ, ν, λ, σ} and contributes to each Fab

Both F and D are symmetric so we consider
(
4
2

)
= 6

permutations

If we compute a 4D block of (µν|λσ) of size s, require
Θ(
√
s) entries of F and D

Thus computing the O(n4) elements of the ERI tensor with
p processors can be done with O(n2/

√
p) communication

For sufficiently large systems, suffices to keep O(n2) terms
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Configuration Interaction

Hartree-Fock represents an n-electron wavefunction using a
determinant of n basis functions

Given a basis set of m > n functions (orbitals), we can
define

(
m
n

)
Slater determinants of n-electrons, which

‘occupy’ different subsets of functions (orbitals)

Configuration-interaction (CI) works on a basis that
includes all

(
m
n

)
combinations

Eigendecomposition of the resulting matrix (dimension
exponential in m) gives exact solution to electronic
Schrödinger equation for given basis

Quantum Monte Carlo methods select a subset of
determinants by using weighted sampling
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Møller-Plesset Perturbation Theory

Møller-Plesset perturbation methods, modify the Hamiltonian
slightly to take into account some ‘excited-state’ configurations

Brillouin theorem – single-electron excitations have no
integral affect (first-order perturbation is analytically zero)

MP2 and MP3 are second and third order perturbations

MP2 can be computed directly from the ERI tensor as a
correction, requiring O(n4) cost

MP3 requires a tensor contraction between two order four
tensors, requiring O(n6) cost

The dominant part of the cost in MP3 is the tensor
contraction, which can be done by matrix-matrix
multiplication
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Coupled-Cluster Theory

A more computationally robust alternative to CI is presented by
coupled-cluster (CC) methods

CC methods try to take into account electron correlation,
by taking into account all possible excitations of k electrons

CCSD: (singles and doubles) k = 2, O(n6) cost

CCSDT: (singles, doubles, and triples) k = 3, O(n8) cost

CCSDTQ: (... and quadruples) k = 4, O(n10) cost

CC methods use a wavefunction ansatz of the form
Ψ ≈ eT1+···+TkΨ0 where Ψ0 is the HF Slater determinant

The exponential is expanded in polynomial form and
truncated, resulting in a set of tensor contractions that
define possible electron state transitions
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Coupled-Cluster Calculation

Coupled-cluster and related methods are dominated by
matrix-multiplication (tensor contractions)

The tensor representations have antisymmetry

Methods attempt to lower complexity by leveraging sparsity
or low rank structure

Density Fitting
Resolution of Identity
Tensor Hypercontraction, etc.
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Sources of Parallelism in Quantum Chemistry

DFT and SCF methods often use dense linear algebra

Symmetric (generalized) eigenvalue problem

Matrix multiplication, QR, Fourier transform

Localized bases can introduce sparsity (e.g. GPW)

Sparse matrix products and eigenvalue problems

Integral calculation can be done effectively in parallel
(some load balance challenges with screening)

Tensor contractions in post-HF methods are parallelizable

Tensor transposition or in-place contraction pose
data-layout transformation challenges
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General References

David Sherril’s online notes:
http://vergil.chemistry.gatech.edu/notes/

Helgaker, Trygve, Poul Jorgensen, and Jeppe Olsen. Molecular
electronic-structure theory. John Wiley and Sons, 2014.

Szabo, Attila, and Neil S. Ostlund. Modern quantum chemistry:
introduction to advanced electronic structure theory. Courier
Corporation, 2012.
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