Scalable algebraic operations for tensors and graphs

Edgar Solomonik
University of lllinois at Urbana-Champaign

July 31, 2017

Cyclops Tensor Framework https://github.com/solomonik/ctf 1/21

https://github.com/solomonik/ctf

Tensor abstractions for parallel computing

Algebraic tensor operations are a natural language for massive datasets

@ tensors are multidimensional arrays with attributes
@ sparsity

e symmetry
Mij = Mji or Mij = 7Mj1'
o algebraic structure

Mij + Mkl =7 and Mij . Mkl =7

@ bulk-synchronous tensor operations
e tensor summation/contraction define high-level data transformations
o induced from scalar operations (algebraic structure of element function)

@ plus everything we want from multidimensional arrays (slicing, etc.)

Cyclops Tensor Framework

https://github.com/solomonik/ctf 2/21

https://github.com/solomonik/ctf

Generalized tensor summation

A mapping R4>xdn _y RdixXdm induced by element operations

Map N <: . Tli,j] = Auli])
Reduce . >_ w(il += g(T[i.j])

— I Vv(i] = h(M[ii])

Trace

Cyclops Tensor Framework https://github.com/solomonik/ctf 3/21

https://github.com/solomonik/ctf

Generalized tensor contraction

A mapping Rd1><~-~><dn % dex-uxdnH N Rdlx--~><dk+s><dn+1><~~><dn+l

@ s = 0 defines a single tensor contraction
o dot product
e matrix-vector multiplication
e matrix-matrix multiplication
e tensor-times-matrix

@ s > 0 defines many independent tensor contractions
e pointwise vector product
o Hadamard matrix product
e batched matrix multiplication

Cyclops Tensor Framework https://github.com/solomonik/ctf 4/21

https://github.com/solomonik/ctf

Applications of high-order tensor representations

Numerical solution to differential equations

@ spectral element methods

@ higher-order differential operators
Computer vision and graphics

e 2D image ® angle ® time

e classification, compression (tensor factorizations, sparsity)
Machine learning

@ convolutional neural networks, high-order statistics

@ reduced-order models, recommendation systems (tensor factorizations)
Graph computations

@ hypergraphs, time-dependent graphs

o clustering/partitioning/path-finding (eigenvector computations)
Divide-and-conquer algorithms representable by tensor folding

@ bitonic sort, FFT, scans, HSS matrix-vector multiplication

Cyclops Tensor Framework https://github.com/solomonik/ctf 5/21

https://github.com/solomonik/ctf

Tensors for computational chemistry/physics

Manybody Schrodinger equation

@ ‘“curse of dimensionality” — exponential state space
Condensed matter physics

@ tensor network models (e.g. DMRG), tensor per lattice site

@ highly symmetric multilinear tensor representation

@ exponential state space localized — factorized tensor form
Quantum chemistry (electronic structure calculations)

@ models of molecular structure and chemical reactions

@ methods for calculating electronic correlation:
o “Post Hartree-Fock”: configuration interaction, coupled cluster,
Mgller-Plesset perturbation theory

@ multi-electron states as tensors,
e.g. electron ® electron ® orbital ® orbital

@ nonlinear equations of partially (anti)symmetric tensors

@ interactions diminish with distance — sparsity, low rank
Cyclops Tensor Framework https://github.com/solomonik/ctf 6/21

https://github.com/solomonik/ctf

A stand-alone library for petascale tensor computations

Cyclops Tensor Framework (CTF)
o distributed-memory symmetric/sparse tensors as C++ objects

Matrix<int> A(n, n, AS|SP, World(MPI_COMM_WORLD));
Tensor<float> T(order, is_sparse, dims, syms, ring, world);
T.read(...); T.write(...); T.slice(...); T.permute(...);

@ parallel contraction/summation of tensors
Z["abij"1 += V["ijab"1;
B["ai"] = A["aiai"]l;
T["abij"] = T["abij"1+D["abij"1;
WL"mnij”] += @.5%W["mnef”1xT["efij"1;
Z["abij"] -= RL"mnje"”]*T3["abeimn"];
M[”"ij"]1 += Function<>([1(double x){ return 1./x; }(vI["j"1);

@ development (1500 commits) since 2011, open source since 2013

o NEW: Python! towards autoparallel numpy ndarray: einsum, slicing, etc.

Cyclops Tensor Framework https://github.com/solomonik/ctf 7/21

https://github.com/solomonik/ctf

A library for tensor computations

Cyclops Tensor Framework
@ contraction/summation/functions of tensors
o distributed symmetric-packed/sparse storage via cyclic layout
@ parallelization via MPI4+-OpenMP(+CUDA)

Jacobi iteration (solves Ax = b iteratively) example code snippet

Vector<> Jacobi(Matrix<> A, Vector<> b, int n){
// split A = R + diag(1./d)
do {
x["i"1 = d["i"I*x(b["i"1-RL["ij"1*x["3"1);
r["i”]1 = b["i"]1-A["ij"1*x["j"]1; // compute residual
} while (r.norm2() > 1.E-6); // check for convergence
return x;

Cyclops Tensor Framework https://github.com/solomonik/ctf 7/21

https://github.com/solomonik/ctf

A library for tensor computations

Cyclops Tensor Framework
@ contraction/summation/functions of tensors
o distributed symmetric-packed/sparse storage via cyclic layout
@ parallelization via MPI4+-OpenMP(+CUDA)

Jacobi iteration (solves Ax = b iteratively) example code snippet

Vector<> Jacobi(Matrix<> A, Vector<> b, int n){

Matrix<> R(A);
R["ii"] = 0.0;
Vector<> x(n), d(n), r(n);
Function<> inv([](double & d){ return 1./d; });
d["i"] = inv(AL"ii"1); // set d to inverse of diagonal of A
do {

x["i"] = d["i"I*(bL"i"1-RL"ij"1*x["j"1);

r["i"] = bL["i"]1-AL"ij"1*x["j"1; // compute residual
} while (r.norm2() > 1.E-6); // check for convergence
return x;

Cyclops Tensor Framework https://github.com/solomonik/ctf 7/21

https://github.com/solomonik/ctf

Balancing load via a cyclic data decomposition

Symmetric matrix Unique part of symmetric matrix

Naive blocked layout Block-cyclic layout Cyclic layout ~ Improved blocked layout

N

n

= |

=n-n u

for sparse tensors, a cyclic layout also provides a load-balanced distribution
w.h.p. if the number of nonzeros is sufficiently large

Cyclops Tensor Framework https://github.com/solomonik/ctf

https://github.com/solomonik/ctf

CTF parallel scalability

CTF is tuned for massively-parallel architectures
@ multidimensional tensor blocking and processor grids
@ topology-aware mapping and collective communication
@ performance-model-driven decomposition at runtime

@ optimized redistribution kernels for tensor transposition

BG/Q matrix multiplication

2048 T T T T
CTF —+— i
1024 - Scalapack

Teraflop/s
N
(==

8 i i i i i
4096 8192 16384 32768 65536 131072 262144
#cores

Cyclops Tensor Framework https://github.com/solomonik/ctf 8/21

https://github.com/solomonik/ctf

Matrix multiplication partitioning

1D partitioning 2D partitioning 3D partitioning

Cij = Z Ak By
K

Best partitioning depends on dimensions of matrices and number of
nonzeros for sparse matrices

Cyclops Tensor Framework https://github.com/solomonik/ctf 9/21

https://github.com/solomonik/ctf

Communication avoiding matrix multiplication

CTF uses the most efficient matrix multiplication algorithms

@ the horizontal communication cost of matrix multiplication C = AB of
matrices with dims m x k and k X n on p processors is

) mk kn mn
O min + + : dense
Wo— p1p2p3=p | P1P2 P2P3 P1P3
B A B C
O(min [nnz() + nnz(B) + nnz()}> : sparse
pP1p2p3=p | P1P2 p2p3 pips
@ communication-optimality depends on memory usage M
mnk .
Q(pW) : dense
W =
flops(A,B,C) X
Q(pm > : sparse

o CTF selects best p1, p2, p3 subject to memory usage constraints on M

Cyclops Tensor Framework https://github.com/solomonik/ctf 10/21

https://github.com/solomonik/ctf

Data redistribution and matricization

Transitions between contractions require redistribution and refolding

e CTF defines a base distribution for each tensor (by default, over all
processors), which can also be user-specified

@ before each contraction, the tensor data is redistributed globally and
matricized locally

@ 3 types of global redistribution algorithms are optimized and threaded

@ matricization for sparse tensors corresponds to a conversion to a
compressed-sparse-row (CSR) matrix layout

@ the cost of redistribution is part of the performance model used to select
the contraction algorithm

Cyclops Tensor Framework https://github.com/solomonik/ctf 11/21

https://github.com/solomonik/ctf

Dense tensor application: coupled cluster using CTF

Extracted from Aquarius (lead by Devin Matthews)
https://github.com/devinamatthews/aquarius

FMI["mi”] += @.5%*WMNEF["mnef”]*T2["efin"];
WMNIJ["mnij”] += @.5%xWMNEF["mnef"]*T2["efij"];
FAE["ae"] -= 0.5*WMNEF["mnef”1*T2["afmn"1;
WAMEI["amei”] -= @.5%*WMNEF["mnef”]1*T2["afin"1;

z2["abij”]1 = WMNEF["ijab"1;

Z2["abij"”] += FAE["af"1xT2["fbij"1;
z2["abij"] -= FMI["ni"1*T2["abnj"1;
Z2["abij"] += @.5xWABEF["abef"1xT2["efij"1;
Z2["abij”] += @.5xWMNIJ["mnij"1xT2["abmn"1;
Z2["abij”]1 -= WAMEI["amei”]*T2["ebmj"1;

Cyclops Tensor Framework https://github.com/solomonik/ctf 12/21

https://github.com/devinamatthews/aquarius
https://github.com/solomonik/ctf

Dense tensor application: coupled cluster performance

Teraflops

Teraflops

Cyclops Tensor Framework

CCSD up to 55 (50) water molecules with cc-pVDZ
CCSDT up to 10 water molecules with cc-pVDZ

Weak scaling on BlueGene/Q

1024
512 |-

256 |-
128 fo ot ;
[i
32 [
160F
8.

Aquarius-CTF CCSD —— ‘
Aquarius-CTF CCSDT -->¢-- >~

Gigaflops/node

4 L
512 1024 2048

i
4096 8192 16384 32768

#nodes

Weak scaling on Edison

512

N
a
=}

128

- W o
® o N A
T T

[Aquarius-CTF CCSDT --¢-- T

alF

Aquarius-CTF CCSD —+— |

Gigaflops/node

64 128 256 512 1024 2048 4096

#nodes

https

Weak scaling on BlueGene/Q

60

50

40

30(]

! Aquarius-CTF CCSD —+—
Aquarius-CTF CCSDT --%-- |

i
2048 4096 8192 16384

#nodes

L
1024

Weak scaling on Edison

350

300 (-

250
200
150
100

Aquarius-CTF CCSD —F+—
Aquarius-CTF CCSDT --»¢-- |

ithub.com/solomonik/ctf

256 512 1024 2048 4096

#nodes

13/21

https://github.com/solomonik/ctf

Comparison with NWChem

NWChem built using one-sided MPI, not necessarily best performance
@ derives equations via Tensor Contraction Engine (TCE)
@ generates contractions as blocked loops leveraging Global Arrays

Strong scaling CCSDT on Edison
Strong scaling CCSD on Edison

T T T T T T
NwChem w20 ---ll---
1024 - wis - al 1024

Aquarius-CTF wé ——— -

T T T
NWChem w3 -->¢--
w2

seconds
(o2}
S

i i T
1 2 4 8 16 32 64 128 256
#nodes

Cyclops Tensor Framework https://github.com/solomonik/ctf 14/21

https://github.com/solomonik/ctf

Sparse tensor application: MP3 calculation

Tensor<> Ea, Ei, Fab, Fij, Vabij, Vijab, Vabcd, Vijkl, Vaibj;
// compute above 1-e an 2-e integrals

Tensor<> T(4, Vabij.lens, *Vabij.wrld);
T[L"abij"] = Vabij["abij"];

divide_EaEi(Ea, Ei, T);

Tensor<> Z(4, Vabij.lens, *Vabij.wrld);
Z["abij"] = Vijab["ijab"];

Z["abij"]1 += Fab["af"]*T["fbij"1];
Z["abij"] -= Fij["ni"]1xTL["abnj"1;
Z["abij"] += @.5*Vabcd["abef"1*T["efij"];
Z["abij"] += 0.5*%Vijkl["mnij"]1*T["abmn"];
Z["abij"] += Vaibj["amei"]1*T["ebmj"];

divide_EaEi(Ea, Ei, Z);

double MP3_energy = Z["abij"]*Vabij["abij"1;

Cyclops Tensor Framework https://github.com/solomonik/ctf 15/21

https://github.com/solomonik/ctf

Sparse tensor application: strong scaling

We study the time to solution of the sparse MP3 code, with
(1) dense V and T' (2) sparse V' and dense T' (3) sparse V and T

Strong scaling of MP3 with no=40, nv=160

256 T T T q T
ense
128 10% sparse*dense
64 - 10% sparse*sparse =
o 1% sparse*dense i
32
1% sparse*sparse
16 |- .1% sparse*dense A
8 1% sparse*sparse =ée:= |

seconds/iteration

0.25
0.125

#cores

Cyclops Tensor Framework https://github.com/solomonik/ctf 16/21

https://github.com/solomonik/ctf

Sparse tensor application: weak scaling

We study the scaling to larger problems of the sparse MP3 code, with
(1) dense V and T' (2) sparse V' and dense T' (3) sparse V and T

Weak scaling of MP3 with no=40, nv=160

2048 T q T T T T I
ense —+—
1024 = 109 sparse*dense --@-- .
512 - 10% sparse*sparse — -]
1% sparse*dense - -%--
256 - 1% sparse*sparse & _

.1% sparse*dense
1% sparse*sparse ‘=

seconds/iteration

24 48 96 192 384 768 1536 3072 6144
#cores

Cyclops Tensor Framework https://github.com/solomonik/ctf 17/21

https://github.com/solomonik/ctf

Special operator application: betweenness centrality

Betweenness centrality is the importance of vertices in a shortest path tree

@ can be computed via all-pairs shortest-path from distance matrix, but
possible to do via less memory (Brandes’ algorithm)
@ unweighted graphs
o Breadth First Search (BFS) for each vertex
o back-propagation of centrality scores along BFS tree
@ weighted graphs
o SSSP for each vertex (we use Bellman Ford with sparse frontiers)

o back-propagation of betweenness centrality scores (no harder than
unweighted)

@ our formulation uses a set of starting vertices (many BFS runs), cas as
sparse matrix times sparse matrix

Cyclops Tensor Framework https://github.com/solomonik/ctf 18/21

https://github.com/solomonik/ctf

Special operator application: betweenness centrality

Betweenness centrality code snippet, for k of n nodes

void btwn_central (Matrix<int> A, Matrix<path> P, int n, int k){
Monoid<path> mon(...,
[I(path a, path b){
if (a.w<b.w) return a;
else if (b.w<a.w) return b;
else return path(a.w, a.m+b.m);

}y "');

Matrix<path> Q(n,k,mon); // shortest path matrix
Q["ij"] = P["ij"];

Function<int,path> append([](int w, path p){
return path(w+p.w, p.m);
3)

for (int i=0; i<n; i++)
Q["ij"] = append(A["ik"]’Q["kj"]);

Cyclops Tensor Framework https://github.com/solomonik/ctf 19/21

https://github.com/solomonik/ctf

CTF for betweenness centrality

Betweenness centrality using sparse matrix multiplication (SpGEMM) with
operations on special monoids

Strong scaling of MFBC for real graphs Strong scaling for R-MAT S=22 graph

256 T T T T
Friendster CTF-MFBC —%— 4096 - E=128 CTF-MFBC unweighted —e— |
Orkut CTF-MFBC E=128 CombBLAS unweighted
LiveJournal CTF-MFBC ='=¢== E=128 CTF-MFBC weighted ='=@='=
64 - Patents CTF-MFBC =3¢+ | 1024 | E-8 CTF-MFBC unweighted —— -|
3 3 E=8 CombBLAS unweighted
2 2 256 |- E=8 CTF-MFBC weighted === |
D 16 | 41 o
a =i m e a
T R T w
= L. =
s | el =
4t SV N
----------------- [.
------ L
1 | [B
2 8 32 128

#nodes #nodes

Friendster has 66 million vertices and 1.8 billion edges (results on Blue
Waters, Cray XE6)

github.com/solomonik/ctf 20/21

Cyclops Tensor Framework https:

https://github.com/solomonik/ctf

CTF status and explorations

Much ongoing work and future directions in CTF
@ other applications
o algebraic multigrid: easy implementation but structure-obliviousness costly
o spectral element methods: unassembled matrix-vector products and
gather-scatter via tensor contractions
e neural networks: tensor structure especially useful for CNNs
@ ongoing and future work
e recent: hook-ups for conversion to/from ScaLAPACK format
e active: development of Python interface (einsum and slicing work)
e active: tensor networks and tensor factorization
o future: performance improvement for batched tensor operations
e future: predefined output sparsity for contractions
@ existing collaborations and external applications
Aquarius (lead by Devin Matthews)
QChem via Libtensor (integration lead by Evgeny Epifanovsky)
QBall (DFT code, just matrix multiplication)
CC4S (lead by Andreas Griineis)
early collaborations involving Lattice QCD and DMRG

Cyclops Tensor Framework https://github.com/solomonik/ctf 21/21

https://github.com/solomonik/ctf

Backup slides

Cyclops Tensor Framework https://github.com/solomonik/ctf 22/21

https://github.com/solomonik/ctf

Communication-synchronization wall

To analyze parallel algorithms, we consider costs along the critical path of
the execution schedule?

@ F' — computation cost

3-processor schedule o ot
@ W — horizontal communication cost o) 128@5,,»& Qi:’e";s:gae ion
@ S — synchronization cost >/'§
We can show a commonality between ¢ e .0 e
.)]
@ Cholesky of an n x n matrix and Desoms D
. [(1GB _<
@ n steps of a 9-pt stencil: —— g
W- S =Q(n? P D
Sy P
regardless of #processors! %

'E.S., E. Carson, N. Knight, J. Demmel, TOPC 2016

Cyclops Tensor Framework https://github.com/solomonik/ctf 23/21

https://github.com/solomonik/ctf

Tradeoffs in the diamond DAG

Computation vs synchronization tradeoff for the n x n diamond DAG,?

F-S=Q(n?

Dependency chain P Monochrome dependency intervals ~ Multicolored dependency intervals

In this DAG, vertices denote scalar computations in an algorithm

2C.H. Papadimitriou, J.D. Ullman, SIAM JC, 1987

Cyclops Tensor Framework https://github.com/solomonik/ctf 24/21

https://github.com/solomonik/ctf

Scheduling tradeoffs of path-expander graphs

Definition ((e, o)-path-expander)

Graph G = (V, E) is a (¢, 0)-path-expander if there exists a path
(u1,...u,) CV, such that the dependency interval [u;, u;1]c for each i,
has size ©(c(h)) and a minimum cut of size Q(e())).

Theorem (Path-expander communication lower bound)

Any parallel schedule of an algorithm with a (e, o)-path-expander
dependency graph about a path of length n and some b € [1,n] incurs
computation (F'), communication (W), and synchronization (S) costs:

F=Q(a(b)-n/b), W =Q(b) -n/b), S=Q(n/b).

Ifo(b) = 4 and e(b) = d=1"the above theorem yields,

F.-S7t=qmd), w.8972=q(n'?).

Cyclops Tensor Framework https://github.com/solomonik/ctf 25/21

https://github.com/solomonik/ctf

Synchronization-communication wall in iterative methods

The theorem can be applied to sparse iterative methods on regular grids.
For computing s applications of a (2m + 1)d—point stencil,

Fsy - Sglt =Q (de : 5d+1) , Wsy - Sg;l =Q (md . Sd)

while s-step methods reduce synchronization, for large s they require
asymptotically more communication.

The lower bound is attained by s-step methods when s approaches the
dimension of each processor’s local subgrid.

Cyclops Tensor Framework https://github.com/solomonik/ctf 26/21

https://github.com/solomonik/ctf

A more scalable algorithm for TRSM

For Cholesky factorization with p processors, parallel schedules can attain
F=0(n3p), W= O(nQ/p‘S), S = O(p‘s)

for any 0 = [1/2,2/3]. Achieving similar costs for LU, QR, and the
symmetric eigenvalue problem requires some algorithmic tweaks.
triangular solve square TRSM 3 rectangular TRSM *
LU with pivoting | pairwise pivoting v ° tournament pivoting v °
QR factorization | Givens on square v'3 | Householder on rect. v/
SVD singular values only v singular vectors X
v'means costs attained (synchronization within polylogarithmic factors).
Ongoing work on QR with column pivoting

3B. Lipshitz, MS thesis 2013

“T. Wicky, E.S., T. Hoefler, IPDPS 2017

SA. Tiskin, FGCS 2007

5E.S., J. Demmel, EuroPar 2011

"E.S., G. Ballard, T. Hoefler, J. Demmel, SPAA 2017

Cyclops Tensor Framework https://github.com/solomonik/ctf 27/21

https://github.com/solomonik/ctf

New algorithms can circumvent lower bounds

For TRSM, we can achieve a lower synchronization/communication cost by
performing triangular inversion on diagonal blocks

N

@ decreases synchronization cost by O(p2/3) on p processors with respect
to known algorithms

@ optimal communication for any number of right-hand sides
@ MS thesis work by Tobias Wicky®

8T. Wicky, E.S., T. Hoefler, IPDPS 2017

Cyclops Tensor Framework https://github.com/solomonik/ctf 28/21

https://github.com/solomonik/ctf

Improving scalability for iterative methods

Randomized-projection methods have potential to significantly improve
scalability over iterative Krylov subspace methods

o key idea: replace sparse mat-vecs with sparse mat-muls
o define n x (k 4 10) Gaussian random matrix X

@ AX gives a good representation of the kernel of A

°

accuracy can be improved exponentially with ¢°
(AAT)IAX

@ many related results with high potential for efficiency (e.g. randomized
column pivoting for QR 10)

°N. Halko, P.G. Martinsson, J.A. Tropp, SIAM Review 2011
1°p G. Martinsson, G. Quintana Orti, N. Heavner. R. van de Geijn, SIAM 2017

Cyclops Tensor Framework https://github.com/solomonik/ctf 29/21

https://github.com/solomonik/ctf

Our CCSD factorization

irmn
Wi

ab

N
f
ol + P Z - Zum" !,
S S g D
vi" 4 P} Zv;’emt + - Zv?}”ref
DL EDWAEDDRELEDBUARS ;ﬂ v T
5 Swanen,

vl + P} Z vits + PP} Z Wity — Py W™,
41
3

P Ee - P Y Fe L Z oere!

Cyclops Tensor Framework https://github.com/solomonik/ctf 30/21

https://github.com/solomonik/ctf

Performance breakdown on BG/Q

Performance data for a CCSD iteration with 200 electrons and 1000 orbitals
on 4096 nodes of Mira

4 processes per node, 16 threads per process

Total time: 18 mins

v-orbitals, o-electrons

kernel % of time complexity architectural bounds
DGEMM 45% O(v*o?/p) flops/mem bandwidth
broadcasts 20% O(v*0?/pv/M) | multicast bandwidth
prefix sum 10% O(p) allreduce bandwidth
data packing | 7% O(v%0? /p) integer ops
all-to-all-v 7% O(v?0?/p) bisection bandwidth
tensor folding | 4% O(v?0?/p) memory bandwidth

Cyclops Tensor Framework https://github.com/solomonik/ctf 31/21

https://github.com/solomonik/ctf

QR factorization of tall-and-skinny matrices

Consider the reduced factorization A = QR with A, Q € R™*" and
R € R™™ when m > n (in particular m > np)

@ A is tall-and-skinny, each processor owns a block of rows
@ Householder-QR requires S = ©(n) supersteps, W = O(n?)

@ Cholesky-QR2, TSQR, and HR-TSQR require S = O(log(p)) supersteps
o Cholesky-QR21!: stable so long as k(A) < 1/y/€, W = O(n?)

L = Chol(ATA),Z = AL"T L = Chol(Z"Z),Q = ZL T, R = LTLT
o TSQR!¥: row-recursive divide-and-conquer, W = O(n? log(p))

QiR:1| |[TSQR(Aq) _ R, Q1 O

|:Q2R2:| - |:TSQR(A2):| 7[Q127R] - QR(|:R2:|)aQ - [0 Q2:| Q12

o TSQR-HR3: TSQR with Householder-reconstruction, W = O(n?log(p))

1]'Yamamoto, Nakatsukasa, Yanagisawa, Fukaya 2015

12Demme|, Grigori, Hoemmen, Langou 2012
13Ballard, Demmel, Grigori, Jacquelin, Nguyen, S. 2014

Cyclops Tensor Framework https://github.com/solomonik/ctf 32/21

https://github.com/solomonik/ctf

QR factorization of square matrices

Square matrix QR algorithms generally use 1D QR for panel factorization

@ algorithms in ScaLAPACK, Elemental, DPLASMA use 2D layout,
generally achieve W = O(n?/,/p) cost

e Tiskin's 3D QR algorithm!* achieves W = O(n?/p*/3) communication

@ however, requires slanted-panel matrix embedding

which is highly inefficient for rectangular (tall-and-skinny) matrices

14 .. . A PR
Tiskin 2007, “Communication-efficient generic pairwise elimination”

Cyclops Tensor Framework https://github.com/solomonik/ctf 33/21

https://github.com/solomonik/ctf

Communication-avoiding rectangular QR

For A € R™*™ existing algorithms are optimal when m =n and m > n

@ cases with n < m < np underdetermined equations are important
@ new algorithm

o subdivide p processors into m/n groups of pn/m processors
o perform row-recursive QR (TSQR) with tree of height log,(m/n)

e compute each tree-node elimination QR(E{{l}) using Tiskin's QR with
2
pPn/Mm Or More processors
@ note: interleaving rows of Ry and R gives a slanted panel!

@ obtains ideal communication cost for any m, n, generally

r-o{(5")

Cyclops Tensor Framework https://github.com/solomonik/ctf 34/21

https://github.com/solomonik/ctf

Cholesky-QR2 for rectangular matrices

Cholesky-QR2 with 3D Cholesky provides a simple 3D QR algorithm for
well-conditioned rectangular matrices

=

IIReduce contiguous AllReduce altemating Broasicast along
aroups of size ¢ Groups of size dfc depth

s

c 7
Vo
c
[adwd
B=R'R
Q=AR?

D/C simultaneous 3D Cholesky D/C simultaneous 3D Matrix Multiplications
Factorizations on cubes of dimension C on cubes of dimension C

work by Edward Hutter (PhD student at UIUC)

Cyclops Tensor Framework https://github.com/solomonik/ctf 35/21

https://github.com/solomonik/ctf

Tridiagonalization

Reducing the symmetric matrix A € R"*" to a tridiagonal matrix
T =Q"AQ

via a two-sided orthogonal transformation is most costly in diagonalization

@ can be done by successive column QR factorizations

T=Q:" - Qu"AQ:---Qu
QT Q

@ two-sided updates harder to manage than one-sided
@ can use n/b QRs on panels of b columns to go to band-width b+ 1

o b =1 gives direct tridiagonalization

Cyclops Tensor Framework https://github.com/solomonik/ctf 36/21

https://github.com/solomonik/ctf

Multi-stage tridiagonalization

Writing the orthogonal transformation in Householder form, we get

I-uTUuhHTA(I1-UTU?) = A -UVT —vUT

J/

QT Q

where U are Householder vectors and V is

1
v =71U” + =TTUT AU TU”T
2 S~~~

challenge

@ when performing two-sided updates, computing AU dominates cost

e if b=1, U is a column-vector, and AU is dominated by vertical
communication cost (moving A between memory and cache)

e idea: reduce to banded matrix (b > 1) first!®

lsAuckenthaIer, Bungartz, Huckle, Kramer, Lang, Willems 2011

Cyclops Tensor Framework https://github.com/solomonik/ctf 37/21

https://github.com/solomonik/ctf

Successive band reduction (SBR)

After reducing to a banded matrix, we need to transform the banded matrix
to a tridiagonal one

e fewer nonzeros lead to lower computational cost, F' = O(n%b/p)
@ however, transformations introduce fill/bulges

@ bulges must be chased down the band!®

K upd&

“update

g\
@ communication- and synchronization-efficient 1D SBR algorithm known
for small band-width'’

16Lang 1993; Bischof, Lang, Sun 2000
17Ba|lard, Demmel, Knight 2012
Cyclops Tensor Framework https://github.com/solomonik/ctf 38/21

https://github.com/solomonik/ctf

Communication-efficient eigenvalue computation

Previous work (start-of-the-art): two-stage tridiagonalization

o implemented in ELPA, can outperform ScaLAPACK?!®

o with n =n/,/p, 1D SBR gives W = O(n?/,/p), S = O(,/plog?(p))*°
New results??: many-stage tridiagonalization

o use O(log(p)) intermediate band-widths to achieve W = O(n?/p?*/?)

@ leverage communication-efficient rectangular QR with processor groups

‘ yor

yor

A
V,"

VT
B, ?

u© |or o
QR B
U, U, U 2
U;

@ 3D SBR (each QR and matrix multiplication update parallelized)

Auckenthaler, Bungartz, Huckle, Kramer, Lang, Willems 2011
lgBaIIard, Demmel, Knight 2012
205., Ballard, Demmel, Hoefler 2017

Cyclops Tensor Framework https://github.com/solomonik/ctf 39/21

https://github.com/solomonik/ctf

Symmetric eigensolver results summary

Algorithm w \ Q \ S ‘
ScaLAPACK n?/\/p n3/p nlog(p)

ELPA n*/\/p - nlog(p)
two-stage + 1D-SBR | n?/\/p | n*log(n)/\/p | \/p(log®(p) + log(n))
many-stage n?/p?/3 | n2logp/p*/? p?/31og?p

@ costs are asymptotic (same computational cost F' for eigenvalues)
e W — horizontal (interprocessor) communication
@ (@ — vertical (memory—cache) communication excluding W + F/v/ H

@ S — synchronization cost (number of supersteps)

Cyclops Tensor Framework https://github.com/solomonik/ctf 40/21

https://github.com/solomonik/ctf

