Algorithms as Multilinear Tensor Equations

Edgar Solomonik

Department of Computer Science
ETH Zurich

California Institute of Technology

February 29, 2016
What commonalities exist in simulation and data analysis applications?

- multidimensional datasets (observations, discretizations)
- higher-order relations: equations, maps, graphs, hypergraphs
- **sparsity** and **symmetry** in structure of relations
- relations lead to solution directly or as an iterative criterion
- algebraic descriptions of datasets and relations
What abstractions are needed in high performance computing?

- data abstractions reflecting native dimensionality and structure
- functions orchestrating \textit{communication} and \textit{synchronization}
- provably efficient building-block algorithms
Matrix computations \(\subseteq \) tensor computations

Tensors are convenient abstractions for multidimensional data
- one type of object for any homogeneous dataset
- enable expression of symmetries
- reveal sparsity structure of relations in multidimensional space

Tensor computations naturally extend numerical linear algebra
- = often reduce to or employ matrix algorithms
 - can leverage high performance matrix libraries
- + high-order tensors can ‘act’ as many matrix unfoldings
- + symmetries lower memory footprint and cost
- + tensor factorizations (CP, Tucker, tensor train, ...)

Edgar Solomonik
Algorithms as Multilinear Tensor Equations 4/32
Applications of high-order tensor representations

- Numerical solution to differential equations
 - higher-order Taylor series expansion terms
 - nonlinear terms and differential operators

- Computer vision and graphics
 - 2D image \otimes angle \otimes time
 - compression (tensor factorizations, sparsity)

- Machine learning
 - sparse multi-feature discrete datasets
 - reduced-order models (tensor factorizations)

- Graph computations
 - hypergraphs, time-dependent graphs
 - clustering/partitioning/path-finding (eigenvector computations)

- Divide-and-conquer algorithms representable by tensor folding
 - bitonic sort, FFT, scans
Applications to quantum systems

Manybody Schrödinger equation
- “curse of dimensionality” — exponential state space

Condensed matter physics
- tensor network models (e.g. DMRG), tensor per lattice site
- highly symmetric multilinear tensor representation
- exponential state space localized → factorized tensor form

Quantum chemistry (*electronic structure calculations*)
- models of molecular structure and chemical reactions
- methods for calculating electronic correlation:
 - “Post Hartree-Fock”: configuration interaction, coupled cluster, Møller-Plesset perturbation theory
- multi-electron states as tensors,
 e.g. electron \(\otimes \) electron \(\otimes \) orbital \(\otimes \) orbital
- nonlinear equations of partially (anti)symmetric tensors
- interactions diminish with distance → sparsity, low rank
Outline and highlights

1. Symmetry-preserving tensor algorithms
 - contraction of order $2s$ symmetric tensors in $\frac{(3s)!}{(s!)^3}$ fewer multiplies
 - up to 9X speed-up for partially-symmetric contractions in coupled cluster

2. Communication-avoiding parallel algorithms
 - novel tradeoffs: synchronization vs communication in Cholesky and stencils
 - algorithms with $p^{1/6}$ less communication on p processors for LU, QR, eigs
 - topology-aware implementations: 12X speed-up for MM, 2X for LU

3. Cyclops Tensor Framework (CTF)
 - first distributed-memory tensor framework supporting arbitrary contractions
 - symmetry, sparsity, multitype functions, redistributions, high-level language

4. Applications to electronic structure calculations
 - codes using CTF for wavefunction methods: Aquarius, QChem, VASP, Psi4
 - coupled cluster faster than NWChem by $>10X$, nearly 1 petaflop/s
Exploiting symmetry in tensors

Tensor symmetry (e.g. $A_{ij} = A_{ji}$) reduces memory and cost

- for order d tensor, $d!$ less memory
- dot product $\sum_{i,j} A_{ij} B_{ij} = 2 \sum_{i<j} A_{ij} B_{ij} + \sum_i A_{ii} B_{ii}$
- matrix-vector multiplication1
 \[c_i = \sum_j A_{ij} b_j = \sum_j A_{ij} (b_i + b_j) - \left(\sum_j A_{ij} \right) b_i \]

- rank-2 vector outer product1
 \[C_{ij} = a_i b_j + a_j b_i = (a_i + a_j)(b_i + b_j) - a_i b_i - a_j b_j \]

- squaring a symmetric matrix (or $AB + BA$)1
 \[C_{ij} = \sum_k A_{ik} A_{kj} = \sum_k (A_{ik} + A_{kj} + A_{ij})^2 - \ldots \]

- for order ω contraction, $\omega!$ fewer multiplies1

\footnote{S., Demmel; Technical Report, ETH Zurich, 2015.}
By exploiting symmetry, reduce multiplies (but increase adds)\(^2\)

- partially symmetric contractions
 - symmetry preserving algorithm can be nested over each index group
 - reduction in multiplies \rightarrow reduction in cost, e.g. for $A_{ij}^{km} = A_{ji}^{km}$

\[
c_i^{kl} = \sum_{j,m} A_{ij}^{km} b_j^{ml} = \sum_j \left(\sum_m A_{ij}^{km} (b_i^{ml} + b_j^{ml}) \right) - \sum_m \left(\sum_j A_{ij}^{km} \right) b_i^{ml}
\]

- cost reductions in coupled cluster:
 2X-9X for select contractions, 1.3X-2.1X for methods

- algorithms generalize to most antisymmetric tensor contractions
- for Hermitian tensors, multiplies cost 3X more than adds
 - Hermitian matrix multiplication and tridiagonal reduction (BLAS and LAPACK routines) with 25% fewer ops
- \((2/3)n^3\) bilinear rank for squaring a nonsymmetric matrix
- decompose symmetric contractions into smaller symmetric contractions

\(^2\)S., Demmel; Technical Report, ETH Zurich, 2015.
Beyond computation cost

Algorithms should minimize communication, not just computation

- data movement and synchronization cost more energy than flops
- two types of data movement:
 - vertical (intranode memory–cache)
 - horizontal (internode network transfers)
- parallel algorithm design involves tradeoffs: computation vs communication vs synchronization
- lower bounds and parameterized algorithms provide optimal solutions within a well-defined tuning space
Cost model for parallel algorithms

Given a schedule of work and communication tasks on p processors, consider the following costs, accumulated along chains of tasks (as in $\alpha - \beta$, BSP, and LogGP models),

- F – computation cost
- Q – vertical communication cost
- W – horizontal communication cost
- S – synchronization cost
Communication lower bounds: previous work

Multiplication of $n \times n$ matrices

- horizontal communication lower bound3
 \[
 W_{\text{MM}} = \Omega \left(\frac{n^2}{p^{2/3}} \right)
 \]

- memory-dependent horizontal communication lower bound4
 \[
 W_{\text{MM}} = \Omega \left(\frac{n^3}{p \sqrt{M}} \right)
 \]

 with $M = cn^2 / p$ memory, hope to obtain communication cost
 \[
 W = O \left(\frac{n^2}{\sqrt{cp}} \right)
 \]

- libraries like ScaLAPACK, Elemental optimal only for $c = 1$

3 Aggarwal, Chandra, Snir, TCS, 1990
4 Irony, Toledo, Tiskin, JPDC, 2004
Communication-efficient matrix multiplication

Communication-avoiding algorithms for matrix multiplication have been studied extensively\(^5\)

They continue to be attractive on modern architectures\(^6\)

12X speed-up, 95% reduction in comm. for \(n = 8\text{K}\) on 16K nodes of BG/P

\(^5\) Berntsen, Par. Comp., 1989; Agarwal, Chandra, Snir, TCS, 1990; Agarwal, Balle, Gustavson, Joshi, Palkar, IBM, 1995; McColl, Tiskin, Algorithmica, 1999; ...

\(^6\) S., Bhatlele, Demmel, SC, 2011
Unlike matrix multiplication, many algorithms in numerical linear algebra have polynomial depth (contain a long dependency path).

- matrix multiplication synchronization cost bound\(^7\)

\[
S_{\text{MM}} = \Theta \left(\frac{n^3}{pM^{3/2}} \right)
\]

- algorithms for Cholesky, LU, QR, SVD do not attain this bound

- low granularity computation increases synchronization cost

\(^7\) Ballard, Demmel, Holtz, Schwartz, SIAM JMAA, 2011
Tradeoffs in the diamond DAG

Computation vs synchronization tradeoff for the $n \times n$ diamond DAG,

$$F \cdot S = \Omega(n^2)$$

We generalize this idea9

- additionally consider horizontal communication
- allow arbitrary (polynomial or exponential) interval expansion

8 Papadimitriou, Ullman, SIAM JC, 1987
9 S., Carson, Knight, Demmel, SPAA 2014 (extended version, JPDC 2016)
Tradeoffs involving synchronization

We apply tradeoff lower bounds to dense linear algebra algorithms, represented via dependency hypergraphs:\(^a\)

For triangular solve with an \(n \times n\) matrix,

\[
F_{\text{TRSV}} \cdot S_{\text{TRSV}} = \Omega (n^2)
\]

For Cholesky of an \(n \times n\) matrix,

\[
F_{\text{CHOL}} \cdot S_{\text{CHOL}}^2 = \Omega (n^3) \quad W_{\text{CHOL}} \cdot S_{\text{CHOL}} = \Omega (n^2)
\]

Proof employs classical Loomis-Whitney inequality:

for any \(R \subseteq \mathbb{N} \times \mathbb{N} \times \mathbb{N}\), three projections of \(R\) onto \(\mathbb{N} \times \mathbb{N}\) have total size at least \(|R|^{2/3}\)

\(^{a}\) S., Carson, Knight, Demmel, SPAA 2014 (extended version, JPDC 2016)
For any $c \in [1, p^{1/3}]$, use cn^2/p memory per processor and obtain

$$W_{LU} = O\left(\frac{n^2}{\sqrt{cp}}\right), \quad S_{LU} = O\left(\sqrt{cp}\right)$$

- LU with pairwise pivoting\(^{10}\) extended to tournament pivoting\(^{11}\)
- first implementation of a communication-optimal LU algorithm\(^{11}\)

\(^{10}\) Tiskin, FGCS, 2007
\(^{11}\) S., Demmel, Euro-Par, 2011
Communication-efficient QR factorization

- $W_{QR} = O(n^2/\sqrt{cp})$, $S_{QR} = O(\sqrt{cp})$ using Givens rotations\(^{12}\)
- Householder form can be reconstructed quickly from TSQR\(^{13}\)

\[
Q = I - YTY^T \rightarrow LU(I - Q) \rightarrow (Y, TY^T)
\]

- enables communication-optimal Householder QR\(^{14}\)
- Householder aggregation yields performance improvements

\(^{12}\) Tiskin, FGCS, 2007
\(^{13}\) Ballard, Demmel, Grigori, Jacquelin, Nguyen, S., IPDPS, 2014
\(^{14}\) S., UCB, 2014
Communication-efficient eigenvalue computation

For the dense symmetric matrix eigenvalue problem

\[W_{SE} = O\left(\frac{n^2}{\sqrt{cp}}\right), \quad S_{QR} = O\left(\sqrt{cp} \log^2 p\right) \]

- above costs obtained by left-looking algorithm with Householder aggregation, however, with increased vertical communication
- successive band reduction minimizes both communication costs

\(^a\)S., UCB, 2014. S., Hoefler, Demmel, in preparation
Synchronization tradeoffs in stencils

Our lower bound analysis extends to sparse iterative methods:\(^1^5\)

For computing \(s\) applications of a \((2m + 1)^d\)-point stencil

\[
F_{St} \cdot S_{St}^d = \Omega \left(m^{2d} \cdot s^{d+1} \right) \\
W_{St} \cdot S_{St}^{d-1} = \Omega \left(m^d \cdot s^d \right)
\]

- proof requires generalization of Loomis-Whitney inequality to order \(d\) set and order \(d-1\) projections
- time-blocking lowers synchronization and vertical communication costs, but raises horizontal communication
- we suggest alternative approach that minimizes vertical and horizontal communication, but not synchronization

\(^{1^5}\) S., Carson, Knight, Demmel, SPAA 2014 (extended version, JPDC 2016)
Beyond the Loomis-Whitney inequalities

Loomis-Whitney inequalities are not sufficient for all computations

- symmetry preserving tensor contraction algorithms have arbitrary order projections from order \(d \) set
- bilinear algorithms\(^{16}\) provide a more general framework
- a bilinear algorithm is defined by matrices \(F^A, F^B, F^C \),

\[
c = F^C \left[\left(F^A \right)^T a \circ \left(F^B \right)^T b \right]
\]

where \(\circ \) is the Hadamard (pointwise) product

\[
\begin{bmatrix}
\vdots \\
& \times \times \times \times \\
\end{bmatrix}
\begin{bmatrix}
\vdots \\
\times \times \times \times \\
\end{bmatrix}
\begin{bmatrix}
\vdots \\
a \circ \circ \\
\circ \circ \circ \\
\circ \circ \circ \\
\circ \circ \circ \\
\end{bmatrix}
\begin{bmatrix}
\vdots \\
b \circ \circ \\
\circ \circ \circ \\
\circ \circ \circ \\
\circ \circ \circ \\
\end{bmatrix}
\]

- communication lower bounds derived based on matrix rank\(^{17}\)

\(^{16}\) Pan, Springer, 1984

\(^{17}\) S., Hoefler, Demmel, in preparation
Communication cost of symmetry preserving algorithms

For contraction of order $s + v$ tensor with order $v + t$ tensor18

- symmetry preserving algorithm requires $\frac{(s+v+t)!}{s!v!t!}$ fewer multiplies
- matrix-vector-like algorithms ($\min(s, v, t) = 0$)
 - vertical communication dominated by largest tensor
 - horizontal communication asymptotically greater if only unique elements are stored and $s \neq v \neq t$
- matrix-matrix-like algorithms ($\min(s, v, t) > 0$)
 - vertical and horizontal communication costs asymptotically greater for symmetry preserving algorithm when $s \neq v \neq t$

18 S., Hoefler, Demmel; Technical Report, ETH Zurich, 2015.
Cyclops Tensor Framework19

- contraction/summation/functions of tensors
- distributed symmetric-packed/sparse storage via cyclic layout
- parallelization via MPI+OpenMP(+CUDA)

Tensor algebra as a programming abstraction

Cyclops Tensor Framework
- contraction/summation/functions of tensors
- distributed symmetric-packed/sparse storage via cyclic layout
- parallelization via MPI+OpenMP(+CUDA)

Jacobi iteration (solves $Ax = b$ iteratively) example code snippet

```cpp
Vector<> Jacobi(Matrix<> A, Vector<> b, int n){
    ... // split $A = R + \text{diag}(1./d)$
    do {
        x["i"] = d["i"]*(b["i"]-R["ij"]*x["j"]) - R["ij"]*x["j"];
        r["i"] = b["i"]-A["ij"]*x["j"]; // compute residual
    } while (r.norm2() > 1.E-6); // check for convergence
    return x;
}
```
Tensor algebra as a programming abstraction

Cyclops Tensor Framework

- contraction/summation/functions of tensors
- distributed symmetric-packed/sparse storage via cyclic layout
- parallelization via MPI+OpenMP(+CUDA)

Jacobi iteration (solves $Ax = b$ iteratively) example code snippet

```cpp
Vector<> Jacobi(Matrix<> A, Vector<> b, int n){
    Matrix<> R(A);
    R["ii"] = 0.0;
    Vector<> x(n), d(n), r(n);
    Function<> inv([](double & d){ return 1./d; });
    d["i"] = inv(A["ii"]); // set d to inverse of diagonal of A
    do {
        x["i"] = d["i"]*(b["i"]-R["ij"]*x["j"]);
        r["i"] = b["i"]-A["ij"]*x["j"]; // compute residual
    } while (r.norm2() > 1.E-6); // check for convergence
    return x;
}
```
Cyclops Tensor Framework

- contraction/summation/functions of tensors
- distributed symmetric-packed/sparse storage via cyclic layout
- parallelization via MPI+OpenMP(+CUDA)

Møller-Plesset perturbation theory (MP3) code snippet

```python
Z["abij"] += Fab["af"]*T["fbij"];  
Z["abij"] -= Fij["ni"]*T["abnj"];  
Z["abij"] += 0.5*Vabcd["abef"]*T["efij"];  
Z["abij"] += 0.5*Vijkl["mnij"]*T["abmn"];  
Z["abij"] -= Vaibj["amei"]*T["ebmj"];  
```
Betweenness centrality code snippet, for \(k \) of \(n \) nodes

```c
void btwn_central(Matrix<int> A, Matrix<path> P, int n, int k){
    Monoid<path> mon(...,
        [](path a, path b){
            if (a.w<b.w) return a;
            else if (b.w<a.w) return b;
            else return path(a.w, a.m+b.m);
        }, ...);

    Matrix<path> Q(n,k,mon); // shortest path matrix
    Q["ij"] = P["ij"];

    Function<int,path> append([](int w, path p){
        return path(w+p.w, p.m);
    });

    for (int i=0; i<n; i++)
        Q["ij"] = append(A["ik"],Q["kj"]);
...}
```
Performance of CTF for dense computations

CTF is highly tuned for massively-parallel machines
- virtualized multidimensional processor grids
- topology-aware mapping and collective communication
- performance-model-driven decomposition done at runtime
- optimized redistribution kernels for tensor transposition

![Diagram of CTF architecture]

![Graph of BG/Q matrix multiplication performance]
Performance of CTF for sparse computations

MP3 leveraging sparse-dense tensor contractionsa

Weak scaling of MP3 (m=40, n=160 on 24 cores)

Strong scaling of MP3 with m=40, n=160

All-pairs shortest-paths based on path doubling with sparsificationa

Weak scaling of APSP (n=2K on 24 cores)

Strong scaling of APSP with n=2K

aS., Hoefler, Demmel, arXiv, 2015
Coupled cluster methods

Coupled cluster provides a systematically improvable approximation to the manybody time-independent Schrödinger equation $H|\Psi\rangle = E|\Psi\rangle$

- the Hamiltonian has one- and two- electron components $H = F + V$
- Hartree-Fock (SCF) computes mean-field Hamiltonian: F, V
- Coupled-cluster methods (CCSD, CCSDT, CCSDTQ) consider transitions of (doubles, triples, and quadruples) of electrons to unoccupied orbitals, encoded by tensor operator $T = T_1 + T_2 + T_3 + T_4$
- they use an exponential ansatz for the wavefunction, $\Psi = e^T\phi$ where ϕ is a Slater determinant
- expanding $0 = \langle \phi' | H | \Psi \rangle$ yields nonlinear equations for \{ T_i \} in F, V

$$0 = V_{ij}^{ab} + \mathcal{P}(a, b) \sum_e T_{ij}^{ae} F_{e}^{b} - \frac{1}{2} \mathcal{P}(i, j) \sum_{mnef} T_{im}^{ab} V_{ef}^{mn} T_{jn}^{ef} + \ldots$$

where \mathcal{P} is an antisymmetrization operator
CCSD using CTF

Extracted from Aquarius (Devin Matthews' code, https://github.com/devinamatthews/aquarius)

FMI["mi"] += 0.5*WMNEF["mnef"]*T2["efin"];
WMNIJ["mni"] += 0.5*WMNEF["mnef"]*T2["efij"];
FAE["ae"] -= 0.5*WMNEF["mnef"]*T2["afmn"];
WAMEI["amei"] -= 0.5*WMNEF["mnef"]*T2["afin"];
Z2["abij"] = WMNEF["ijab"];
Z2["abij"] += FAE["af"]*T2["fbij"];
Z2["abij"] -= FMI["ni"]*T2["abnj"];
Z2["abij"] += 0.5*WABEF["abef"]*T2["efij"];
Z2["abij"] += 0.5*WMNIJ["mni"]*T2["abmn"];
Z2["abij"] -= WAMEI["amei"]*T2["ebmj"];

CTF-based CCSD codes exist in Aquarius, QChem, VASP, and Psi4
Comparison with NWChem

NWChem is the most commonly-used distributed-memory quantum chemistry method suite

- provides CCSD and CCSDT
- derives equations via Tensor Contraction Engine (TCE)
- generates contractions as blocked loops leveraging Global Arrays

Strong scaling CCSD on Edison

Strong scaling CCSDT on Edison
CCSD up to 55 (50) water molecules with cc-pVDZ
CCSDT up to 10 water molecules with cc-pVDZ

Weak scaling on BlueGene/Q
Aquarius-CTF CCSD
Aquarius-CTF CCSDT

Weak scaling on Edison
Aquarius-CTF CCSD
Aquarius-CTF CCSDT
Summary of contributions

Novel results described in this talk:

- symmetry preserving algorithms
 - reduce number of multiplications in symmetric contractions by ω!
 - reduce cost of basic Hermitian matrix operations by 25%
 - reduce cost of some contractions in coupled cluster by 2X in CCSD (1.3X overall), 4X in CCSDT (2.1X overall), 9X in CCSDTQ

- communication and synchronization lower bounds
 - tradeoffs: synchronization vs computation or communication in TRSV, Cholesky, and stencils
 - rank-based lower bounds to analyze symmetric contractions

- communication avoiding dense matrix factorizations
 - new algorithms and implementations with up to $p^{1/6}$ less communication for LU, QR, symmetric eigenvalue problem
 - speed-ups of up to 2X for LU and QR over vendor-optimized libraries

- Cyclops Tensor Framework
 - first fully robust distributed-memory tensor contraction library
 - supports symmetry, sparsity, general algebraic structures
 - coupled cluster performance more than 10X faster than state-of-the-art, reaching 1 petaflop/s performance
Impact and future work

- symmetry in tensor computations
 - cost improvements \rightarrow fast library implementations \rightarrow application speed-ups
 - study symmetries in tensor equations and factorizations
 - consider other symmetries and relation to fast matrix multiplication

- communication-avoiding algorithms
 - existing fast implementations already used by applications (e.g. QBox)
 - find efficient methods of searching larger tuning spaces
 - algorithms for computing eigenvectors, SVD, tensor factorizations
 - study communication-efficiency of randomized algorithms

- Cyclops Tensor Framework
 - already widely-adapted in quantum chemistry, many requests for features
 - study algorithms for tensor expressions \rightarrow factorization, scheduling, ...
 - engage new application domains (via sparsity and algebraic structures)
 - tensor networks for condensed matter-physics, particle methods
 - graph algorithms, discrete data analysis
 - graphics, computer vision, machine learning
Symmetry preserving algorithm vs Strassen’s algorithm

Strassen’s algorithm
Sym. preserving $\omega = 6$
Sym. preserving $\omega = 3$

(speed-up over classical direct evaluation alg.)

$\left[\frac{\omega}{s!t!v!} \right] / \#\text{multiplications}\n$
Given two bilinear algorithms:

\[\Lambda_1 = (F_1^{(A)}, F_1^{(B)}, F_1^{(C)}) \]

\[\Lambda_2 = (F_2^{(A)}, F_2^{(B)}, F_2^{(C)}) \]

We can nest them by computing their tensor product

\[\Lambda_1 \otimes \Lambda_2 := (F_1^{(A)} \otimes F_2^{(A)}, F_1^{(B)} \otimes F_2^{(B)}, F_1^{(C)} \otimes F_2^{(C)}) \]

\[\text{rank}(\Lambda_1 \otimes \Lambda_2) = \text{rank}(\Lambda_1) \cdot \text{rank}(\Lambda_2) \]
Block-cyclic algorithm for s-step methods

For s-steps of a $(2m + 1)^d$-point stencil with block-size of $H^{1/d}/m$,

$$W_{Kr} = O\left(\frac{msn^d}{H^{1/d}p}\right) \quad S_{Kr} = O\left(sn^d/(pH)\right) \quad Q_{Kr} = O\left(\frac{msn^d}{H^{1/d}p}\right)$$

which are good when $H = \Theta(n^d/p)$, so the algorithm is useful when the cache size is a bit smaller than n^d/p.
LU factorization strong scaling on Stampede (MIC + Sandy Bridge)

- 2.5D hybrid LU n=131,072
- 2D hybrid LU n=131,072
- 2.5D pure-cpu LU n=131,072
- 2.5D hybrid LU n=65,536
- 2D hybrid LU n=65,536
- 2.5D pure-cpu LU n=65,536
LU factorization strong scaling on Mira (BG/Q), n=65,536

2D LU, custom mapping
2D LU, default mapping

Gigaflop/s/node vs. #nodes
Symmetric matrix representation

Symmetric matrix

Unique part of symmetric matrix
Blocked distributions of a symmetric matrix

Naive blocked layout

Block-cyclic layout
Cyclic distribution of a symmetric matrix

Cyclic layout \sim Improved blocked layout

- P1

- P0

- P1

- P2

- P3
Our CCSD factorization

Credit to John F. Stanton and Jurgen Gauss

$$\tau_{ij}^{ab} = t_{ij}^{ab} + \frac{1}{2} P_b^a P_j^i t_i^a t_j^b,$$

$$\tilde{F}_m^e = f_e^m + \sum_{fn} v_{ef}^{mn} t_n^f,$$

$$\tilde{F}_e^a = (1 - \delta_{ae}) f_e^a - \sum_m \tilde{F}_e^m t_m^a - \frac{1}{2} \sum_{mnf} v_{ef}^{mn} t_m^{af} + \sum_{fn} v_{ef}^{an} t_n^f,$$

$$\tilde{F}_i^m = (1 - \delta_{mi}) f_i^m + \sum_e \tilde{F}_e^m t_i^e + \frac{1}{2} \sum_{nef} v_{ef}^{mn} t_n^{ef} + \sum_{fn} v_{if}^{mn} t_n^f,$$
\[
\begin{aligned}
\tilde{W}_{ei}^{mn} &= v_{ei}^{mn} + \sum_{f} v_{ef}^{mn} t_{i}^{f}, \\
\tilde{W}_{ij}^{mn} &= v_{ij}^{mn} + P_{j}^{i} \sum_{e} v_{ie}^{mn} t_{j}^{e} + \frac{1}{2} \sum_{ef} v_{ef}^{mn} \tau_{ij}^{ef}, \\
\tilde{W}_{ie}^{am} &= v_{ie}^{am} - \sum_{n} \tilde{W}_{ei}^{mn} t_{i}^{a} + \sum_{f} v_{ef}^{ma} t_{i}^{f} + \frac{1}{2} \sum_{nf} v_{ef}^{mn} t_{in}^{af}, \\
\tilde{W}_{ij}^{am} &= v_{ij}^{am} + P_{j}^{i} \sum_{e} v_{ie}^{am} t_{j}^{e} + \frac{1}{2} \sum_{ef} v_{ef}^{am} \tau_{ij}^{ef}, \\
z_{i}^{a} &= f_{i}^{a} - \sum_{m} \tilde{F}_{i}^{m} t_{m}^{a} + \sum_{e} f_{e}^{a} t_{i}^{e} + \sum_{em} v_{ei}^{ma} t_{e}^{m} + \sum_{em} v_{im}^{ae} \tilde{F}_{e}^{m} + \frac{1}{2} \sum_{efm} v_{ef}^{am} \tau_{im}^{ef} \\
&\hspace{1cm} - \frac{1}{2} \sum_{emn} \tilde{W}_{ei}^{mn} t_{mn}^{ea}, \\
z_{ij}^{ab} &= v_{ij}^{ab} + P_{j}^{i} \sum_{e} v_{ie}^{ab} t_{j}^{e} + P_{b}^{a} P_{j}^{i} \sum_{me} \tilde{W}_{ie}^{am} t_{m}^{eb} - P_{b}^{a} \sum_{m} \tilde{W}_{ij}^{am} t_{m}^{b} \\
&\hspace{1cm} + P_{b}^{a} \sum_{e} \tilde{F}_{e}^{a} t_{ij}^{eb} - P_{j}^{i} \sum_{m} \tilde{F}_{i}^{m} t_{mj}^{ab} + \frac{1}{2} \sum_{ef} v_{ef}^{ab} \tau_{ij}^{ef} + \frac{1}{2} \sum_{mn} \tilde{W}_{ij}^{mn} \tau_{mn}^{ab},
\end{aligned}
\]
Stability of symmetry preserving algorithms

Relative error of $c = A^b$ with positive A and alternating b

Relative error of squaring a Householder transformation

Edgar Solomonik

Algorithms as Multilinear Tensor Equations

44/32
Performance breakdown on BG/Q

Performance data for a CCSD iteration with 200 electrons and 1000 orbitals on 4096 nodes of Mira
4 processes per node, 16 threads per process
Total time: 18 mins
\(v\)-orbitals, \(o\)-electrons

<table>
<thead>
<tr>
<th>kernel</th>
<th>% of time</th>
<th>complexity</th>
<th>architectural bounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>DGEMM</td>
<td>45%</td>
<td>(O(v^4 o^2 / p))</td>
<td>flops/mem bandwidth</td>
</tr>
<tr>
<td>broadcasts</td>
<td>20%</td>
<td>(O(v^4 o^2 / p\sqrt{M}))</td>
<td>multicast bandwidth</td>
</tr>
<tr>
<td>prefix sum</td>
<td>10%</td>
<td>(O(p))</td>
<td>allreduce bandwidth</td>
</tr>
<tr>
<td>data packing</td>
<td>7%</td>
<td>(O(v^2 o^2 / p))</td>
<td>integer ops</td>
</tr>
<tr>
<td>all-to-all-v</td>
<td>7%</td>
<td>(O(v^2 o^2 / p))</td>
<td>bisection bandwidth</td>
</tr>
<tr>
<td>tensor folding</td>
<td>4%</td>
<td>(O(v^2 o^2 / p))</td>
<td>memory bandwidth</td>
</tr>
</tbody>
</table>
Tiskin’s path doubling algorithm

Tiskin gives a way to do path-doubling in $F = O(n^3/p)$ operations. We can partition each A^k by path size (number of edges)

$$A^k = I \oplus A^k(1) \oplus A^k(2) \oplus \ldots \oplus A^k(k)$$

where each $A^k(l)$ contains the shortest paths of up to $k \geq l$ edges, which have exactly l edges. We can see that

$$A^l(l) \leq A^{l+1}(l) \leq \ldots \leq A^n(l) = A^*(l),$$

in particular $A^*(l)$ corresponds to a sparse subset of $A^l(l)$.

The algorithm works by picking $l \in [k/2, k]$ and computing

$$(I \oplus A)^{3k/2} \leq (I \oplus A^k(l)) \otimes A^k,$$

which finds all paths of size up to $3k/2$ by taking all paths of size exactly $l \geq k/2$ followed by all paths of size up to k.