Algorithms as Multilinear Tensor Equations

Edgar Solomonik

Department of Computer Science
ETH Zurich

University of Colorado, Boulder

February 23, 2016
What commonalities exist in simulation and data analysis applications?

- multidimensional datasets (observations, discretizations)
- higher-order relations: equations, maps, graphs, hypergraphs
- **sparsity** and **symmetry** in structure of relations
- relations lead to solution directly or as an iterative criterion
- algebraic descriptions of datasets and relations
Pervasive paradigms in scientific computing

What abstractions are needed in high performance computing?

- data abstractions reflecting native dimensionality and structure
- functions orchestrating communication and synchronization
- provably efficient building-block algorithms
Outline

1. Motivating applications
2. Symmetry-preserving tensor algorithms
3. Communication-avoiding parallel algorithms
4. A massively-parallel tensor framework
5. Applications to electronic structure calculations
6. Conclusion
Matrix computations ⊂ tensor computations

Tensors are convenient abstractions for multidimensional data
- one type of object for any homogeneous dataset
- enable expression of symmetries
- reveal sparsity structure of relations in multidimensional space

Tensor computations naturally extend numerical linear algebra
- = often reduce to or employ matrix algorithms
 - can leverage high performance matrix libraries
+ high-order tensors can ‘act’ as many matrix unfoldings
+ symmetries lower memory footprint and cost
+ tensor factorizations (CP, Tucker, tensor train, ...)

Edgar Solomonik
Algorithms as Multilinear Tensor Equations 5/32
Applications of high-order tensor representations

Numerical solution to differential equations
- nonlinear terms and differential operators
- truncated Taylor series expansions

Computer vision and graphics
- 2D image \otimes angle \otimes time
- compression (tensor factorizations, sparsity)

Machine learning
- sparse multi-feature discrete datasets
- reduced-order models (tensor factorizations)

Graph computations
- hypergraphs, time-dependent graphs
- clustering/partitioning/path-finding (eigenvector computations)

Divide-and-conquer algorithms representable by tensor folding
- bitonic sort, FFT, scans
Applications to quantum systems

Manybody Schrödinger equation
- “curse of dimensionality” – exponential state space

Condensed matter physics
- tensor network models (e.g. DMRG), tensor per lattice site
- highly symmetric multilinear tensor representation
- exponential state space localized \rightarrow factorized tensor form

Quantum chemistry (electronic structure calculations)
- models of molecular structure and chemical reactions
- methods for calculating electronic correlation:
 - “Post Hartree-Fock”: configuration interaction, coupled cluster, Møller-Plesset perturbation theory
- multi-electron states as tensors, e.g. electron \otimes electron \otimes orbital \otimes orbital
- nonlinear equations of partially (anti)symmetric tensors
- interactions diminish with distance \rightarrow sparsity, low rank
Exploiting symmetry in tensors

Tensor symmetry (e.g. $A_{ij} = A_{ji}$) reduces memory and cost

- for order d tensor, $d!$ less memory
- dot product $\sum_{i,j} A_{ij}B_{ij} = 2\sum_{i<j} A_{ij}B_{ij} + \sum_i A_{ii}B_{ii}$
- matrix-vector multiplication

$$\begin{align*}
c_i &= \sum_j A_{ij}b_j = \sum_j A_{ij}(b_i + b_j) - \left(\sum_j A_{ij}\right)b_i
\end{align*}$$

- rank-2 vector outer product

$$C_{ij} = a_i b_j + a_j b_i = (a_i + a_j)(b_i + b_j) - a_i b_i - a_j b_j$$

- squaring a symmetric matrix (or $AB + BA$)

$$C_{ij} = \sum_k A_{ik}A_{kj} = \sum_k (A_{ik} + A_{kj} + A_{ij})^2 - \ldots$$

- for order ω contraction, $\omega!$ fewer multiplies

1 S., Demmel; Technical Report, ETH Zurich, 2015.
Symmetry preserving algorithms

By exploiting symmetry, reduce multiplies (but increase adds)\(^2\)

- partially symmetric contractions
 - symmetry preserving algorithm can be nested over each index group
 - reduction in multiplies \(\rightarrow\) reduction in nested calls
 - cost reductions in coupled cluster:
 - 2X-9X for select contractions, 1.3X-2.1X for methods

- algorithms generalize to most antisymmetric tensor contractions

- for Hermitian tensors, multiplies cost 3X more than adds
 - Hermitian matrix multiplication and tridiagonal reduction (BLAS and LAPACK routines) with 25% fewer ops

- \((2/3)n^3\) bilinear rank for squaring a nonsymmetric matrix

- allows blocking of symmetric contractions into smaller symmetric contractions

\(^2\)S., Demmel; Technical Report, ETH Zurich, 2015.
Algorithms should minimize communication, not just computation

- data movement and synchronization cost more energy than flops
- two types of data movement:
 - vertical (intranode memory–cache)
 - horizontal (internode network transfers)
- parallel algorithm design involves tradeoffs: computation vs communication vs synchronization
- lower bounds and parameterized algorithms provide optimal solutions within a well-defined tuning space
Given a schedule of work and communication tasks on p processors, consider the following costs, accumulated along chains of tasks (as in $\alpha - \beta$, BSP, and LogGP models),

- F – computation cost
- Q – vertical communication cost
- W – horizontal communication cost
- S – synchronization cost
Multiplication of $n \times n$ matrices

- horizontal communication lower bound\(^3\)
 \[W_{MM} = \Omega \left(\frac{n^2}{p^{2/3}} \right) \]

- memory-dependent horizontal communication lower bound\(^4\)
 \[W_{MM} = \Omega \left(\frac{n^3}{p \sqrt{M}} \right) \]

 with $M = cn^2/p$ memory, hope to obtain communication cost
 \[W = O\left(\frac{n^2}{\sqrt{cp}} \right) \]

- libraries like ScaLAPACK, Elemental optimal only for $c = 1$

\(^3\) Aggarwal, Chandra, Snir, TCS, 1990

\(^4\) Irony, Toledo, Tiskin, JPDC, 2004
Communication-efficient matrix multiplication

Communication-avoiding algorithms for matrix multiplication have been studied extensively5

They continue to be attractive on modern architectures6

5Berntsen, Par. Comp., 1989; Agarwal, Chandra, Snir, TCS, 1990; Agarwal, Balle, Gustavson, Joshi, Palkar, IBM, 1995; McColl, Tiskin, Algorithmica, 1999; ...

6S., Bhatle, Demmel, SC, 2011
Unlike matrix multiplication, many algorithms in numerical linear algebra have polynomial depth (contain a long dependency path)

- matrix multiplication synchronization cost bound\(^7\)

\[
S_{\text{MM}} = \Theta \left(\frac{n^3}{pM^{3/2}} \right)
\]

- algorithms for Cholesky, LU, QR, SVD do not attain this bound
- low granularity computation increases synchronization cost

\(^7\) Ballard, Demmel, Holtz, Schwartz, SIAM JMAA, 2011
Tradeoffs in the diamond DAG

Computation vs synchronization tradeoff for the $n \times n$ diamond DAG,

\[F \cdot S = \Omega(n^2) \]

We generalize this idea\(^9\)

- additionally consider horizontal communication
- allow arbitrary (polynomial or exponential) interval expansion

\(^8\) Papadimitriou, Ullman, SIAM JC, 1987
\(^9\) S., Carson, Knight, Demmel, SPAA 2014 (extended version, JPDC 2016)
Tradeoffs involving synchronization

We apply tradeoff lower bounds to dense linear algebra algorithms, represented via dependency hypergraphs:

For triangular solve with an $n \times n$ matrix,

$$F_{\text{TRSV}} \cdot S_{\text{TRSV}} = \Omega \left(n^2 \right)$$

For Cholesky of an $n \times n$ matrix,

$$F_{\text{CHOL}} \cdot S_{\text{CHOL}}^2 = \Omega \left(n^3 \right) \quad W_{\text{CHOL}} \cdot S_{\text{CHOL}} = \Omega \left(n^2 \right)$$

Proof employs classical Loomis-Whitney inequality:

for any $R \subset \mathbb{N} \times \mathbb{N} \times \mathbb{N}$, three projections of R onto $\mathbb{N} \times \mathbb{N}$ have total size at least $|R|^{2/3}$

a S., Carson, Knight, Demmel, SPAA 2014 (extended version, JPDC 2016)
For any $c \in [1, p^{1/3}]$, use cn^2/p memory per processor and obtain

$$W_{LU} = O(n^2/\sqrt{cp}), \quad S_{LU} = O(\sqrt{cp})$$

- LU with pairwise pivoting\(^{10}\) extended to tournament pivoting\(^{11}\)
- first implementation of a communication-optimal LU algorithm\(^{11}\)

\(^{10}\) Tiskin, FGCS, 2007

\(^{11}\) S., Demmel, Euro-Par, 2011
Communication-efficient QR factorization

- $W_{QR} = O(n^2/\sqrt{cp})$, $S_{QR} = O(\sqrt{cp})$ using Givens rotations\(^{12}\)
- Householder form can be reconstructed quickly from TSQR\(^{13}\)
- Optimal QR communication and synchronization (modulo log factors) costs can be obtained with Householder representation\(^{14}\)
- Householder aggregation yields performance improvements

\(^{12}\) Tiskin, FGCS, 2007
\(^{13}\) Ballard, Demmel, Grigori, Jacquelin, Nguyen, S., IPDPS, 2014
\(^{14}\) S., UCB, 2014
Communication-efficient eigenvalue computation

For the dense symmetric matrix eigenvalue problem\(^a\)

\[
W_{SE} = O\left(n^2 / \sqrt{cp}\right), \quad S_{QR} = O\left(\sqrt{cp} \log^2 p\right)
\]

- above costs obtained by left-looking algorithm with Householder aggregation, however, with increased vertical communication
- successive band reduction minimizes both communication costs

\(^a\)S., UCB, 2014. S., Hoefler, Demmel, in preparation
Our lower bound analysis extends to sparse iterative methods:\(^\text{15}\)
For computing \(s\) applications of a \((2m + 1)^d\)-point stencil

\[
F_{St} \cdot S_{St}^d = \Omega \left(m^{2d} \cdot s^{d+1} \right) \quad W_{St} \cdot S_{St}^{d-1} = \Omega \left(m^d \cdot s^d \right)
\]

- proof requires generalization of Loomis-Whitney inequality to order \(d\) set and order \(d - 1\) projections
- time-blocking lowers synchronization and vertical communication costs, but raises horizontal communication
- we suggest alternative approach that minimizes vertical and horizontal communication, but not synchronization

\(^{15}\) S., Carson, Knight, Demmel, SPAA 2014 (extended version, JPDC 2016)
Loomis-Whitney inequalities are not sufficient for all computations

- symmetry preserving tensor contraction algorithms have arbitrary order projections from order d set
- bilinear algorithms16 provide a more general framework
- a bilinear algorithm is defined by matrices $F(A), F(B), F(C)$,

\[c = F(C)[(F(A)^T a) \circ (F(B)^T b)] \]

where \circ is the Hadamard (pointwise) product

\[
\begin{bmatrix}
\text{x} & \text{x} & \text{x} & \text{x} & \text{x} \\
\text{x} & \text{x} & \text{x} & \text{x} & \text{x} \\
\text{x} & \text{x} & \text{x} & \text{x} & \text{x} \\
\text{x} & \text{x} & \text{x} & \text{x} & \text{x} \\
\text{x} & \text{x} & \text{x} & \text{x} & \text{x}
\end{bmatrix}
=
\begin{bmatrix}
\text{x} & \text{x} & \text{x} & \text{x} & \text{x} \\
\text{x} & \text{x} & \text{x} & \text{x} & \text{x} \\
\text{x} & \text{x} & \text{x} & \text{x} & \text{x} \\
\text{x} & \text{x} & \text{x} & \text{x} & \text{x} \\
\text{x} & \text{x} & \text{x} & \text{x} & \text{x}
\end{bmatrix}^T
\begin{bmatrix}
a \\
a \\
a \\
a \\
a
\end{bmatrix}
\circ
\begin{bmatrix}
\text{x} & \text{x} & \text{x} & \text{x} & \text{x} \\
\text{x} & \text{x} & \text{x} & \text{x} & \text{x} \\
\text{x} & \text{x} & \text{x} & \text{x} & \text{x} \\
\text{x} & \text{x} & \text{x} & \text{x} & \text{x} \\
\text{x} & \text{x} & \text{x} & \text{x} & \text{x}
\end{bmatrix}^T
\begin{bmatrix}
b \\
b \\
b \\
b \\
b
\end{bmatrix}
\]

- communication lower bounds derived based on matrix rank17

16 Pan, Springer, 1984
17 S., Hoefler, Demmel, in preparation
Communication cost of symmetry preserving algorithms

For contraction of order $s + v$ tensor with order $v + t$ tensor\(^{18}\)

- symmetry preserving algorithm requires \(\frac{(s+v+t)!}{s!v!t!}\) fewer multiplies
- matrix-vector-like algorithms (\(\min(s, v, t) = 0\))
 - vertical communication dominated by largest tensor
 - horizontal communication asymptotically greater if only unique elements are stored and \(s \neq v \neq t\)
- matrix-matrix-like algorithms (\(\min(s, v, t) > 0\))
 - vertical and horizontal communication costs asymptotically greater for symmetry preserving algorithm when \(s \neq v \neq t\)

\(^{18}\) S., Hoefler, Demmel; Technical Report, ETH Zurich, 2015.
Tensor algebra as a programming abstraction

Cyclops Tensor Framework19

- contraction/summation/functions of tensors
- distributed symmetric-packed/sparse storage via cyclic layout
- parallelization via MPI+OpenMP(+CUDA)

Cyclops Tensor Framework

- contraction/summation/functions of tensors
- distributed symmetric-packed/sparse storage via cyclic layout
- parallelization via MPI+OpenMP(+CUDA)

Jacobi iteration (solves $Ax = b$ iteratively) example code snippet

```cpp
Vector<> Jacobi(Matrix<> A, Vector<> b, int n){
    Matrix<> R(A);
    R["ii"] = 0.0;
    Vector<> x(n), d(n), r(n);
    Function<> inv([](double & d){ return 1./d; });
    d["i"] = inv(A["ii"]); // set d to inverse of diagonal of A
    do {
        x["i"] = d["i"]/R["ij"]*x["j"];
        r["i"] = b["i"] - A["ij"]*x["j"]; // compute residual
    } while (r.norm2() > 1.E-6); // check for convergence
    return x;
}
```
Tensor algebra as a programming abstraction

Cyclops Tensor Framework

- contraction/summation/functions of tensors
- distributed symmetric-packed/sparse storage via cyclic layout
- parallelization via MPI+OpenMP(+CUDA)

Møller-Plesset perturbation theory (MP3) code snippet

```plaintext
Z["abij"] += Fab["af"]*T["fbij"];  
Z["abij"] -= Fij["ni"]*T["abnj"];  
Z["abij"] += 0.5*Vabcd["abef"]*T["efij"];  
Z["abij"] += 0.5*Vijkl["mnij"]*T["abmn"];  
Z["abij"] -= Vaibj["amei"]*T["ebmj"];  
```
Betweenness centrality code snippet, for \(k \) of \(n \) nodes

```cpp
void btwn_central(Matrix<int> A, Matrix<path> P, int n, int k) {
    Monoid<path> mon(...,
        [](path a, path b) {
            if (a.w < b.w) return a;
            else if (b.w < a.w) return b;
            else return path(a.w, a.m+b.m);
        }, ...);

    Matrix<path> Q(n,k,mon); // shortest path matrix
    Q["ij"] = P["ij"];

    Function<int,path> append([](int w, path p) {
        return path(w+p.w, p.m);
    });

    for (int i=0; i<n; i++)
        Q["ij"] = append(A["ik"], Q["kj"]);
    ...
}
```
CTF is highly tuned for massively-parallel machines
- virtualized multidimensional processor grids
- topology-aware mapping and collective communication
- performance-model-driven decomposition done at runtime
- optimized redistribution kernels for tensor transposition

![Diagram of CTF architecture]

BG/Q matrix multiplication

<table>
<thead>
<tr>
<th>#cores</th>
<th>CTF</th>
<th>Scalapack</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>64</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>128</td>
<td>128</td>
<td>128</td>
</tr>
<tr>
<td>256</td>
<td>256</td>
<td>256</td>
</tr>
<tr>
<td>512</td>
<td>512</td>
<td>512</td>
</tr>
<tr>
<td>1024</td>
<td>1024</td>
<td>1024</td>
</tr>
<tr>
<td>2048</td>
<td>2048</td>
<td>2048</td>
</tr>
<tr>
<td>4096</td>
<td>4096</td>
<td>4096</td>
</tr>
<tr>
<td>8192</td>
<td>8192</td>
<td>8192</td>
</tr>
<tr>
<td>16384</td>
<td>16384</td>
<td>16384</td>
</tr>
<tr>
<td>32768</td>
<td>32768</td>
<td>32768</td>
</tr>
<tr>
<td>65536</td>
<td>65536</td>
<td>65536</td>
</tr>
<tr>
<td>131072</td>
<td>131072</td>
<td>131072</td>
</tr>
<tr>
<td>262144</td>
<td>262144</td>
<td>262144</td>
</tr>
</tbody>
</table>

![Graph of performance vs. number of cores]

Performance of CTF for dense computations
Performance of CTF for sparse computations

MP3 leveraging sparse-dense tensor contractions\(^a\)

Weak scaling of MP3 (m=40, n=160 on 24 cores)

Strong scaling of MP3 with m=40, n=160

All-pairs shortest-paths based on path doubling with sparsification\(^a\)

Weak scaling of APSP (n=2K on 24 cores)

Strong scaling of APSP with n=2K

\(^a\)S., Hoefler, Demmel, arXiv, 2015
Coupled cluster provides a systematically improvable approximation to the manybody time-independent Schrödinger equation $H\Psi = E\Psi$

- the Hamiltonian has one- and two- electron components $H = F + V$
- Hartree-Fock (SCF) computes mean-field Hamiltonian: F, V
- Coupled-cluster methods (CCSD, CCSDT, CCSDTQ) consider transitions of (doubles, triples, and quadruples) of electrons to unoccupied orbitals, encoded by tensors T_1, T_2, T_3, T_4
- they use an exponential ansatz for the wavefunction,

$$\Psi = e^{T_1+T_2+T_3+T_4}\phi$$

where ϕ is a fully-antisymmetric simple Slater determinant

- expanding Ψ as a Taylor series \rightarrow nonlinear equations in T, F, V
CCSD using CTF

Extracted from Aquarius (Devin Matthews' code, https://github.com/devinamatthews/aquarius)

\[
\begin{align*}
FMI["mi"] &= 0.5 \times \text{WMNEF["mnef"]} \times T2["efin"];
WMNIJ["mni"] &= 0.5 \times \text{WMNEF["mnef"]} \times T2["efij"];
FAE["ae"] &= -0.5 \times \text{WMNEF["mnef"]} \times T2["afmn"];
WAMEI["amei"] &= -0.5 \times \text{WMNEF["mnef"]} \times T2["aфин"];
\end{align*}
\]

\[
\begin{align*}
Z2["abij"] &= \text{WMNEF["ijab"]};
Z2["abij"] &= + \times \text{FAE["af"]} \times T2["fbij"];
Z2["abij"] &= - \times \text{FMI["ni"]} \times T2["abnj"];
Z2["abij"] &= + 0.5 \times \text{WABEF["abef"]} \times T2["efij"];
Z2["abij"] &= + 0.5 \times \text{WMNIJ["mni"]} \times T2["abmn"];
Z2["abij"] &= - \times \text{WAMEI["amei"]} \times T2["ebmj"];
\end{align*}
\]

CTF-based CCSD codes exist in Aquarius, QChem, VASP, and Psi4
Comparison with NWChem

NWChem is the most commonly-used distributed-memory quantum chemistry method suite

- provides CCSD and CCSDT
- derives equations via Tensor Contraction Engine (TCE)
- generates contractions as blocked loops leveraging Global Arrays

Strong scaling CCSD on Edison

![Graph showing strong scaling CCSD on Edison]

Strong scaling CCSDT on Edison

![Graph showing strong scaling CCSDT on Edison]
Coupled cluster on IBM BlueGene/Q and Cray XC30

CCSD up to 55 (50) water molecules with cc-pVDZ
CCSDT up to 10 water molecules with cc-pVDZ\(^a\)

Weak scaling on BlueGene/Q

Aquarius-CTF CCSD
Aquarius-CTF CCSDT

Gigaflops/node

#nodes

Weak scaling on Edison

Aquarius-CTF CCSD
Aquarius-CTF CCSDT

Gigaflops/node

#nodes
Summary of contributions

Novel results described in this talk:

- symmetry preserving algorithms
 - reduce number of multiplications in symmetric contractions by ω!
 - reduce cost of basic Hermitian matrix operations by 25%
 - reduce cost of some contractions in coupled cluster by 2X in CCSD (1.3X overall), 4X in CCSDT (2.1X overall), 9X in CCSDTQ

- communication and synchronization lower bounds
 - tradeoffs: synchronization vs computation or communication in TRSV, Cholesky, and stencils
 - rank-based lower bounds to analyze symmetric contractions

- communication avoiding dense matrix factorizations
 - new algorithms and implementations with up to $p^{1/6}$ less communication for LU, QR, symmetric eigenvalue problem
 - speed-ups of up to 2X for LU and QR over vendor-optimized libraries

- Cyclops Tensor Framework
 - first fully robust distributed-memory tensor contraction library
 - supports symmetry, sparsity, general algebraic structures
 - coupled cluster performance more than 10X faster than state-of-the-art, reaching 1 petaflop/s performance
Future work

- open theoretical problems
 - relation of symmetry preserving algorithms to displacement rank and bilinear algorithm complexity
 - exploiting symmetry across tensors (e.g. in tensor networks)
 - synchronization lower bounds for QR and SVD
 - tight communication lower bounds for sparse–dense multiply
 - communication-avoiding algorithms for tensor factorizations

- high performance implementations
 - nested symmetry preserving algorithms
 - communication-optimal QR, improvements to symmetric eigensolver
 - tensor factorizations as part of CTF
 - optimized evaluation and scheduling of tensor expressions
 - extensions to sparsity and algebraic structure support in CTF

- programming abstractions for applications
 - representations for factorized tensors (tensor networks)
 - block-sparsity and block-factorization of tensors
 - expansion of application-based feedback loop
Symmetry preserving algorithm vs Strassen’s algorithm

Strassen’s algorithm
Sym. preserving $\omega = 6$
Sym. preserving $\omega = 3$

$s = t = v = \omega / 3$

$n^{\omega}/(s!t!v!)$ / #multiplications (speed-up over classical direct evaluation alg.)

$n^s/s!$ (matrix dimension)
Nesting of bilinear algorithms

Given two bilinear algorithms:

$$\Lambda_1 = (F^{(A)}_1, F^{(B)}_1, F^{(C)}_1)$$
$$\Lambda_2 = (F^{(A)}_2, F^{(B)}_2, F^{(C)}_2)$$

We can nest them by computing their tensor product

$$\Lambda_1 \otimes \Lambda_2 := (F^{(A)}_1 \otimes F^{(A)}_2, F^{(B)}_1 \otimes F^{(B)}_2, F^{(C)}_1 \otimes F^{(C)}_2)$$

$$\text{rank}(\Lambda_1 \otimes \Lambda_2) = \text{rank}(\Lambda_1) \cdot \text{rank}(\Lambda_2)$$
For s-steps of a $(2m + 1)^d$-point stencil with block-size of $H^{1/d}/m$,

$$W_{Kr} = O\left(\frac{msn^d}{H^{1/d}p}\right) \quad S_{Kr} = O\left(sn^d/(pH)\right) \quad Q_{Kr} = O\left(\frac{msn^d}{H^{1/d}p}\right)$$

which are good when $H = \Theta(n^d/p)$, so the algorithm is useful when the cache size is a bit smaller than n^d/p.
LU factorization strong scaling on Stampede (MIC + Sandy Bridge)

- 2.5D hybrid LU $n=131,072$
- 2D hybrid LU $n=131,072$
- 2.5D pure-cpu LU $n=131,072$
- 2.5D hybrid LU $n=65,536$
- 2D hybrid LU $n=65,536$
- 2.5D pure-cpu LU $n=65,536$
LU factorization strong scaling on Mira (BG/Q), n=65,536

2D LU, custom mapping
2D LU, default mapping
Symmetric matrix representation

Symmetric matrix

Unique part of symmetric matrix
Blocked distributions of a symmetric matrix

Naive blocked layout

Block-cyclic layout
Cyclic distribution of a symmetric matrix

Cyclic layout ~ Improved blocked layout

- P1

P0

P1

P2

P3
Our CCSD factorization

Credit to John F. Stanton and Jurgen Gauss

\[\tau_{ij}^{ab} = t_{ij}^{ab} + \frac{1}{2} P_b^a P_j^i t_i^a t_j^b, \]

\[\tilde{F}_e^m = f_e^m + \sum_{fn} v_{ef}^{mn} t_n^f, \]

\[\tilde{F}_e^a = (1 - \delta_{ae}) f_e^a - \sum_m \tilde{F}_e^m t_m^a - \frac{1}{2} \sum_{mnf} v_{ef}^{mn} t_{mn}^f + \sum_{fn} v_{ef}^{an} t_n^f, \]

\[\tilde{F}_i^m = (1 - \delta_{mi}) f_i^m + \sum_e \tilde{F}_e^m t_i^e + \frac{1}{2} \sum_{nef} v_{ef}^{mn} t_{in}^f + \sum_{fn} v_{if}^{mn} t_n^f, \]
Our CCSD factorization

\[\tilde{W}_{ei}^{mn} = v_{ei}^{mn} + \sum_f v_{ef}^{mn} t_i^f, \]

\[\tilde{W}_{ij}^{mn} = v_{ij}^{mn} + P_j^i \sum_e v_{ie}^{mn} t_j^e + \frac{1}{2} \sum_{ef} v_{ef}^{mn} \tau_{ij}^{ef}, \]

\[\tilde{W}_{ie}^{am} = v_{ie}^{am} - \sum_n \tilde{W}_{ei}^{mn} t_n^a + \sum_f v_{ef}^{ma} t_i^f + \frac{1}{2} \sum_{nf} v_{ef}^{mn} t_{in}^{af}, \]

\[\tilde{W}_{ij}^{am} = v_{ij}^{am} + P_j^i \sum_e v_{ie}^{am} t_j^e + \frac{1}{2} \sum_{ef} v_{ef}^{am} \tau_{ij}^{ef}, \]

\[z_i^a = f_i^a - \sum_m \tilde{F}_i^m t_m^a + \sum_e f_e^a t_i^e + \sum_m v_{ie}^{ma} t_m^e + \sum_{em} v_{im}^{ae} \tilde{F}_e^m + \frac{1}{2} \sum_{efm} v_{ef}^{am} \tau_{im}^{ef}, \]

\[z_{ij}^{ab} = v_{ij}^{ab} + P_j^i \sum_e v_{ie}^{ab} t_j^e + P_b^a P_j^i \sum_m \tilde{W}_{ie}^{am} t_m^{eb} - P_b^a \sum_m \tilde{W}_{ij}^{am} t_m^{b} \]

\[+ P_b^a \sum_e \tilde{F}_e^a t_{ij}^{eb} - P_j^i \sum_m \tilde{F}_i^m t_{mj}^{ab} + \frac{1}{2} \sum_{ef} v_{ef}^{ab} \tau_{ij}^{ef} + \frac{1}{2} \sum_{mn} \tilde{W}_{ij}^{mn} \tau_{mn}^{ab}. \]
Stability of symmetry preserving algorithms

Relative error of $c = A^b$ with positive A and alternating b

- fast algorithm relative error
- standard algorithm relative error

Relative error of squaring a Householder transformation

- fast algorithm relative error
- standard algorithm relative error
Performance data for a CCSD iteration with 200 electrons and 1000 orbitals on 4096 nodes of Mira
4 processes per node, 16 threads per process
Total time: 18 mins
ν-orbitals, ω-electrons

<table>
<thead>
<tr>
<th>kernel</th>
<th>% of time</th>
<th>complexity</th>
<th>architectural bounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>DGEMM</td>
<td>45%</td>
<td>$O(\nu^4 \omega^2 / p)$</td>
<td>flops/mem bandwidth</td>
</tr>
<tr>
<td>broadcasts</td>
<td>20%</td>
<td>$O(\nu^4 \omega^2 / p \sqrt{M})$</td>
<td>multicast bandwidth</td>
</tr>
<tr>
<td>prefix sum</td>
<td>10%</td>
<td>$O(p)$</td>
<td>allreduce bandwidth</td>
</tr>
<tr>
<td>data packing</td>
<td>7%</td>
<td>$O(\nu^2 \omega^2 / p)$</td>
<td>integer ops</td>
</tr>
<tr>
<td>all-to-all-ν</td>
<td>7%</td>
<td>$O(\nu^2 \omega^2 / p)$</td>
<td>bisection bandwidth</td>
</tr>
<tr>
<td>tensor folding</td>
<td>4%</td>
<td>$O(\nu^2 \omega^2 / p)$</td>
<td>memory bandwidth</td>
</tr>
</tbody>
</table>
Tiskin’s path doubling algorithm

Tiskin gives a way to do path-doubling in $F = O(n^3/p)$ operations. We can partition each A^k by path size (number of edges)

$$A^k = I \oplus A^k(1) \oplus A^k(2) \oplus \ldots \oplus A^k(k)$$

where each $A^k(l)$ contains the shortest paths of up to $k \geq l$ edges, which have exactly l edges. We can see that

$$A^l(l) \leq A^{l+1}(l) \leq \ldots \leq A^n(l) = A^*(l),$$

in particular $A^*(l)$ corresponds to a sparse subset of $A^l(l)$. The algorithm works by picking $l \in [k/2, k]$ and computing

$$(I \oplus A)^{3k/2} \leq (I \oplus A^k(l)) \otimes A^k,$$

which finds all paths of size up to $3k/2$ by taking all paths of size exactly $l \geq k/2$ followed by all paths of size up to k.