Reducing communication in dense matrix/tensor computations

Edgar Solomonik

UC Berkeley

Aug 11th, 2011
Outline

Topology-aware collectives
- Rectangular collectives
- Multicasts
- Reductions

2.5D algorithms
- 2.5D matrix multiplication
- 2.5D LU factorization

Tensor contractions
- Algorithms for distributed tensor contractions
- A tensor contraction library implementation

Conclusions and future work
Performance of multicast (BG/P vs Cray)

1 MB multicast on BG/P, Cray XT5, and Cray XE6

Bandwidth (MB/sec) vs #nodes
Why the performance discrepancy in multicasts?

- Cray machines use **binomial multicasts**
 - Form spanning tree from a list of nodes
 - Route copies of message down each branch
 - Network contention degrades utilization on a 3D torus

- BG/P uses **rectangular multicasts**
 - Require network topology to be a k-ary n-cube
 - Form $2n$ edge-disjoint spanning trees
 - Route in different dimensional order
 - Use both directions of bidirectional network
2D rectangular multicasts trees
A model for rectangular multicasts

\[t_{mcast} = \frac{m}{B_n} + 2(d + 1) \cdot o + 3L + d \cdot P^{1/d} \cdot (2o + L) \]

Our multicast model consists of 3 terms

1. \(\frac{m}{B_n} \), the bandwidth cost incurred at the root
2. \(2(d + 1) \cdot o + 3L \), the start-up overhead of setting up the multicasts in all dimensions
3. \(d \cdot P^{1/d} \cdot (2o + L) \), the path overhead reflects the time for a packet to get from the root to the farthest destination node
A model for binomial multicasts

\[t_{bnm} = \log_2(P) \cdot \left(\frac{m}{B_n} + 2\sigma + L \right) \]

- The root of the binomial tree sends the entire message \(\log_2(P) \) times
- The setup overhead is overlapped with the path overhead
- **We assume no contention**
Model verification: one dimension

DCMF Broadcast on a ring of 8 nodes of BG/P

- t_{rect} model
- DCMF rectangle dput
- t_{bnm} model
- DCMF binomial

Bandwidth (MB/sec) vs. msg size (KB)
Model verification: two dimensions

DCMF Broadcast on 64 (8x8) nodes of BG/P

Bandwidth (MB/sec) vs msg size (KB) for different models:
- t_{rect} model
- DCMF rectangle dput
- t_{binomial} model
- DCMF binomial

Graph shows the bandwidth in MB/sec for varying message sizes (KB) for different broadcast models.

Edgar Solomonik
Communication-avoiding contractions 9/44
Model verification: three dimensions

DCMF Broadcast on 512 (8x8x8) nodes of BG/P

Bandwidth (MB/sec) vs. msg size (KB)

- t\textsubscript{rect} model
- Faraj et al data
- DCMF rectangle dput
- t\textsubscript{bnm} model
- DCMF binomial
A model for rectangular reductions

\[t_{\text{red}} = \max\left[\frac{m}{8\gamma}, \frac{3m}{\beta}, \frac{m}{B_n} \right] + 2(d+1) \cdot o + 3L + d \cdot P^{1/d} \cdot (2o + L) \]

- Any multicast tree can be inverted to produce a reduction tree
- The reduction operator must be applied at each node
 - each node operates on \(2m\) data
 - both the memory bandwidth and computation cost can be overlapped
Rectangular reduction performance on BG/P

BG/P rectangular reduction performs significantly worse than multicast
Performance of custom line reduction

![Performance of custom Reduce/Multicast on 8 nodes](graph.png)
Another look at that first plot

Just how much better are rectangular algorithms on $P = 4096$ nodes?

- Binomial collectives on XE6
 - 1/30th of link bandwidth
- Rectangular collectives on BG/P
 - 4.3X the link bandwidth
- Over 120X improvement in efficiency!

How can we apply this?
2.5D Cannon-style matrix multiplication

\[
\begin{bmatrix}
0 & 1 & 0 & 1 \\
2 & 1 & 2 & 3 \\
0 & 2 & 1 & 2 \\
3 & 3 & 3 & 0
\end{bmatrix}
= \begin{bmatrix}
B_{00} & B_{01} & B_{02} & B_{03} \\
B_{10} & B_{11} & B_{12} & B_{13} \\
A_{00} & A_{01} & A_{02} & A_{03} \\
B_{20} & B_{21} & B_{22} & B_{23}
\end{bmatrix}
\]

2D (P=16, c=1)

\[
\begin{bmatrix}
1 & 2 & 0 & 1 \\
0 & 2 & 2 & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

2.5D (P=32, c=2)

\[
\begin{bmatrix}
0 & 1 & 1 & 0 \\
0 & 1 & 2 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

3D (P=64, c=4)

Edgar Solomonik
Classification of parallel dense matrix algorithms

<table>
<thead>
<tr>
<th>algs</th>
<th>c</th>
<th>memory (M)</th>
<th>words (W)</th>
<th>messages (S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D</td>
<td>1</td>
<td>$O(n^2/P)$</td>
<td>$O(n^2/\sqrt{P})$</td>
<td>$O(\sqrt{P})$</td>
</tr>
<tr>
<td>2.5D</td>
<td>$[1, P^{1/3}]$</td>
<td>$O(cn^2/P)$</td>
<td>$O(n^2/\sqrt{cP})$</td>
<td>$O(\sqrt{P}/c^3)$</td>
</tr>
<tr>
<td>3D</td>
<td>$P^{1/3}$</td>
<td>$O(n^2/P^{2/3})$</td>
<td>$O(n^2/P^{2/3})$</td>
<td>$O(\log(P))$</td>
</tr>
</tbody>
</table>

NEW: 2.5D algorithms generalize 2D and 3D algorithms
Minimize communication with

- minimal memory (2D)
- with as much memory as available (2.5D) - flexible
- with as much memory as the algorithm can exploit (3D)

Match the network topology of

- a \sqrt{P}-by-\sqrt{P} grid (2D)
- a $\sqrt{P/c}$-by-$\sqrt{P/c}$-by-c grid, most cuboids (2.5D) - flexible
- a $P^{1/3}$-by-$P^{1/3}$-by-$P^{1/3}$ cube (3D)
2.5D SUMMA-style matrix multiplication

Matrix mapping to 3D partition of BG/P
2.5D MM strong scaling

2.5D MM on BG/P (n=65,536)

- 2.5D SUMMA
- 2.5D Cannon
- 2D MM (Cannon)
- ScaLAPACK PDGEMM
2.5D MM on 65,536 cores

2.5D MM on 16,384 nodes of BG/P

- 2.5D SUMMA
- 2.5D Cannon
- 2D Cannon
- 2D SUMMA

Percentage of machine peak

n

0 20 40 60 80 100
8192 32768 131072
Cost breakdown of MM on 65,536 cores

SUMMA (2D vs 2.5D) on 16,384 nodes of BG/P

Execution time normalized by 2D

Communication

Idle

Computation

n=8192, 2D
n=8192, 2.5D
n=32768, 2D
n=32768, 2.5D
n=131072, 2D
n=131072, 2.5D

Edgar Solomonik
Communication-avoiding contractions 21/ 44
A new latency lower bound for LU

Reduce latency to $O(\sqrt{P/c^3})$ for LU?

- For block size n/d LU does
 - $\Omega(n^3/d^2)$ flops
 - $\Omega(n^2/d)$ words
 - $\Omega(d)$ msgs

- Now pick d (latency cost)
 - $d = \Omega(\sqrt{P})$ to minimize flops
 - $d = \Omega(\sqrt{c \cdot P})$ to minimize words

No dice. But lets minimize bandwidth.
2.5D LU factorization without pivoting

1. Factorize A_{00} and communicate L_{00} and U_{00} among layers.

2. Perform TRSMs to compute a panel of L and a panel of U.

3. Broadcast blocks so all layers own the panels of L and U.

4. Broadcast different subpanels within each layer.

5. Multiply subpanels on each layer.

6. Reduce (sum) the next panels.*

7. Broadcast the panels and continue factorizing the Schur's complement...

* All layers always need to contribute to reduction even if iteration done with subset of layers.
2.5D LU factorization with tournament pivoting

1. Factorize each block in the first column with pivoting.
2. Reduce to find best pivot rows.
3. Pivot rows in first big block column on each layer.
4. Apply TRSMs to compute first column of L and the first block of a row of U.
5. Update corresponding interior blocks $S_{n \times A} \cdot L_{m \times n}^T \cdot U_{m \times n}$.
6. Recurse to compute the rest of the first big block column of L.
7. Pivot rows in the rest of the matrix on each layer.
8. Perform TRSMs to compute panel of U.
9. Update the rest of the matrix as before and recurse on next block panel...
2.5D LU strong scaling

2.5D LU with on BG/P (n=65,536)

Percentage of machine peak vs. #nodes for different LU factorization methods:
- 2.5D LU (no-pvt)
- 2.5D LU (CA-pvt)
- 2D LU (no-pvt)
- 2D LU (CA-pvt)
- ScaLAPACK PDGETRF

The graph shows the performance of different LU factorization methods as the number of nodes increases, measured in terms of the percentage of machine peak. The methods include 2.5D LU with and without communication avoidance (no-pvt, CA-pvt), 2D LU with and without communication avoidance, and ScaLAPACK PDGETRF.
2.5D LU on 65,536 cores
Bridging dense linear algebra techniques and applications

Target application: tensor contractions in electronic structure calculations (quantum chemistry)

- Often memory constrained
- Most target tensors are oddly shaped
- Need support for high dimensional tensors
- Need handling of partial/full tensor symmetries
- Would like to use communication avoiding ideas (blocking, 2.5D, topology-awareness)
Decoupling memory usage and topology-awareness

- 2.5D algorithms couple memory usage and virtual topology
 - \(c \) copies of a matrix implies \(c \) processor layers
- Instead, we can nest 2D and/or 2.5D algorithms
- Higher-dimensional algorithms allow smarter topology aware mapping
Higher-dimensional distributed MM

- 2.5D algorithms couple memory usage and virtual topology
 - c copies of a matrix implies c processor layers
- Instead, we can nest 2D and/or 2.5D algorithms
- Higher-dimensional algorithms allow smarter topology aware mapping
4D SUMMA-Cannon

How do we map to a 3D partition without using more memory

- SUMMA (bcast-based) on 2D layers
- Cannon (send-based) along third dimension
- Cannon calls SUMMA as sub-routine
 - Minimize inefficient (non-rectangular) communication
 - Allow better overlap
- Treats MM as a 4D tensor contraction
Symmetry is a problem

- A fully symmetric tensor of dimension d requires only $n^d/d!$ storage.
- Symmetry significantly complicates sequential implementation
 - Irregular indexing makes alignment and unrolling difficult
 - Generalizing over all partial-symmetries is expensive
- Blocked or block-cyclic virtual processor decompositions give irregular or imbalanced virtual grids.
Solving the symmetry problem

- A **cyclic decomposition** allows balanced and regular blocking of symmetric tensors
- If the cyclic-phase is the same in each symmetric dimension, each sub-tensor retains the symmetry of the whole tensor
A generalized cyclic layout is still challenging

- In order to retain partial symmetry, all symmetric dimensions of a tensor must be mapped with the same cyclic phase.
- The contracted dimensions of A and B must be mapped with the same phase.
- And yet the virtual mapping, needs to be mapped to a physical topology, which can be any shape.
Virtual processor grid dimensions

- Our virtual cyclic topology is somewhat restrictive and the physical topology is very restricted
- Virtual processor grid dimensions serve as a new level of indirection
 - If a tensor dimension must have a certain cyclic phase, adjust physical mapping by creating a virtual processor dimension
 - Allows physical processor grid to be ‘stretchable’
Constructing a virtual processor grid for MM

Matrix multiply on 2x3 processor grid. Red lines represent virtualized part of processor grid. Elements assigned to blocks by cyclic phase.
Unfolding the processor grid

- Higher-dimensional fully-symmetric tensors can be mapped onto a lower-dimensional processor grid via creation of new virtual dimensions
- Lower-dimensional tensors can be mapped onto a higher-dimensional processor grid via by unfolding (serializing) pairs of processor dimensions
- However, when possible, replication is better than unfolding, since unfolded processor grids can lead to an unbalanced mapping
A basic parallel algorithm for symmetric tensor contractions

1. Arrange processor grid in any k-ary n-cube shape
2. Map (via unfold & virt) both A and B cyclically along the dimensions being contracted
3. Map (via unfold & virt) the remaining dimensions of A and B cyclically
4. For each tensor dimension contracted over, recursively multiply the tensors along the mapping
 - Each contraction dimension is represented with a nested call to a local multiply or a parallel algorithm (e.g. Cannon)
Tensor library structure

The library supports arbitrary-dimensional parallel tensor contractions with any symmetries on n-cuboid processor torus partitions

1. Load tensor data by (global rank, value) pairs
2. Once a contraction is defined, map participating tensors
3. Distribute or reshuffle tensor data/pairs
4. Construct contraction algorithm with recursive function/args pointers
5. Contract the sub-tensors with a user-defined sequential contract function
6. Output (global rank, value) pairs on request
Current tensor library status

- Dense and symmetric remapping/repadding/contractions implemented
- Currently functional only for dense tensors, but with full symmetric logic
- Can perform automatic mapping with physical and virtual dimensions, but cannot unfold processor dimensions yet
- Complete library interface implemented, including basic auxillary functions (e.g. map/reduce, sum, etc.)
Next implementation steps

- Currently integrating library with a SCF method code that uses dense contractions
- Get symmetric redistribution working correctly
- Automatic unfolding of processor dimensions
- Implement mapping by replication to enable 2.5D algorithms
- Much basic performance debugging/optimization left to do
- More optimization needed for sequential symmetric contractions
Very preliminary contraction library results

Contracts tensors of size $64 \times 64 \times 256 \times 256$ in 1 second on 2K nodes

Strong scaling of dense contraction on BG/P $64 \times 64 \times 256 \times 256$

![Graph showing strong scaling of dense contraction on BG/P](image-url)
Potential benefit of unfolding

Unfolding smallest two BG/P torus dimensions improves performance.

![Graph showing strong scaling of dense contraction on BG/P 64x64x256x256.](chart)

- **Label**: Percentage of machine peak
- **X-axis**: #nodes
- **Y-axis**: Percentage of machine peak
- **Legend**:
 - no-rephase 2D
 - no-rephase 3D
Contribution

- Models for rectangular collectives
- 2.5D algorithms theory and implementation
- Using a cyclic mapping to parallelize symmetric tensor contractions
- Extending and tuning processor grid with virtual dimensions
- Automatic mapping of high-dimensional tensors to topology-aware physical partitions
- A parallel tensor contraction algorithm/library without a global address space
Conclusions and references

- Parallel tensor contraction algorithm and library seem to be the first communication-efficient practical approach
- Preliminary results and theory indicate high potential of this tensor contraction library

- papers
 - (2.5D) to appear in Euro-Par 2011, Distinguished paper
 - (2.5D + rectangular collective models) to appear in Supercomputing 2011
Backup slides
A new LU latency lower bound

flops lower bound requires $d = \Omega(\sqrt{p})$ blocks/messages

bandwidth lower bound required $d = \Omega(\sqrt{cp})$ blocks/messages
Virtual topology of 2.5D algorithms

2D algorithm mapping: \(\left(\sqrt{P} \right) \times \left(\sqrt{P} \right) \) grid

2.5D algorithm mapping: \(\left(\sqrt{P/c} \right) \times \left(\sqrt{P/c} \right) \times c \) grid for any \(c \)