Parallel Numerical Algorithms

Chapter 5 – Eigenvalue Problems Section 5.1 – QR Factorization

Michael T. Heath and Edgar Solomonik

Department of Computer Science University of Illinois at Urbana-Champaign

CS 554 / CSE 512

Outline

- QR Factorization
- 2 Householder Transformations
 - Recursive TSQR
 - 2D and 3D Householder QR
- Givens Rotations

QR Factorization

 For given m × n matrix A, with m > n, QR factorization has form

$$oldsymbol{A} = oldsymbol{Q} egin{bmatrix} oldsymbol{R} \ oldsymbol{O} \end{bmatrix}$$

where matrix Q is $m \times n$ with orthonormal columns, and R is $n \times n$ and upper triangular

- Can be used to solve linear systems, least squares problems, and eigenvalue problems
- As with Gaussian elimination, zeros are introduced successively into matrix A, eventually reaching upper triangular form, but using orthogonal transformations instead of elementary eliminators

Methods for QR Factorization

- Householder transformations (elementary reflectors)
- Givens transformations (plane rotations)
- Gram-Schmidt orthogonalization

Householder Transformations

Householder transformation has form

$$\boldsymbol{H} = \boldsymbol{I} - 2 \frac{\boldsymbol{v} \boldsymbol{v}^T}{\boldsymbol{v}^T \boldsymbol{v}}$$

where v is nonzero vector

- From definition, $\boldsymbol{H} = \boldsymbol{H}^T = \boldsymbol{H}^{-1}$, so \boldsymbol{H} is both orthogonal and symmetric
- For given vector a, choose v so that

$$m{Ha} = egin{bmatrix} lpha \ 0 \ dots \ 0 \end{bmatrix} = lpha egin{bmatrix} 1 \ 0 \ dots \ 0 \end{bmatrix} = lpha m{e}_1$$

Householder Transformations

Substituting into formula for H, we see that we can take

$$\mathbf{v} = \mathbf{a} - \alpha \mathbf{e}_1$$

and to preserve norm we must have $\alpha = \pm ||a||_2$, with sign chosen to avoid cancellation

Householder QR Factorization

$$\begin{aligned} &\text{for } k=1 \text{ to } n \\ &\alpha_k = -\mathrm{sign}(a_{kk}) \sqrt{a_{kk}^2 + \dots + a_{mk}^2} \\ &\boldsymbol{v}_k = \begin{bmatrix} 0 & \cdots & 0 & a_{kk} & \cdots & a_{mk} \end{bmatrix}^T - \alpha_k \boldsymbol{e}_k \\ &\beta_k = \boldsymbol{v}_k^T \boldsymbol{v}_k \\ &\text{if } \beta_k = 0 \text{ then} \\ &\text{continue with next } k \\ &\text{for } j = k \text{ to } n \\ &\gamma_j = \boldsymbol{v}_k^T \boldsymbol{a}_j \\ &\boldsymbol{a}_j = \boldsymbol{a}_j - (2\gamma_j/\beta_k) \boldsymbol{v}_k \\ &\text{end} \end{aligned}$$

Basis-Kernel Representations

- A Householder matrix H is represented by $H = I uu^T$, i.e. a rank-1 perturbation of the identity
- We can combine r Householder matrices H_1, \ldots, H_r into a rank-r peturbation of the identity

$$ar{m{H}} = \prod_{i=1}^r m{H}_i = m{I} - m{Y}m{V}^T, ext{where } m{Y}, m{V} \in \mathbb{R}^{n imes r}$$

ullet Often, $oldsymbol{V} = oldsymbol{Y}oldsymbol{T}$ where $oldsymbol{T}$ is lower-triangular, yielding

$$\bar{\boldsymbol{H}} = \boldsymbol{I} - \boldsymbol{Y} \boldsymbol{T}^T \boldsymbol{Y}^T$$

• If $H_i = I - y_i y_i^T$, then the *i*th column of Y is y_i , while T is defined by $T^{-1} + T^{-T} = Y^T Y$

Parallel Householder QR

 A basis kernel representation of Householder transformations, allows us to update a trailing matrix B as

$$\bar{\boldsymbol{H}}\boldsymbol{B} = (\boldsymbol{I} - \boldsymbol{Y}\boldsymbol{T}^T\boldsymbol{Y}^T)\boldsymbol{B} = \boldsymbol{B} - \boldsymbol{Y}(\boldsymbol{T}^T(\boldsymbol{Y}^T\boldsymbol{B}))$$

with cost $O(n^2r)$

- Performing such updates is essentially as hard as Schur complement updates in LU
- ullet Forming Householder vector $oldsymbol{v}_k$ is also analogous to computing multipliers in Gaussian elimination
- Thus, parallel implementation is similar to parallel LU, but with Householder vectors broadcast horizontally instead of multipliers

Panel QR Factorization

- Finding Householder vector y_i requires computation of the norm of the leading vector of the ith trailing matrix, creating a latency bottleneck much like that of pivot row selection in partial pivoting
- Other methods need $L = \Theta(\log(p))$ rather than $\Theta(n)$ msgs
- For example Cholesky-QR and Cholesky-QR2 perform $R = \text{Cholesky}(A^TA)$, $Q = AR^{-1}$ (Cholesky-QR2 does one step of refinement), requiring only a single all reduce, but losing stability
- Unconditional stability and $O(\log(p))$ messages achieved by TSQR algorithm with row-wise recursion (akin to tournament pivoting)
- Basis-kernel representation can be recovered by constructing first r columns of \bar{H}

Cholesky QR2

Cholesky-QR can be made more stable [Yamamoto et al 2014]

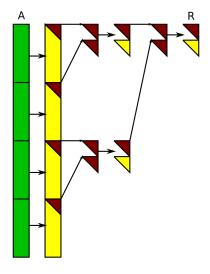
- ullet As before, compute $\{ar{m{Q}},ar{m{R}}\}={\sf Cholesky} ext{-}{\sf QR}(m{A})$
- ullet Then, iterate $\{oldsymbol{Q}, \hat{oldsymbol{R}}\} = \mathsf{Cholesky} ext{-}\mathsf{QR}(ar{oldsymbol{Q}})$
- ullet $R=\hat{R}ar{R}$
- \bullet A = QR
- Solution still bad when $\kappa(\mathbf{A}) \geq 1/\sqrt{\epsilon_{\mathsf{mach}}}$
- But if $\kappa({\bf A})<1/\sqrt{\epsilon_{\rm mach}}$, it is numerically stable because $\kappa(\bar{{\bf Q}})\approx 1$
- For QR of a tall-skinny A with $\kappa(A) < 1/\sqrt{\epsilon_{\rm mach}}$, this algorithm is easy to implement, stable, and scalable

Recursive TSQR

Block Givens rotations yield another idea

- We can also employ a recursive scheme analogous to tournament pivoting for LU
- Subdivide $A = \begin{bmatrix} A_U \\ A_L \end{bmatrix}$ and recursively compute $\{Q_U, R_U\} = QR(A_U), \, \{Q_L, R_L\} = QR(A_L)$ concurrently with P/2 processors each
- ullet We have $m{A}=egin{bmatrix} m{Q}_Um{R}_U \ m{Q}_Lm{R}_L \end{bmatrix}=egin{bmatrix} m{Q}_U \ m{Q}_L \end{bmatrix}m{R}_U \ m{R}_L \end{bmatrix}$
- ullet Gather $oldsymbol{R}_U$ and $oldsymbol{R}_L$ and compute sequentially, $egin{bmatrix} oldsymbol{R}_U \ oldsymbol{R}_T \end{bmatrix} = ilde{oldsymbol{Q}} oldsymbol{R}$
- ullet We now have $oldsymbol{A} = oldsymbol{Q} oldsymbol{R}$ where $oldsymbol{Q} = egin{bmatrix} oldsymbol{Q}_U & & & \ & oldsymbol{Q}_L \end{bmatrix} ilde{oldsymbol{Q}}$

Recursive TSQR, Binary (Binomial) Tree



Cost Analysis of Recursive TSQR

We can subdivide the cost into base cases (tree leaves) and internal nodes

• Every processor computes a QR of their $m/P \times n$ leaf matrix block

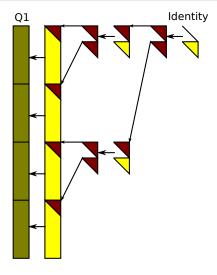
$$T_{\mathsf{Rec-TSQR}}(m,n,P) = T_{\mathsf{Rec-TSQR}}(nP,n,1) + (m/P)n^2 \cdot \gamma$$

- Subsequently for each tree node, each processor we sends/receives a message of size $O(n^2)$ and performs $O(n^3)$ work to factorize $2n \times n$ matrix
- The total cost is

$$\begin{split} T_{\mathsf{Rec-TSQR}}(m,n,P) &= O([mn^2/P + n^3\log(P)] \cdot \gamma \\ &+ n^2\log(P) \cdot \beta + \log(P) \cdot \alpha) \end{split}$$

• Communication cost is higher than of Cholesky-QR2, which is $2T_{\rm allreduce}(n^2/2, P) = O(n^2\beta + \log(P)\alpha)$

Recovering Q in Recursive TSQR



Householder Reconstruction

Given $m \times n$ matrix Q_1 , we can construct Y such that $Q = (I - YTY^T) = [Q_1, Q_2]$ and Q is orthogonal

- note that in the Householder representation, we have $I-Q=Y\cdot TY^T$, where Y is lower-trapezoidal and TY^T is upper-trapezoidal
- ullet Let $m{Q}_1 = egin{bmatrix} m{Q}_{11} \ m{Q}_{21} \end{bmatrix}$ where $m{Q}_{11}$ is n imes n, compute

$$\{oldsymbol{Y}, oldsymbol{T}oldsymbol{Y}_1^T\} = \mathsf{LU}\Big(egin{bmatrix} oldsymbol{I} - oldsymbol{Q}_{11} \ oldsymbol{Q}_{21} \end{bmatrix}\Big),$$

where Y_1 is the upper-triangular $n \times n$ leading block of Y^T

Householder Reconstruction Stability

Householder reconstruction can be done with unconditional stability

We need to be just a little more careful

$$\{\boldsymbol{Y}, \boldsymbol{T}\boldsymbol{Y}_1^T\} = \mathsf{LU}\Big(egin{bmatrix} \boldsymbol{S} - \boldsymbol{Q}_{11} \ \boldsymbol{Q}_{21} \end{bmatrix}\Big),$$

where S is a sign matrix (each value in $\{-1,1\}$) with values picked to match the sign of the diagonal entry within LU

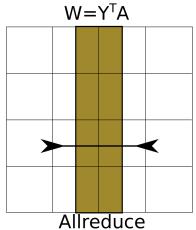
- These are the sign choices we need to make for regular Householder factorization
- Since all entries of Q are ≤ 1 , pivoting is unnecessary (partial pivoting would do nothing)
- Since $\kappa(Q) \approx 1$, Householder reconstruction is stable

2D Householder QR, Basis-Kernel Representation

Transpose and Broadcast Y

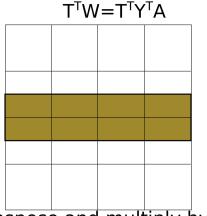


2D Householder QR, Basis-Kernel Representation



2D Householder QR, Basis-Kernel Representation

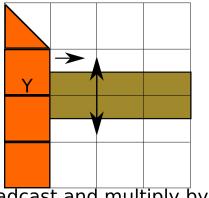
Transpose \boldsymbol{W} and Compute $\boldsymbol{T}^T\boldsymbol{W}$



Transpose and multiply by T^T

2D Householder QR, Trailing Matrix Update

Compute YT^TY^TA and subsequently $Q^TA = A - YT^TY^TA$ $Y(T^TW) = YT^TY^TA$



Broadcast and multiply by Y

Elmroth-Gustavson Algorithm (3Dx2Dx1D)

One approach is to use column-recursion $A = [A_1, A_2]$

- Compute $\{Y_1, T_1, R_1\} = \mathsf{QR}(A_1)$ recursively with P processors
- Perform rectangular matrix multiplications with communication-avoiding algorithms to compute $B_2 = (I Y_1T_1Y_1^T)^TA_2$
- ullet Compute $\{m{Y}_2,m{T}_2,m{R}_2\}=\mathsf{QR}(m{B}_{22})$ where $m{B}_2=egin{bmatrix}m{R}_{12}\m{B}_{22}\end{bmatrix}$ recursively
- Concatenate Y₁ and Y₂ into Y and compute T from Y via rectangular matrix multiplication
- ullet Output $\Big\{ m{Y}, m{T}, egin{bmatrix} m{R}_1 & m{R}_{12} \ m{R}_2 \end{bmatrix} \Big\}$
- Pick an appropriate number of columns for a TSQR base-case

Givens Rotations

- Givens rotation operates on pair of rows to introduce single zero
- For given 2-vector $\boldsymbol{a} = [a_1 \ a_2]^T$, if

$$c = \frac{a_1}{\sqrt{a_1^2 + a_2^2}}, \qquad s = \frac{a_2}{\sqrt{a_1^2 + a_2^2}}$$

then

$$Ga = \begin{bmatrix} c & s \\ -s & c \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} \alpha \\ 0 \end{bmatrix}$$

• Scalars c and s are cosine and sine of angle of rotation, and $c^2 + s^2 = 1$, so G is orthogonal

Givens QR Factorization

- Givens rotations can be systematically applied to successive pairs of rows of matrix A to zero entire strict lower triangle
- Subdiagonal entries of matrix can be annihilated in various possible orderings (but once introduced, zeros should be preserved)
- Each rotation must be applied to all entries in relevant pair of rows, not just entries determining c and s
- Once upper triangular form is reached, product of rotations, Q, is orthogonal, so we have QR factorization of A

Parallel Givens QR Factorization

- With 1-D partitioning of A by columns, parallel implementation of Givens QR factorization is similar to parallel Householder QR factorization, with cosines and sines broadcast horizontally and each task updating its portion of relevant rows
- With 1-D partitioning of A by rows, broadcast of cosines and sines is unnecessary, but there is no parallelism unless multiple pairs of rows are processed simultaneously
- Fortunately, it is possible to process multiple pairs of rows simultaneously without interfering with each other

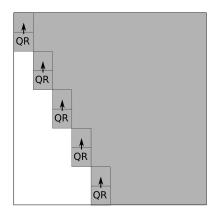
Parallel Givens QR Factorization

• Stage at which each subdiagonal entry can be annihilated is shown here for 8×8 example

$$\begin{bmatrix} \times & & & & & & & & \\ 7 & \times & & & & & & \\ 6 & 8 & \times & & & & \\ 5 & 7 & 9 & \times & & & & \\ 4 & 6 & 8 & 10 & \times & & & \\ 3 & 5 & 7 & 9 & 11 & \times & & \\ 2 & 4 & 6 & 8 & 10 & 12 & \times & \\ 1 & 3 & 5 & 7 & 9 & 11 & 13 & \times \end{bmatrix}$$

• Maximum parallelism is n/2 at stage n-1 for $n \times n$ matrix

Parallel Givens QR Wavefront



Parallel Givens QR Factorization

- Communication cost is high, but can be reduced by having each task initially reduce its entire local set of rows to upper triangular form, which requires no communication
- Then, in subsequent phase, task pairs cooperate in annihilating additional entries using one row from each of two tasks, exchanging data as necessary
- Various strategies can be used for combining results of first phase, depending on underlying network topology
- Parallel partitioning with slanted-panels (slope -2) achieve same scalablility as parallel algorithms for LU without pivoting (see [Tiskin 2007])

Parallel Givens QR Factorization

- With 2-D partitioning of A, parallel implementation combines features of 1-D column and 1-D row algorithms
- In particular, sets of rows can be processed simultaneously to annihilate multiple entries, but updating of rows requires horizontal broadcast of cosines and sines

References

- E. Chu and A. George, QR factorization of a dense matrix on a hypercube multiprocessor, SIAM J. Sci. Stat. Comput. 11:990-1028, 1990
- M. Cosnard, J. M. Muller, and Y. Robert, Parallel QR decomposition of a rectangular matrix, *Numer. Math.* 48:239-249, 1986
- M. Cosnard and Y. Robert, Complexity of parallel QR factorization, J. ACM 33:712-723, 1986
- E. Elmroth and F. G. Gustavson, Applying recursion to serial and parallel QR factorization leads to better performance, IBM J. Res. Develop. 44:605-624, 2000

References

- B. Hendrickson, Parallel QR factorization using the torus-wrap mapping, *Parallel Comput.* 19:1259-1271, 1993.
- F. T. Luk, A rotation method for computing the QR-decomposition, SIAM J. Sci. Stat. Comput. 7:452-459, 1986
- D. P. O'Leary and P. Whitman, Parallel QR factorization by Householder and modified Gram-Schmidt algorithms, *Parallel Comput.* 16:99-112, 1990.
- A. Pothen and P. Raghavan, Distributed orthogonal factorization: Givens and Householder algorithms, SIAM J. Sci. Stat. Comput. 10:1113-1134, 1989
- A. Tiskin, Communication-efficient parallel generic pairwise elimination. Future Generation Computer Systems 23.2 (2007): 179-188.