A parallel library for multidimensional array computations with runtime tuning

Edgar Solomonik

Department of Computer Science
ETH Zurich

Charm++ Workshop, University of Illinois, Urbana-Champaign

April 19, 2016
At the crossroads of parallel libraries and languages

Parallel programming frameworks with multidimensional arrays

- HTA, Charm++ (MSA), Global Arrays, UPC, Titanium, HPF...
- flexible layouts, efficient data transformations and scheduling
- limited API, basic primitives
- rudimentary support for higher dimensional arrays (tensors)

Parallel libraries for matrix computations and numerical methods

- ScaLAPACK, Elemental, DPLASMA, PETSC, Trillinos, ...
- restrictive data distribution assumptions, variable performance
- broad API, powerful functionality
- no support for multidimensional matrices (higher order tensors)

Goal: efficient parallel library with a concise and yet general tensor API

Cyclops Tensor Framework

https://github.com/solomonik/ctf
Tensor contractions

For some $s, t, v \geq 0$, a tensor contraction of tensors A and B is

$$C_{\vec{i}\vec{j}} = \sum_{\vec{k}} A_{\vec{i}\vec{k}} \cdot B_{\vec{k}\vec{j}}, \quad \text{alternatively written}, \quad C_{\vec{i}\vec{j}} = \sum_{\vec{k}} A_{\vec{i}\vec{k}} \cdot B_{\vec{k}\vec{j}},$$

where $\vec{i} = \{i_1, \ldots, i_s\}$, $\vec{j} = \{j_1, \ldots, j_t\}$, and $\vec{k} = \{k_1, \ldots, k_v\}$.

Matrix/vector examples:
- $(s, t, v) = (0, 0, 1)$ vector inner product
- $(s, t, v) = (1, 0, 1)$ matrix-vector multiplication
- $(s, t, v) = (1, 1, 0)$ vector outer product
- $(s, t, v) = (1, 1, 1)$ matrix-matrix multiplication
- $(s, t, v) = (s, 1, 1)$ tensor-times-matrix
Applications of higher-order tensor contractions

Some applications of contractions of tensors of order at least three:

- tensor factorization algorithms, e.g. alternating least squares
- high-order numerical solvers for differential equations
- computer vision, graphics, image/video analysis
- deep learning convolutional neural networks
- density matrix renormalization group (DMRG)
- **electronic structure calculations**, e.g. coupled cluster
Coupled cluster methods

Coupled cluster provides a systematically improvable approximation to the manybody time-independent Schrödinger equation

- considers transitions of ‘doubles’, ‘triples’, or ‘quadruples’ of electrons to 2, 3, 4 unoccupied orbitals (CCSD, CCSDT, CCSDTQ)
- encodes their contribution to energy via order 4, 6, 8 tensor T
- iteratively solves for T, consistent with the mean field Hamiltonian with components F, V

$$0 = V_{ij}^{ab} + P_{b}^{a} \sum_{e} T_{ij}^{ae} F_{e}^{b} - \frac{1}{2} P_{j}^{i} \sum_{mnef} T_{im}^{ab} V_{ef}^{mn} T_{jn}^{ef} + \ldots$$

where $P_{y}^{x} f(x,y) := f(x,y) - f(y,x)$

- CCSD has 45 such multilinear terms, CCSDT 100s, CCSDTQ 1000s
Contraction in Coupled Cluster (CCSD method)

\[W_{ei}^{mn} = V_{ei}^{mn} + \sum_{f} V_{ef}^{mn} t_{i}^{f}, \]

\[X_{ij}^{mn} = V_{ij}^{mn} + P_{j}^{i} \sum_{e} V_{ie}^{mn} t_{j}^{e} + \frac{1}{2} \sum_{ef} V_{ef}^{mn} T_{ij}^{ef}, \]

\[U_{ie}^{am} = V_{ie}^{am} - \sum_{n} W_{ei}^{mn} t_{n}^{a} + \sum_{f} V_{ef}^{ma} t_{i}^{f} + \frac{1}{2} \sum_{nf} V_{ef}^{mn} T_{in}^{af}, \]

\[Q_{ij}^{am} = V_{ij}^{am} + P_{j}^{i} \sum_{e} V_{ie}^{am} t_{j}^{e} + \frac{1}{2} \sum_{ef} V_{ef}^{am} T_{ij}^{ef}, \]

\[Z_{i}^{a} = f_{i}^{a} - \sum_{m} F_{i}^{m} t_{m}^{a} + \sum_{e} f_{e}^{a} t_{i}^{e} + \sum_{em} V_{ei}^{ma} t_{m}^{e} + \sum_{em} V_{im}^{ae} F_{e}^{m} + \frac{1}{2} \sum_{efm} V_{ef}^{am} T_{im}^{ef}, \]

\[-\frac{1}{2} \sum_{emn} W_{ei}^{mn} T_{mn}^{ea}, \]

\[Z_{ij}^{ab} = V_{ij}^{ab} + P_{j}^{i} \sum_{e} V_{ie}^{ab} t_{j}^{e} + P_{b}^{a} P_{j}^{i} \sum_{me} U_{ie}^{am} T_{mj}^{eb} - P_{b}^{a} \sum_{m} Q_{ij}^{am} t_{m}^{b} \]

\[+ P_{b}^{a} \sum_{e} F_{e}^{a} T_{ij}^{eb} - P_{j}^{i} \sum_{m} F_{i}^{m} T_{mj}^{ab} + \frac{1}{2} \sum_{ef} V_{ef}^{ab} T_{ij}^{ef} + \frac{1}{2} \sum_{mn} X_{ij}^{mn} T_{mn}^{ab}, \]
A library for tensor computations

Cyclops Tensor Framework (MPI+OpenMP+CUDA)
- implicit for loops based on index notation (Einstein summation)
- matrix sums, multiplication, Hadamard product (tensor contractions)
- distributed symmetric-packed/sparse storage via cyclic layout
A library for tensor computations

Cyclops Tensor Framework (MPI+OpenMP+CUDA)
- implicit for loops based on index notation (Einstein summation)
- matrix sums, multiplication, Hadamard product (tensor contractions)
- distributed symmetric-packed/sparse storage via cyclic layout

Jacobi iteration (solves $Ax = b$ iteratively) example code snippet

```cpp
Vector<> Jacobi(Matrix<> A, Vector<> b, int n){

    // split A = R + diag(1./d)
    do {
        // parallel for i = 1 to n
        // parallel for j = 1 to n
        x["i"] = d["i"]*(b["i"]-R["ij"]*x["j"]);
        // parallel for i = 1 to n
        // parallel for j = 1 to n
        r["i"] = b["i"]-A["ij"]*x["j"]; // compute residual
    } while (r.norm2() > 1.E-6); // check for convergence

    return x;
}
```
A library for tensor computations

Cyclops Tensor Framework (MPI+OpenMP+CUDA)

- implicit for loops based on index notation (Einstein summation)
- matrix sums, multiplication, Hadamard product (tensor contractions)
- distributed symmetric-packed/sparse storage via cyclic layout

Jacobi iteration (solves $Ax = b$ iteratively) example code snippet

```cpp
Vector<> Jacobi(Matrix<> A, Vector<> b, int n) {
    Matrix<> R(A);
    R["ii"] = 0.0;
    Vector<> x(n), d(n), r(n);
    Function<> inv([[double & d]]{ return 1./d; });
    d["i"] = inv(A["ii"]); // set d to inverse of diagonal of A
    do {
        x["i"] = d["i"]*(b["i"] - R["ij"]*x["j"]);;
        r["i"] = b["i"] - A["ij"]*x["j"]; // compute residual
    } while (r.norm2() > 1.E-6); // check for convergence
    return x;
}
```
Coupled cluster using CTF

Extracted from Aquarius (Devin Matthews’ code, https://github.com/devinamatthews/aquarius)

\[
\begin{align*}
FMI["mi"] & \quad + = \ 0.5 \times WMNEF["mnef"] \times T2["efin"]; \\
WMNIJ["mnij"] & \quad + = \ 0.5 \times WMNEF["mnef"] \times T2["efij"]; \\
FAE["ae"] & \quad - = \ 0.5 \times WMNEF["mnef"] \times T2["afmn"]; \\
WAMEI["amei"] & \quad - = \ 0.5 \times WMNEF["mnef"] \times T2["afin"]; \\
\end{align*}
\]

\[
\begin{align*}
Z2["abij"] & = \ WMNEF["ijab"]; \\
Z2["abij"] & + = \ FAE["af"] \times T2["fbij"]; \\
Z2["abij"] & - = \ FMI["ni"] \times T2["abnj"]; \\
Z2["abij"] & + = \ 0.5 \times WABEF["abef"] \times T2["efij"]; \\
Z2["abij"] & + = \ 0.5 \times WMNIJ["mnij"] \times T2["abmn"]; \\
Z2["abij"] & - = \ WAMEI["amei"] \times T2["ebmj"]; \\
\end{align*}
\]

CTF is used within **Aquarius, QChem, VASP, and Psi4**
Access and write tensor data

CTF abstracts that data distribution from the user
- Access arbitrary sparse subsets of the tensor by global index (coordinate format)
 - T.write(int * indices, double * data) (can also accumulate)
 - T.read(int * indices, double * data) (can also accumulate)
- Matlab submatrix notation: \(A[j : k, l : m] \)
 - T.slice(int * offsets, int * ends) returns the subtensor
 - T.slice(int corner_off, int corner_end) does the same
 - can also sum subtensors
 - different subworlds can read different subtensors simultaneously
- Extract a subtensor of any permutation of the tensor
 - given mappings \(P, Q \), does \(B[i, j] = A[P[i], Q[j]] \) via permute()
 - \(P \) and \(Q \) may access only subsets of \(A \) (if \(B \) is smaller)
 - \(B \) may be defined on subworlds on the world on which \(A \) is defined and each subworld may specify different \(P \) and \(Q \)
Symmetric matrix representation

Symmetric matrix

Unique part of symmetric matrix
Blocked distributions of a symmetric matrix

Naive blocked layout

Block-cyclic layout
Cyclic distribution of a symmetric matrix

Cyclic layout ~ Improved blocked layout

Cyclops Tensor Framework
https://github.com/solomonik/ctf
3D tensor mapping

![Diagram of 3D tensor mapping with nodes and connections](https://github.com/solomonik/ctf)
Tensor decomposition and mapping

CTF tensor decomposition

- cyclic layout used to preserve packed symmetric structure
- overdecomposition (virtualization) employed to decouple the decomposition from the physical processor grid

CTF mapping logic

- arrange physical topology into all possible processor grids
 - assumes a torus topology
 - by default, factorize number of processors to produce torus
- dynamically (in parallel) autotune over all topologies and mappings
 - topologies: all foldings of physical (default) topology
 - mappings: assignments of tensor modes (indices) to torus modes
- select best mapping based on model-based performance prediction
 - performance models for communication, memory-bandwidth, synchronization, and work for contractions and redistributions
 - for sparse tensors, estimate load imbalance

Cyclops Tensor Framework
https://github.com/solomonik/ctf
Algorithms for tensor redistribution

The following three redistribution kernels are provided by CTF

- **Sparse (key-value) redistribution**
 - requires all-to-all-v communication and local binning/sorting
 - well-fit for user-level data entry and sparse tensors

- **Dense mapping-to-mapping (no-explicit-key) redistribution**
 - send/recv counts precomputed analytically via (complicated) recurrence
 - subset of messages packed from data at a time
 - optimized via template-instantiated nested loops, threading

- **Block-to-block redistribution**
 - reassignment of block (virtual) decomposition to processors
 - processors send blocks via point-to-point messages
Benefit of topology aware mapping

CTF can leverage rectangular collectives on BG/Q

The QBall (QBox) density functional theory (DFT) code has leveraged CTF just to accelerate matrix multiplication
Comparison with NWChem

NWChem is the most commonly-used distributed-memory quantum chemistry method suite

- provides Coupled Cluster methods: CCSD and CCSDT
- derives equations via Tensor Contraction Engine (TCE)
- generates contractions as blocked loops leveraging Global Arrays

![Strong scaling CCSD on Edison](image1.png)

Strong scaling CCSDT on Edison

![Strong scaling CCSDT on Edison](image2.png)

Cyclops Tensor Framework https://github.com/solomonik/ctf
Coupled cluster on IBM BlueGene/Q and Cray XC30

CCSD up to 55 (50) water molecules with cc-pVDZ
CCSDT up to 10 water molecules with cc-pVDZ

Weak scaling on BlueGene/Q

Weak scaling on Edison

Cyclops Tensor Framework

https://github.com/solomonik/ctf
Performance breakdown on BG/Q

Performance data for a CCSD iteration with 200 electrons and 1000 orbitals on 4096 nodes of Mira
4 processes per node, 16 threads per process
Total time: 18 mins

\(n_v \)-orbitals, \(n_o \)-electrons, \(p \)-processors, \(M \)-local memory size

<table>
<thead>
<tr>
<th>kernel</th>
<th>% of time</th>
<th>complexity</th>
<th>architectural bounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>dgemm</td>
<td>45%</td>
<td>(O(n_v^4 n_o^2 / p))</td>
<td>flops/mem bandwidth</td>
</tr>
<tr>
<td>broadcasts</td>
<td>20%</td>
<td>(O(n_v^4 n_o^2 / p \sqrt{M}))</td>
<td>multicast bandwidth</td>
</tr>
<tr>
<td>prefix sum</td>
<td>10%</td>
<td>(O(p))</td>
<td>allreduce bandwidth</td>
</tr>
<tr>
<td>data packing</td>
<td>7%</td>
<td>(O(n_v^2 n_o^2 / p))</td>
<td>integer ops</td>
</tr>
<tr>
<td>all-to-all-v</td>
<td>7%</td>
<td>(O(n_v^2 n_o^2 / p))</td>
<td>bisection bandwidth</td>
</tr>
<tr>
<td>tensor folding</td>
<td>4%</td>
<td>(O(n_v^2 n_o^2 / p))</td>
<td>memory bandwidth</td>
</tr>
</tbody>
</table>

Cyclops Tensor Framework https://github.com/solomonik/ctf
CTF allows a tensor elements to have a user-defined algebraic structure:

<table>
<thead>
<tr>
<th>algebraic str.</th>
<th>add.</th>
<th>add. id.</th>
<th>add. inv.</th>
<th>mul.</th>
<th>mul. id.</th>
</tr>
</thead>
<tbody>
<tr>
<td>set</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>monoid</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>group</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>semiring</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ring</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

For each summation or contraction, the user may define custom functions, so we also have

semigroup = set + function
rng = group + function

user-defined types must be static-sized (migratable)
Algebraic Structure Interface

Tropical algebraic semiring

\[c \oplus a \otimes b := \min(c, a + b) \]

Interface via C++11 Lambdas:

```
Semiring<int> ts(INT_MAX/2, //additive identity
    [](int a, int b){ return min(a,b); }, //add
    MPI_MIN, //add MPI op
    0, //multiplicative identity
    [](int a, int b){ return a+b; }); //mul
```

Adjacency matrix for \(n \)-node undirected graph with integer weights:

```
Matrix<int> A(n,n,SP|SH,ts);
```

SP – sparse, SH – symmetric-hollow (zero diagonal)
Bellman–Ford Algorithm using CTF

CTF code for n node single-source shortest-paths (SSSP) calculation:

```cpp
World w(MPI_COMM_WORLD);
Semiring<int> s(INT_MAX/2,
    [](int a, int b){ return min(a,b); },
    MPI_MIN,
    0,
    [](int a, int b){ return a+b; });

Matrix<int> A(n,n,SP,w,s); // Adjacency matrix
Vector<int> v(n,w,s); // Distances from starting vertex

... // Initialize A and v

//Bellman–Ford SSSP algorithm
for (int t=0; t<n; t++){
    v["i"] += v["j"]*A["ji"];
}
```
Betweenness centrality code snippet, for k of n nodes

```cpp
void btwn_central(Matrix<int> A, Matrix<path> P, int n, int k) {
    Monoid<path> mon(...,
        [](path a, path b) {
            if (a.w < b.w) return a;
            else if (b.w < a.w) return b;
            else return path(a.w, a.m+b.m);
        }, ...);

    Matrix<path> Q(n, k, mon); // shortest path matrix
    Q["ij"] = P["ij"];

    Function<int,path> append([(int w, path p) {
        return path(w+p.w, p.m);
    }];

    for (int i=0; i<n; i++)
        Q["ij"] = append(A["ik"], Q["kj"]) ;
    ...
}
```

Cyclops Tensor Framework https://github.com/solomonik/ctf
Performance of CTF for sparse computations

multiplication of a sparse matrix and a dense matrix

all-pairs shortest-paths based on path doubling with sparsification
Conclusion

Summary of CTF:
- distributed-memory tensor library leveraging MPI, OpenMP, and CUDA
- support for symmetric and sparse tensors
- similarities to Charm++ multidimensional chare arrays
 - overdecomposition (virtualization)
 - topology-aware mapping of tasks(blocks)
 - application-driven development
- differences from Charm++
 - ‘static’ schedule selected at runtime vs dynamic load balancing
 - migration between regular distributions rather than greedy/refined
 - redistributions done processor-to-processor

Future work:
- generation of fast local ‘dgemm’ kernels for user-defined functions
- handling of contractions of two sparse tensors and sparse output
- multi-contraction scheduling, convolutions, tensor factorizations, ...
Backup slides
Matrix multiplication factorization strong scaling on Mira (BG/Q), n=65,536

- 2D MM, custom mapping
- 2D MM, default mapping

Cyclops Tensor Framework
https://github.com/solomonik/ctf
Algebraic shortest path computations

All-pairs shortest-paths (APSP):

- distance matrix is the closure of A,

$$A^* = I \oplus A \oplus A^2 \oplus \ldots A^n$$

- Floyd–Warshall = Gauss–Jordan elimination \(\approx\) Gaussian elimination
 - $O(n^3)$ cost, but contains length $n \log n$ dependency path

- path doubling: $\log n$ steps, $O(n^3 \log n)$ cost:

$$B = I \oplus A, \quad B^{2^k} = B^k \otimes B^k, \quad B^n = A^*$$

- sparse path doubling1:
 - let C be subset of B^k corresponding to paths containing exactly k edges,

$$B^{2^k} = B^k \oplus (C \otimes B^k)$$

- $O(n^3)$ cost, dependency paths length $O(\log^2 n)$

1 Tiskin, Springer LNCS, 2001
Coupled cluster methods

Coupled cluster provides a systematically improvable approximation to the many-body time-independent Schrödinger equation $H |\Psi\rangle = E |\Psi\rangle$

- the Hamiltonian has one- and two- electron components $H = F + V$
- Hartree-Fock (SCF) computes mean-field Hamiltonian: F, V
- Coupled-cluster methods (CCSD, CCSDT, CCSDTQ) consider transitions of (doubles, triples, and quadruples) of electrons to unoccupied orbitals, encoded by tensor operator, $T = T_1 + T_2 + T_3 + T_4$
- they use an exponential ansatz for the wavefunction, $\Psi = e^{T\phi}$ where ϕ is a Slater determinant
- expanding $0 = \langle \phi' | H |\Psi\rangle$ yields nonlinear equations for $\{T_i\}$ in F, V

$$0 = V_{ij}^{ab} + P(a, b) \sum_e T_{ij}^{ae} F_{e}^{b} - \frac{1}{2} P(i, j) \sum_{mnef} T_{im}^{ab} V_{ef}^{mn} T_{jn}^{ef} + \ldots$$

where P is an antisymmetrization operator