A distributed-memory framework for tensor contractions

Edgar Solomonik

Department of EECS, Computer Science Division, UC Berkeley

Dec 9, 2013
Outline

1. Introduction
2. Distributed tensors as an abstraction
 - Specification for a tensor contraction library
 - Cyclops Tensor Framework
3. CCSDT effort
4. Future work
Coupled Cluster as a hypergraph computation

- Graphs describe the connectivity of a set of vertices
Coupled Cluster as a hypergraph computation

- Graphs describe the connectivity of a set of vertices
 - an edge in a graph is a pair of vertices
Coupled Cluster as a hypergraph computation

- Graphs describe the connectivity of a set of vertices
 - an edge in a graph is a pair of vertices
 - an edge in a hypergraph is a set of vertices
Coupled Cluster as a hypergraph computation

- Graphs describe the connectivity of a set of vertices
 - an edge in a graph is a pair of vertices
 - an edge in a hypergraph is a set of vertices
- Coupled Cluster can be described in terms of a directed hypergraph $G = (V, E)$
Coupled Cluster as a hypergraph computation

- Graphs describe the connectivity of a set of vertices
 - an edge in a graph is a pair of vertices
 - an edge in a hypergraph is a set of vertices
- Coupled Cluster can be described in terms of a directed hypergraph $G = (V, E)$
 - the vertices $V = O \cup U$ contain electrons O and basis functions U
Coupled Cluster as a hypergraph computation

- Graphs describe the connectivity of a set of vertices
 - an edge in a graph is a pair of vertices
 - an edge in a hypergraph is a set of vertices
- Coupled Cluster can be described in terms of a directed hypergraph $G = (V, E)$
 - the vertices $V = O \cup U$ contain electrons O and basis functions U
 - one-electron integrals can be represented as regular edges
Coupled Cluster as a hypergraph computation

- Graphs describe the connectivity of a set of vertices
 - an edge in a graph is a pair of vertices
 - an edge in a hypergraph is a set of vertices

- Coupled Cluster can be described in terms of a directed hypergraph $G = (V, E)$
 - the vertices $V = O \cup U$ contain electrons O and basis functions U
 - one-electron integrals can be represented as regular edges
 - two-electron integrals can be represented as hypergraph edges $\nu_{pq}^{rs} \in (V \times V \times V \times V)$
Coupled Cluster as a hypergraph computation

- Graphs describe the connectivity of a set of vertices
 - an edge in a graph is a pair of vertices
 - an edge in a hypergraph is a set of vertices
- Coupled Cluster can be described in terms of a directed hypergraph $G = (V, E)$
 - the vertices $V = O \cup U$ contain electrons O and basis functions U
 - one-electron integrals can be represented as regular edges
 - two-electron integrals can be represented as hypergraph edges
 $\nu_{rs}^{pq} \in (V \times V \times V \times V)$
 - the amplitudes may also be represented as hypergraph edges (or paths)
 $t_{ij}^{ab} \in (O \times O \times \ldots) \rightarrow (U \times U \times \ldots)$
Coupled Cluster as a hypergraph computation

- Graphs describe the connectivity of a set of vertices
 - an edge in a graph is a pair of vertices
 - an edge in a hypergraph is a set of vertices
- Coupled Cluster can be described in terms of a directed hypergraph \(G = (V, E) \)
 - the vertices \(V = O \cup U \) contain electrons \(O \) and basis functions \(U \)
 - one-electron integrals can be represented as regular edges
 - two-electron integrals can be represented as hypergraph edges
 \(\nu_{pq}^{rs} \in (V \times V \times V \times V) \)
 - the amplitudes may also be represented as hypergraph edges (or paths)
 \(t_{ij}^{ab} \in (O \times O \times \ldots) \rightarrow (U \times U \times \ldots) \)
- Coupled Cluster iteratively updates the hypergraph 'paths' based on previously known best values
Hypergraphs are represented numerically as tensors
- tensor symmetry is implicit from hypergraph edge definition
- Coupled Cluster is represented numerically as tensor contractions

Tensor contractions are a mathematical encoding of dependencies
- data and its structure is described as tensors
- interaction among data is described as tensor contractions
- general beyond Coupled Cluster (or even quantum chemistry)
Basic specification for a tensor library

A tensor contraction library should provide
- tensor objects that express structure
 - partial and full symmetry/anti-symmetry
 - sparsity
- user-level contractions defined by indices rather than loops
- data accessibility in multiple forms
 - full dense tensor
 - sparse index-value pairs
 - slice (subtensor)
 - subset of indices along each dimension
In a distributed-memory tensor contraction library,

- tensor objects should live on a *any* set of processors (MPI comm)
- tensor data should be partitioned among (mapped onto) the processors internally
- tensors should be able to migrate between mappings
- the framework should select an algorithm and tensor mappings for each contraction
- it should be possible to schedule many contractions in parallel
Decompose tensor into blocks (virtual processors) and map blocks onto processors

- map a tensor with edge lengths \((n_1, n_2, \ldots)\) tensor to a \((p_1, p_2, \ldots)\) via a \((v_1, v_2, \ldots)\) virtual topology, such that

\[v_i \equiv 0 \mod p_i \] for (enforce load balance)

\[v_i = v_j \] if tensor dimensions \(i\) and \(j\) are symmetric (preserve symmetry)

typically want to maximize block size,

\[\prod n_i / v_i \] for each contraction, enforce new rules on mapping

if two tensors share an index, mapped onto \(v_i\) in the first and onto \(v_j\) in the second, \(v_i = v_j\) etc...
Decompose tensor into blocks (virtual processors) and map blocks onto processors

- map a tensor with edge lengths \((n_1, n_2, \ldots)\) tensor to a \((p_1, p_2, \ldots)\) via a \((v_1, v_2, \ldots)\) virtual topology, such that
 - \(v_i = 0 \mod p_i\) for (enforce load balance)
Mapping in Cyclops Tensor Framework (CTF)

Decompose tensor into blocks (virtual processors) and map blocks onto processors

- map a tensor with edge lengths \((n_1, n_2, \ldots)\) tensor to a \((p_1, p_2, \ldots)\) via a \((v_1, v_2, \ldots)\) virtual topology, such that
 - \(v_i = 0 \mod p_i\) for (enforce load balance)
 - \(v_i = v_j\) if tensor dimensions \(i\) and \(j\) are symmetric (preserve symmetry)
Decompose tensor into blocks (virtual processors) and map blocks onto processors

- map a tensor with edge lengths \((n_1, n_2, \ldots)\) tensor to a \((p_1, p_2, \ldots)\) via a \((v_1, v_2, \ldots)\) virtual topology, such that
 - \(v_i = 0 \mod p_i\) for (enforce load balance)
 - \(v_i = v_j\) if tensor dimensions \(i\) and \(j\) are symmetric (preserve symmetry)
 - typically want to maximize block size, \(\prod_i n_i/v_i\)
Mapping in Cyclops Tensor Framework (CTF)

Decompose tensor into blocks (virtual processors) and map blocks onto processors

- map a tensor with edge lengths \((n_1, n_2, \ldots)\) tensor to a \((p_1, p_2, \ldots)\) via a \((v_1, v_2, \ldots)\) virtual topology, such that
 - \(v_i = 0 \mod p_i\) for (enforce load balance)
 - \(v_i = v_j\) if tensor dimensions \(i\) and \(j\) are symmetric (preserve symmetry)
 - typically want to maximize block size, \(\prod_i n_i/v_i\)
- for each contraction, enforce new rules on mapping
Distributed tensors as an abstraction

Cyclops Tensor Framework

Mapping in Cyclops Tensor Framework (CTF)

Decompose tensor into blocks (virtual processors) and map blocks onto processors

- map a tensor with edge lengths \((n_1, n_2, \ldots)\) tensor to a \((p_1, p_2, \ldots)\) via a \((v_1, v_2, \ldots)\) virtual topology, such that
 - \(v_i = 0 \mod p_i\) for (enforce load balance)
 - \(v_i = v_j\) if tensor dimensions \(i\) and \(j\) are symmetric (preserve symmetry)
 - typically want to maximize block size, \(\prod_i n_i / v_i\)

- for each contraction, enforce new rules on mapping
 - if two tensors share an index, mapped onto \(v_i\) in the first and onto \(v_j\) in the second, \(v_i = v_j\)
Decompose tensor into blocks (virtual processors) and map blocks onto processors

- map a tensor with edge lengths \((n_1, n_2, \ldots)\) tensor to a \((p_1, p_2, \ldots)\) via a \((v_1, v_2, \ldots)\) virtual topology, such that
 - \(v_i = 0 \mod p_i\) for (enforce load balance)
 - \(v_i = v_j\) if tensor dimensions \(i\) and \(j\) are symmetric (preserve symmetry)
 - typically want to maximize block size, \(\prod_i \frac{n_i}{v_i}\)

- for each contraction, enforce new rules on mapping
 - if two tensors share an index, mapped onto \(v_i\) in the first and onto \(v_j\) in the second, \(v_i = v_j\)
 - etc...
The mapping process

Do in parallel over all physical topologies (foldings of the original torus)

1. map longest physical torus dimension to longest tensor dimension and repeat
The mapping process

Do in parallel over all physical topologies (foldings of the original torus)

1. map longest physical torus dimension to longest tensor dimension and repeat
2. select virtualization factors to preserve symmetry (as well as to match the algorithmic requirements)
The mapping process

Do in parallel over all physical topologies (foldings of the original torus)

1. map longest physical torus dimension to longest tensor dimension and repeat
2. select virtualization factors to preserve symmetry (as well as to match the algorithmic requirements)
3. calculate the necessary memory usage and communication cost of the algorithm
The mapping process

Do in parallel over all physical topologies (foldings of the original torus)

1. map longest physical torus dimension to longest tensor dimension and repeat
2. select virtualization factors to preserve symmetry (as well as to match the algorithmic requirements)
3. calculate the necessary memory usage and communication cost of the algorithm
4. consider whether and what type of redistribution is necessary for the mapping
The mapping process

Do in parallel over all physical topologies (foldings of the original torus)

1. map longest physical torus dimension to longest tensor dimension and repeat
2. select virtualization factors to preserve symmetry (as well as to match the algorithmic requirements)
3. calculate the necessary memory usage and communication cost of the algorithm
4. consider whether and what type of redistribution is necessary for the mapping
5. select the best mapping based on a performance model
3D tensor mapping
Redistribution in CTF

CTF provides three types of redistributions

- sparse index-value redistribution
CTF provides three types of redistributions

- sparse index-value redistribution
 - general but slow
- mapping-to-mapping redistribution
 - allows a tensor to migrate from an ordered mapping to another
 - does not form indices explicitly (exploits global order)
 - $\sim 10X$ faster than sparse redistribution
- block-to-block redistribution
 - possible if the virtual decomposition (blocking) does not change
 - useful for reassigning physical dimensions
 - $\sim 10X$ faster than general mapping-to-mapping redistribution
Redistribution in CTF

CTF provides three types of redistributions

- sparse index-value redistribution
 - general but slow
 - easily accessible to user
Redistribution in CTF

CTF provides three types of redistributions

- sparse index-value redistribution
 - general but slow
 - easily accessible to user
- mapping-to-mapping redistribution
 - allows a tensor to migrate from an ordered mapping to another
 - does not form indices explicitly (exploits global order)
 - ∼10X faster than sparse redistribution
- block-to-block redistribution
 - possible if the virtual decomposition (blocking) does not change
 - useful for reassigning physical dimensions
 - ∼10X faster than general mapping-to-mapping redistribution
Redistribution in CTF

CTF provides three types of redistributions

- **sparse index-value redistribution**
 - general but slow
 - easily accessible to user

- **mapping-to-mapping redistribution**
 - allows a tensor to migrate from an ordered mapping to another

∼10X faster than sparse redistribution

- **block-to-block redistribution**
 - possible if the virtual decomposition (blocking) does not change
 - useful for reassigning physical dimensions
CTF provides three types of redistributions

- **sparse index-value redistribution**
 - general but slow
 - easily accessible to user

- **mapping-to-mapping redistribution**
 - allows a tensor to migrate from an ordered mapping to another
 - does not form indices explicitly (exploits global order)

 Redistribution in CTF
CTF provides three types of redistributions

- **sparse index-value redistribution**
 - general but slow
 - easily accessible to user

- **mapping-to-mapping redistribution**
 - allows a tensor to migrate from an ordered mapping to another
 - does not form indices explicitly (exploits global order)
 - $\sim 10X$ faster than sparse redistribution
Redistribution in CTF

CTF provides three types of redistributions

- **sparse index-value redistribution**
 - general but slow
 - easily accessible to user

- **mapping-to-mapping redistribution**
 - allows a tensor to migrate from an ordered mapping to another
 - does not form indices explicitly (exploits global order)
 - $\sim 10X$ faster than sparse redistribution

- **block-to-block redistribution**
CTF provides three types of redistributions

- **sparse index-value redistribution**
 - general but slow
 - easily accessible to user

- **mapping-to-mapping redistribution**
 - allows a tensor to migrate from an ordered mapping to another
 - does not form indices explicitly (exploits global order)
 - $\sim 10X$ faster than sparse redistribution

- **block-to-block redistribution**
 - possible if the virtual decomposition (blocking) does not change
Redistribution in CTF

CTF provides three types of redistributions

- **sparse index-value redistribution**
 - general but slow
 - easily accessible to user

- **mapping-to-mapping redistribution**
 - allows a tensor to migrate from an ordered mapping to another
 - does not form indices explicitly (exploits global order)
 - $\sim 10X$ faster than sparse redistribution

- **block-to-block redistribution**
 - possible if the virtual decomposition (blocking) does not change
 - useful for reassigning physical dimensions
Redistribution in CTF

CTF provides three types of redistributions

- **sparse index-value redistribution**
 - general but slow
 - easily accessible to user

- **mapping-to-mapping redistribution**
 - allows a tensor to migrate from an ordered mapping to another
 - does not form indices explicitly (exploits global order)
 - \(\sim 10X \) faster than sparse redistribution

- **block-to-block redistribution**
 - possible if the virtual decomposition (blocking) does not change
 - useful for reassigning physical dimensions
 - \(\sim 10X \) faster than general mapping-to-mapping redistribution
Local transposition

Once the data is redistributed into the new mapping, we reorder it locally within blocks

- turns all non-symmetric block contractions into matrix multiplication
Local transposition

Once the data is redistributed into the new mapping, we reorder it locally within blocks:

- turns all non-symmetric block contractions into matrix multiplication
- ‘preserved’ symmetries may be folded into one dimension, but broken ones cannot
Local transposition

Once the data is redistributed into the new mapping, we reorder it locally within blocks:

- turns all non-symmetric block contractions into matrix multiplication
- 'preserved' symmetries may be folded into one dimension, but broken ones cannot
- maps dimensions which have symmetry that cannot be folded into matrix multiplication to have the longest stride
Local transposition

Once the data is redistributed into the new mapping, we reorder it locally within blocks

- turns all non-symmetric block contractions into matrix multiplication
- 'preserved' symmetries may be folded into one dimension, but broken ones cannot
- maps dimensions which have symmetry that cannot be folded into matrix multiplication to have the longest stride
- the contraction execution logic becomes
Local transposition

Once the data is redistributed into the new mapping, we reorder it locally within blocks

- turns all non-symmetric block contractions into matrix multiplication
- ’preserved’ symmetries may be folded into one dimension, but broken ones cannot
- maps dimensions which have symmetry that cannot be folded into matrix multiplication to have the longest stride
- the contraction execution logic becomes
 - nested SUMMA (distributed matrix multiplication)
Local transposition

Once the data is redistributed into the new mapping, we reorder it locally within blocks

- turns all non-symmetric block contractions into matrix multiplication
- ‘preserved’ symmetries may be folded into one dimension, but broken ones cannot
- maps dimensions which have symmetry that cannot be folded into matrix multiplication to have the longest stride
- the contraction execution logic becomes
 1. nested SUMMA (distributed matrix multiplication)
 2. nested call to iterate over virtual blocks
Local transposition

Once the data is redistributed into the new mapping, we reorder it locally within blocks

- turns all non-symmetric block contractions into matrix multiplication
- ’preserved’ symmetries may be folded into one dimension, but broken ones cannot
- maps dimensions which have symmetry that cannot be folded into matrix multiplication to have the longest stride
- the contraction execution logic becomes
 1. nested SUMMA (distributed matrix multiplication)
 2. nested call to iterate over virtual blocks
 3. nested call to iterate over broken symmetric dimensions
Local transposition

Once the data is redistributed into the new mapping, we reorder it locally within blocks

- turns all non-symmetric block contractions into matrix multiplication
- ‘preserved’ symmetries may be folded into one dimension, but broken ones cannot
- maps dimensions which have symmetry that cannot be folded into matrix multiplication to have the longest stride
- the contraction execution logic becomes
 1. nested SUMMA (distributed matrix multiplication)
 2. nested call to iterate over virtual blocks
 3. nested call to iterate over broken symmetric dimensions
 4. nested call to DGEMM (matrix multiplication)
Comparison with NWChem on Cray XE6

CCSD iteration time on 64 nodes of Hopper:

<table>
<thead>
<tr>
<th>system</th>
<th># electrons</th>
<th># orbitals</th>
<th>CTF</th>
<th>NWChem</th>
</tr>
</thead>
<tbody>
<tr>
<td>w5</td>
<td>25</td>
<td>205</td>
<td>14 sec</td>
<td>36 sec</td>
</tr>
<tr>
<td>w7</td>
<td>35</td>
<td>287</td>
<td>90 sec</td>
<td>178 sec</td>
</tr>
<tr>
<td>w9</td>
<td>45</td>
<td>369</td>
<td>127 sec</td>
<td>-</td>
</tr>
<tr>
<td>w12</td>
<td>60</td>
<td>492</td>
<td>336 sec</td>
<td>-</td>
</tr>
</tbody>
</table>

On 128 nodes, NWChem completed w9 in 223 sec, CTF in 73 sec.
Blue Gene/Q CTF/Aquarius CCSD up to 1250 orbitals, 250 electrons
Coupled Cluster efficiency on Blue Gene/Q

CCSD weak scaling on Mira (BG/Q)

Aquarius/CTF

Fraction of peak flops

#cores

8192 16384 32768 65536 131072
Problems posed by CCSDT

Tensor symmetry
- T3 amplitude tensors are symmetric up to 36 index permutations
- packing/unpacking requires many transpositions
- performing each permutation requires many contractions

Lots of contractions
- many contractions involve small tensors
- even the large contractions involve at least one ’smaller’ tensor
CTF renovations for CCSDT

Much optimization to transposition kernels has been done

- new optimizations for mapping-to-mapping redistribution kernel (thanks to Devin)
- block-to-block redistribution introduced
- transpose and redistribution threaded with consideration for symmetric structure

Unpacking, repacking, and replication cause memory fragmentation

- cannot let tensors run free in the wild
- assign 'home' buffer (initial mapping) and migrate data back to it
- use internal stack for efficient large memory allocation management
Largest CTF/Aquarius CCSDT run so far

- 8 water molecules (40 electrons), cc-pVDZ basis set (192 atomic orbitals)
- done on 2048 nodes of BG/Q (128K cores)
- 15 mins per CCSDT iteration, \(\sim 30 \text{ Teraflops}, 23\% \text{ time in } \text{dgemm} \)

Preliminary comparison with NWChem for CCSDT on 32 nodes Hopper (iteration time)

- 3-waters, cc-pVDZ: CTF 100 sec, NWChem 160 sec
- 4-waters, cc-pVDZ: CTF 382 sec, NWChem 750 sec
Is CTF optimal?

- good question...
Is CTF optimal?

- good question...
- no!
Is CTF optimal?

- good question...
- no!
- why?
Symmetric tensor contractions via fully symmetric intermediates

Let \(\mathbf{b} \) be a vector of length \(n \) with elements.

Typically, we say the symmetry of \(A \) is broken and compute

\[
c_i = \sum_{j=1}^{n} A_{ij} b_j
\]

Instead we can use half the number of multiplications

\[
c_i = \sum_{j=1}^{n} A_{ij} \cdot (b_i + b_j) - \sum_{j=1}^{n} A_{ij} b_i
\]
Symmetric tensor contractions via fully symmetric intermediates

- Let \mathbf{b} be a vector of length n with elements
- Let \mathbf{A} be a n-by-n symmetric matrix with elements

\[A_{ij} = A_{ji} \]
Symmetric tensor contractions via fully symmetric intermediates

- Let \mathbf{b} be a vector of length n with elements.
- Let \mathbf{A} be a n-by-n symmetric matrix with elements:
 $$A_{ij} = A_{ji}$$
- Typically, we say the symmetry of \mathbf{A} is broken and compute:
 $$c_i = \sum_{j=1}^{n} A_{ij} b_j$$ (1)
Symmetric tensor contractions via fully symmetric intermediates

- Let \(\mathbf{b} \) be a vector of length \(n \) with elements.
- Let \(\mathbf{A} \) be a \(n \times n \) symmetric matrix with elements.

\[
A_{ij} = A_{ji}
\]

- Typically, we say the symmetry of \(\mathbf{A} \) is broken and compute

\[
c_i = \sum_{j=1}^{n} A_{ij} b_j
\] \hspace{1cm} (1)

- Instead we can use half the number of multiplications

\[
c_i = \sum_{j=1}^{n} A_{ij} \cdot (b_i + b_j) - \left(\sum_{j=1}^{n} A_{ij} \right) b_i
\]
Symmetric tensor contractions via fully symmetric intermediates

- Let \(\mathbf{b} \) be a vector of length \(n \) with elements.
- Let \(\mathbf{A} \) be a \(n \)-by-\(n \) symmetric matrix with elements.

\[
A_{ij} = A_{ji}
\]

- Typically, we say the symmetry of \(\mathbf{A} \) is broken and compute

\[
c_i = \sum_{j=1}^{n} A_{ij} b_j
\]

- Instead we can use half the number of multiplications

\[
c_i = \sum_{j=1}^{n} A_{ij} \cdot (b_i + b_j) - \left(\sum_{j=1}^{n} A_{ij} \right) b_i
\]

- A similar reorganization is possible for the symmetrized outer product.
General fast symmetric tensor contractions

Given *fully* symmetric A, B, and C, compute

$$C_{i_1...i_{s+t}} = \sum_{((j_1...j_s),(l_1...l_t)) \in \chi_s(i_1...i_{s+t})} \left(\sum_{k_1...k_v} A_{j_1...j_s}^{k_1...k_v} \cdot B_{l_1...l_t}^{k_1...k_v} \right).$$

Typically computed by (implicitly) forming partially-symmetric \bar{C}

$$\bar{C}_{j_1...j_s}^{l_1...l_t} = \sum_{k_1...k_v} A_{j_1...j_s}^{k_1...k_v} \cdot B_{l_1...l_t}^{k_1...k_v}.$$

Cost is $\frac{n^{s+t+v}}{s!t!v!}$, via fully symmetric intermediates it becomes,

$$\left(\begin{array}{c} n \\ s + t + v \end{array} \right) \approx \frac{n^{s+t+v}}{(s + t + v)!}.$$
Summary

Cyclops Tensor Framework (CTF)

- ctf.cs.berkeley.edu, BSD license, try it, use it
- stand-alone library requiring only MPI+OpenMP+BLAS
- Tested on gcc/intel/xlc, Mira/Carver/Hopper/Edison/Apple
- High performance algebra for multidimensional symmetric arrays
- In its essence, CTF is a library for mapping and communication orchestration of data via mathematical user-level language (operators)
- Its not optimal, because there are faster algorithms for symmetric contractions (but the software abstractions are still correct!)
Future and ongoing work

Cyclops Tensor Framework

- scheduling and concurrent execution of contractions
- better internal performance models
- exposure of a mapping interface to the user
- sparse tensors
- software realization of fast symmetric tensor contraction algorithms
Collaborators and acknowledgements

Collaborators:
- Devin Matthews, UT Austin (contributions to CTF, teaching me CC, and development of Aquarius on top of CTF)
- Jeff Hammond, Argonne National Laboratory (initiated project and provides continuing advice)
- James Demmel and Kathy Yelick, UC Berkeley (high-level advising)

Grants:
- Krell DOE Computational Science Graduate Fellowship