
Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

Parallel Numerical Algorithms
Chapter 2 – Parallel Thinking

Section 2.2 – Parallel Programming

Michael T. Heath and Edgar Solomonik

Department of Computer Science
University of Illinois at Urbana-Champaign

CS 554 / CSE 512

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 1 / 45

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

Outline

1 Parallel Programming Paradigms

2 MPI — Message-Passing Interface
MPI Basics
Communication and Communicators

3 OpenMP — Portable Shared Memory Programming

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 2 / 45

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

Parallel Programming Paradigms

Functional languages

Parallelizing compilers

Object parallel

Data parallel

Shared memory

Partitioned global address space

Remote memory access

Message passing

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 3 / 45

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

Functional Languages

Express what to compute (i.e., mathematical relationships
to be satisfied), but not how to compute it or order in which
computations are to be performed

Avoid artificial serialization imposed by imperative
programming languages

Avoid storage references, side effects, and aliasing that
make parallelization difficult

Permit full exploitation of any parallelism inherent in
computation

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 4 / 45

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

Functional Languages

Often implemented using dataflow, in which operations fire
whenever their inputs are available, and results then
become available as inputs for other operations

Tend to require substantial extra overhead in work and
storage, so have proven difficult to implement efficiently

Have not been used widely in practice, though numerous
experimental functional languages and dataflow systems
have been developed

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 5 / 45

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

Parallelizing Compilers

Automatically parallelize programs written in conventional
sequential programming languages

Difficult to do for arbitrary serial code

Compiler can analyze serial loops for potential parallel
execution, based on careful dependence analysis of
variables occurring in loop

User may provide hints (directives) to help compiler
determine when loops can be parallelized and how

OpenMP is standard for compiler directives

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 6 / 45

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

Parallelizing Compilers

Automatic or semi-automatic, loop-based approach has
been most successful in exploiting modest levels of
concurrency on shared-memory systems

Many challenges remain before effective automatic
parallelization of arbitrary serial code can be routinely
realized in practice, especially for massively parallel,
distributed-memory systems

Parallelizing compilers can produce efficient “node code”
for hybrid architectures with SMP nodes, thereby freeing
programmer to focus on exploiting parallelism across
nodes

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 7 / 45

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

Object Parallel

Parallelism encapsulated within distributed objects that
bind together data and functions operating on data

Parallel programs built by composing component objects
that communicate via well-defined interfaces and protocols

Implemented using object-oriented programming
languages such as C++ or Java

Examples include Charm++ and Legion

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 8 / 45

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

Data Parallel

Simultaneous operations on elements of data arrays,
typified by vector addition

Low-level programming languages, such as Fortran 77 and
C, express array operations element by element in some
specified serial order

Array-based languages, such as APL, Fortran 90, and
MATLAB, treat arrays as higher-level objects and thus
facilitate full exploitation of array parallelism

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 9 / 45

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

Data Parallel

Data parallel languages provide facilities for expressing
array operations for parallel execution, and some allow
user to specify data decomposition and mapping to
processors

High Performance Fortran (HPF) is one attempt to
standardize data parallel approach to programming

Though naturally associated with SIMD architectures, data
parallel languages have also been implemented
successfully on general MIMD architectures

Data parallel approach can be effective for highly regular
problems, but tends to be too inflexible to be effective for
irregular or dynamically changing problems

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 10 / 45

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

Shared Memory

Classic shared-memory paradigm, originally developed for
multitasking operating systems, focuses on control
parallelism rather than data parallelism

Multiple processes share common address space
accessible to all, though not necessarily with uniform
access time

Because shared data can be changed by more than one
process, access must be protected from corruption,
typically by some mechanism to enforce mutual exclusion

Shared memory supports common pool of tasks from
which processes obtain new work as they complete
previous tasks

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 11 / 45

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

Lightweight Threads

Most popular modern implementation of explicit
shared-memory programming, typified by pthreads
(POSIX threads)

Reduce overhead for context-switching by providing
multiple program counters and execution stacks so that
extensive program state information need not be saved and
restored when switching control quickly among threads

Provide detailed, low-level control of shared-memory
systems, but tend to be tedious and error prone

More suitable for implementing underlying systems
software (such as OpenMP and run-time support for
parallelizing compilers) than for user-level applications

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 12 / 45

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

Shared Memory

Most naturally and efficiently implemented on true
shared-memory architectures, such as SMPs

Can also be implemented with reasonable efficiency on
NUMA (nonuniform memory access) shared-memory or
even distributed-memory architectures, given sufficient
hardware or software support

With nonuniform access or distributed shared memory,
efficiency usually depends critically on maintaining locality
in referencing data, so design methodology and
programming style often closely resemble techniques for
exploiting locality in distributed-memory systems

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 13 / 45

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

Partitioned Global Address Space

Partitioned global address space (PGAS) model provides
global memory address space that is partitioned across
processes, with a portion local to each process

Enables programming semantics of shared memory while
also enabling locality of memory reference that maps well
to distributed memory hardware

Example PGAS programming languages include Chapel,
Co-Array Fortran, Titanium, UPC, X-10

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 14 / 45

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

Message Passing

Two-sided, send and receive communication between
processes

Most natural and efficient paradigm for distributed-memory
systems

Can also be implemented efficiently in shared-memory or
almost any other parallel architecture, so it is most portable
paradigm for parallel programming

“Assembly language of parallel computing” because of its
universality and detailed, low-level control of parallelism

Fits well with our design philosophy and offers great
flexibility in exploiting data locality, tolerating latency, and
other performance enhancement techniques

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 15 / 45

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

Message Passing

Provides natural synchronization among processes
(through blocking receives, for example), so explicit
synchronization of memory access is unnecessary

Facilitates debugging because accidental overwriting of
memory is less likely and much easier to detect than with
shared-memory

Sometimes deemed tedious and low-level, but thinking
about locality tends to result in programs with good
performance, scalability, and portability

Dominant paradigm for developing portable and scalable
applications for massively parallel systems

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 16 / 45

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

MPI Basics
Communication and Communicators

MPI — Message-Passing Interface

Provides communication among multiple concurrent
processes

Includes several varieties of point-to-point communication,
as well as collective communication among groups of
processes

Implemented as library of routines callable from
conventional programming languages such as Fortran, C,
and C++

Has been universally adopted by developers and users of
parallel systems that rely on message passing

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 17 / 45

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

MPI Basics
Communication and Communicators

MPI — Message-Passing Interface

Closely matches computational model underlying our
design methodology for developing parallel algorithms and
provides natural framework for implementing them

Although motivated by distributed-memory systems, works
effectively on almost any type of parallel system

Is performance-efficient because it enables and
encourages attention to data locality

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 18 / 45

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

MPI Basics
Communication and Communicators

MPI-1

MPI was developed in three major stages, MPI-1 (1994), MPI-2
(1997) and MPI-3 (2012)

Features of MPI-1 include
point-to-point communication
collective communication
process groups and communication domains
virtual process topologies
environmental management and inquiry
profiling interface
bindings for Fortran and C

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 19 / 45

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

MPI Basics
Communication and Communicators

MPI-2

Additional features of MPI-2 include:
dynamic process management
input/output
one-sided operations for remote memory access
bindings for C++

Additional features of MPI-3 include:
nonblocking collectives
new one-sided communication operations
Fortran 2008 bindings

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 20 / 45

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

MPI Basics
Communication and Communicators

Building and Running MPI Programs

Executable module must first be built by compiling user
program and linking with MPI library

One or more header files, such as mpi.h, may be required
to provide necessary definitions and declarations

MPI is generally used in SPMD mode, so only one
executable must be built, multiple instances of which are
executed concurrently

Most implementations provide command, typically named
mpirun, for spawning MPI processes

MPI-2 specifies mpiexec for portability

User selects number of processes and on which
processors they will run

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 21 / 45

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

MPI Basics
Communication and Communicators

Availability of MPI

Custom versions of MPI supplied by vendors of almost all
current parallel computers systems

Freeware versions available for clusters and similar
environments include

MPICH: http://www.mpich.org/
OpenMPI: http://www.open-mpi.org

Both websites provide tutorials on learning and using MPI

MPI standard (MPI-1, -2, -3) available from MPI Forum
http://www.mpi-forum.org

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 22 / 45

http://www.mpich.org/
http://www.open-mpi.org
http://www.mpi-forum.org

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

MPI Basics
Communication and Communicators

Communicator (Groups)

A communicator defines a group of MPI processes

Each process is identified by its rank within given group

Rank is integer from zero to one less than size of group
(MPI_PROC_NULL is rank of no process)

Initially, all processes belong to MPI_COMM_WORLD

Additional communicators can be created by user via
MPI_Comm_split

Communicators simplify point-to-point communication on
virtual topologies and enable collectives over any subset of
processors

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 23 / 45

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

MPI Basics
Communication and Communicators

Specifying Messages

Information necessary to specify message and identify its
source or destination in MPI include

msg: location in memory where message data begins
count: number of data items contained in message
datatype: type of data in message
source or dest: rank of sending or receiving process in
communicator
tag: identifier for specific message or kind of message
comm: communicator

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 24 / 45

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

MPI Basics
Communication and Communicators

MPI Data Types

Available C MPI data types include
char, int, float, double

Use of MPI data types facilitates heterogeneous
environments in which native data types may vary from
machine to machine

Also supports user-defined data types for contiguous or
noncontiguous data

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 25 / 45

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

MPI Basics
Communication and Communicators

Minimal MPI

Minimal set of six MPI functions we will need

int MPI_Init(int *argc , char ***argv);

Initiates use of MPI

int MPI_Finalize(void);

Concludes use of MPI

int MPI_Comm_size(MPI_Comm comm , int *size);

On return, size contains number of processes in
communicator comm

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 26 / 45

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

MPI Basics
Communication and Communicators

Minimal MPI

int MPI_Comm_rank(MPI_Comm comm , int *rank);

On return, rank contains rank of calling process in
communicator comm, with 0 ≤ rank ≤ size-1

int MPI_Send(void *msg , int count , MPI_Datatype datatype ,
int dest , int tag , MPI_Comm comm);

On return, msg can be reused immediately

int MPI_Recv(void *msg , int count , MPI_Datatype datatype ,
int source , int tag , MPI_Comm comm , MPI_Status *stat);

On return, msg contains requested message

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 27 / 45

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

MPI Basics
Communication and Communicators

Example: MPI Program for 1-D Laplace Example

#include <mpi.h>
int main(int argc , char **argv) {

int k, p, me, left , right , count = 1, tag = 1, nit = 10;
float ul, ur, u = 1.0, alpha = 1.0, beta = 2.0;
MPI_Status status;
MPI_Init (&argc , &argv);
MPI_Comm_size(MPI_COMM_WORLD , &p);
MPI_Comm_rank(MPI_COMM_WORLD , &me);
left = me -1; right = me+1;
if (me == 0) ul = alpha; if (me == p-1) ur = beta;
for (k = 1; k <= nit; k++) {

if (me % 2 == 0) {
if (me > 0) MPI_Send (&u, count , MPI_FLOAT ,

left , tag , MPI_COMM_WORLD);
if (me < p-1) MPI_Send (&u, count , MPI_FLOAT ,

right , tag , MPI_COMM_WORLD);
if (me < p-1) MPI_Recv (&ur, count , MPI_FLOAT ,

right , tag , MPI_COMM_WORLD , &status);
if (me > 0) MPI_Recv (&ul , count , MPI_FLOAT ,

left , tag , MPI_COMM_WORLD , &status);

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 28 / 45

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

MPI Basics
Communication and Communicators

Example: MPI Program for 1-D Laplace Example

else {
if (me < p-1) MPI_Recv (&ur, count , MPI_FLOAT ,

right , tag , MPI_COMM_WORLD , &status);
MPI_Recv (&ul, count , MPI_FLOAT ,

left , tag , MPI_COMM_WORLD , &status);
MPI_Send (&u, count , MPI_FLOAT ,

left , tag , MPI_COMM_WORLD);
if (me < p-1) MPI_Send (&u, count , MPI_FLOAT ,

right , tag , MPI_COMM_WORLD);
}
u = (ul+ur)/2.0;

}
MPI_Finalize ();

}

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 29 / 45

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

MPI Basics
Communication and Communicators

Standard Send and Receive Functions

Standard send and receive functions are blocking,
meaning they do not return until resources specified in
argument list can safely be reused

In particular, MPI_Recv returns only after receive buffer
contains requested message

MPI_Send may be initiated before or after matching
MPI_Recv initiated

Depending on specific implementation of MPI, MPI_Send
may return before or after matching MPI_Recv initiated

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 30 / 45

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

MPI Basics
Communication and Communicators

Standard Send and Receive Functions

For same source, tag, and comm, messages are received in
order in which they were sent

Wild card values MPI_ANY_SOURCE and MPI_ANY_TAG can be
used for source and tag, respectively, in receiving message

Actual source and tag can be determined from MPI_SOURCE
and MPI_TAG fields of status structure (entries of status
array in Fortran, indexed by parameters of same names)
returned by MPI_Recv

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 31 / 45

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

MPI Basics
Communication and Communicators

Other MPI Functions

MPI functions covered thus far suffice to implement almost
any parallel algorithm with reasonable efficiency

Dozens of other MPI functions provide additional
convenience, flexibility, robustness, modularity, and
potentially improved performance

But they also introduce substantial complexity that may be
difficult to manage

For example, some facilitate overlapping of communication
and computation, but place burden of synchronization on
user

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 32 / 45

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

MPI Basics
Communication and Communicators

Communication Modes

Nonblocking functions include request argument used
subsequently to determine whether requested operation
has completed (different from asynchronous)
MPI_Isend and MPI_Irecv are nonblocking
MPI_Wait and MPI_Test wait or test for completion of
nonblocking communication

MPI_Probe and MPI_Iprobe probe for incoming message
without actually receiving it

Information about message determined by probing can be
used to decide how to receive it for cleanup at end of
program or after major phase of computation

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 33 / 45

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

MPI Basics
Communication and Communicators

Persistent Communication

Communication operations that are executed repeatedly
with same argument list can be streamlined

Persistent communication binds argument list to request,
and then request can be used repeatedly to initiate and
complete message transmissions without repeating
argument list each time

Once argument list has been bound using MPI_Send_init
or MPI_Recv_init (or similarly for other modes), then
request can subsequently be initiated repeatedly using
MPI_Start

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 34 / 45

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

MPI Basics
Communication and Communicators

Collective Communication

MPI_Bcast

MPI_Reduce

MPI_Allreduce

MPI_Alltoall

MPI_Allgather

MPI_Scatter

MPI_Gather

MPI_Scan

MPI_Barrier

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 35 / 45

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

MPI Basics
Communication and Communicators

Manipulating Communicators

MPI_Comm_create

MPI_Comm_dup

MPI_Comm_split

MPI_Comm_compare

MPI_Comm_free

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 36 / 45

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

MPI Basics
Communication and Communicators

MPI Performance Analysis Tools

Jumpshot and SLOG http://www.mcs.anl.gov/perfvis/

Intel Trace Analyzer (formerly Vampir)
http://www.hiperism.com/PALVAMP.htm

IPM: Integrated Performance Monitoring
http://ipm-hpc.sourceforge.net/

mpiP: Lightweight, Scalable MPI Profiling
http://mpip.sourceforge.net/

TAU: Tuning and Analysis Utilities
http://www.cs.uoregon.edu/research/tau/home.php

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 37 / 45

http://www.mcs.anl.gov/perfvis/
http://www.hiperism.com/PALVAMP.htm
http://ipm-hpc.sourceforge.net/
http://mpip.sourceforge.net/
http://www.cs.uoregon.edu/research/tau/home.php

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

OpenMP

Shared memory model, SPMD

Extends C and Fortran with directives (annotations) and
functions

Relies on programmer to provide information that may be
difficult for compiler to determine

No concurrency except when directed; typically, most lines
of code run on single processor/core

Parallel loops described with directives

#pragma omp parallel for default(none) shared () private ()
for (...) {
}

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 38 / 45

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

More OpenMP

omp_get_num_threads() – returns number of active threads
within parallel region
omp_get_thread_num() – returns index of thread within
parallel region

General parallel blocks of code (excuted by all available
threads) described as

#pragma omp parallel
{
}

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 39 / 45

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

Race Conditions

Example:

sum = 0.0;
#pragma omp parallel for private(i)
for (i=0; i<n; i++) { sum += u[i]; }

Race condition : result of updates to sum depend on which
thread wins race in performing store to memory

OpenMP provides reduction clause for this case:

sum = 0.0;
#pragma omp parallel for reduction (+:sum) private(i)
for (i=0; i<n; i++) { sum += u[i]; }

Not hypothetical example: on one dual-processor system, first
loop computes wrong result roughly half of time

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 40 / 45

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

Example: OpenMP Program for 1-D Laplace Example

#include <omp.h>
int main(int argc , char **argv) {

int k, i, nit =10;
float alpha = 1.0, beta = 2.0;
float u0[MAX_U], u1[MAX_U];
float * restrict u0p=u0, * restrict u1p=u1, *tmp;

u0[0] = u1[0] = alpha;
u0[MAX_U -1] = u1[MAX_U -1] = beta;
for (k=0; k<nit; k++) {

#pragma omp parallel for default(none) shared(u1p ,u0p)
private (i)

for (i = 1; i < MAX_U -1; i++) {
u1p[i] = (u0p[i-1]+ u0p[i+1])/2.0;

}
tmp = u1p; u1p = u0p; u0p = tmp; /* swap pointers */

}
}

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 41 / 45

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

References – General

A. H. Karp, Programming for parallelism, IEEE Computer
20(9):43-57, 1987

B. P. Lester, The Art of Parallel Programming, 2nd ed., 1st
World Publishing, 2006

C. Lin and L. Snyder, Principles of Parallel Programming,
Addison-Wesley, 2008

P. Pacheco, An Introduction to Parallel Programming,
Morgan Kaufmann, 2011

M. J. Quinn, Parallel Programming in C with MPI and
OpenMP, McGraw-Hill, 2003

B. Wilkinson and M. Allen, Parallel Programming, 2nd ed.,
Prentice Hall, 2004

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 42 / 45

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

References – MPI
W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel
Programming with the Message-Passing Interface, 2nd ed., MIT
Press, 2000

P. S. Pacheco, Parallel Programming with MPI, Morgan
Kaufmann, 1997

M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra,
MPI: The Complete Reference, Vol. 1, The MPI Core, 2nd ed.,
MIT Press, 1998

W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk,
B. Nitzberg, W. Saphir, and M. Snir, MPI: The Complete
Reference, Vol. 2, The MPI Extensions, MIT Press, 1998

MPI Forum, MPI: A Message-Passing Interface Standard,
Version 3.0,
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 43 / 45

http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

References – Other Parallel Systems

B. Chapman, G. Jost, and R. van der Pas, Using OpenMP,
MIT Press, 2008

D. B. Kirk and W. W. Hwu, Programming Massively Parallel
Processors: A Hands-on Approach, Morgan Kaufmann,
2010

J. Kepner, Parallel MATLAB for Multicore and Multinode
Camputers, SIAM, Philadelphia, 2009

P. Luszczek, Parallel programming in MATLAB, Internat. J.
High Perf. Comput. Appl., 23:277-283, 2009

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 44 / 45

Parallel Programming Paradigms
MPI — Message-Passing Interface

OpenMP — Portable Shared Memory Programming

References – Performance Visualization

T. L. Casavant, ed., Special issue on parallel performance
visualization, J. Parallel Distrib. Comput. 18(2), June 1993

M. T. Heath and J. A. Etheridge, Visualizing performance of
parallel programs, IEEE Software 8(5):29-39, 1991

M. T. Heath, Recent developments and case studies in
performance visualization using ParaGraph, G. Haring and
G. Kotsis, eds., Performance Measurement and Visualization of
Parallel Systems, pp. 175-200, Elsevier Science Publishers,
1993

G. Tomas and C. W. Ueberhuber, Visualization of Scientific
Parallel Programs, LNCS 771, Springer, 1994

O. Zaki, E. Lusk, W. Gropp and D. Swider, Toward Scalable
Performance Visualization with Jumpshot, Internat. J. High Perf.
Comput. Appl., 13:277-288, 1999

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 45 / 45

	Parallel Programming Paradigms
	MPI — Message-Passing Interface
	MPI Basics
	Communication and Communicators

	OpenMP — Portable Shared Memory Programming
	

